SAE+LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG

EEG-based automatic emotion recognition can help brain-inspired robots in improving their interactions with humans. This paper presents a novel framework for emotion recognition using multi-channel electroencephalogram (EEG). The framework consists of a linear EEG mixing model and an emotion timing...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neurorobotics Vol. 13; p. 37
Main Authors: Xing, Xiaofen, Li, Zhenqi, Xu, Tianyuan, Shu, Lin, Hu, Bin, Xu, Xiangmin
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 12.06.2019
Frontiers Media S.A
Subjects:
ISSN:1662-5218, 1662-5218
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract EEG-based automatic emotion recognition can help brain-inspired robots in improving their interactions with humans. This paper presents a novel framework for emotion recognition using multi-channel electroencephalogram (EEG). The framework consists of a linear EEG mixing model and an emotion timing model. Our proposed framework considerably decomposes the EEG source signals from the collected EEG signals and improves classification accuracy by using the context correlations of the EEG feature sequences. Specially, Stack AutoEncoder (SAE) is used to build and solve the linear EEG mixing model and the emotion timing model is based on the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). The framework was implemented on the DEAP dataset for an emotion recognition experiment, where the mean accuracy of emotion recognition achieved 81.10% in valence and 74.38% in arousal, and the effectiveness of our framework was verified. Our framework exhibited a better performance in emotion recognition using multi-channel EEG than the compared conventional approaches in the experiments.
AbstractList EEG-based automatic emotion recognition can help brain-inspired robots in improving their interactions with humans. This paper presents a novel framework for emotion recognition using multi-channel electroencephalogram (EEG). The framework consists of a linear EEG mixing model and an emotion timing model. Our proposed framework considerably decomposes the EEG source signals from the collected EEG signals and improves classification accuracy by using the context correlations of the EEG feature sequences. Specially, Stack AutoEncoder (SAE) is used to build and solve the linear EEG mixing model and the emotion timing model is based on the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). The framework was implemented on the DEAP dataset for an emotion recognition experiment, where the mean accuracy of emotion recognition achieved 81.10% in valence and 74.38% in arousal, and the effectiveness of our framework was verified. Our framework exhibited a better performance in emotion recognition using multi-channel EEG than the compared conventional approaches in the experiments.
EEG based automatic emotion recognition can help the brain-inspired robots in improving their interactions with human.This paper presents a novel framework for emotion recognition using multi-channel electroencephalogram (EEG). The framework consists of a linear EEG mixing model and an emotion timing model. Our proposed framework considerably decomposes the EEG source signals from the collected EEG signals and improves the classification accuracy by using the context correlations of the EEG feature sequences. Specially, Stack AutoEncoder (SAE) is used to build and solve the linear EEG mixing model and the emotion timing model is based on the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). The framework was implemented on the DEAP dataset for emotion recognition experiment, where the mean accuracy of emotion recognition achieved 81.10\% in valence and 74.38\% in arousal, and the effectiveness of our framework was verified. Our framework exhibited a better performance in emotion recognition using multi-channel EEG than the compared conventional approaches in the experiments.
EEG-based automatic emotion recognition can help brain-inspired robots in improving their interactions with humans. This paper presents a novel framework for emotion recognition using multi-channel electroencephalogram (EEG). The framework consists of a linear EEG mixing model and an emotion timing model. Our proposed framework considerably decomposes the EEG source signals from the collected EEG signals and improves classification accuracy by using the context correlations of the EEG feature sequences. Specially, Stack AutoEncoder (SAE) is used to build and solve the linear EEG mixing model and the emotion timing model is based on the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). The framework was implemented on the DEAP dataset for an emotion recognition experiment, where the mean accuracy of emotion recognition achieved 81.10% in valence and 74.38% in arousal, and the effectiveness of our framework was verified. Our framework exhibited a better performance in emotion recognition using multi-channel EEG than the compared conventional approaches in the experiments.EEG-based automatic emotion recognition can help brain-inspired robots in improving their interactions with humans. This paper presents a novel framework for emotion recognition using multi-channel electroencephalogram (EEG). The framework consists of a linear EEG mixing model and an emotion timing model. Our proposed framework considerably decomposes the EEG source signals from the collected EEG signals and improves classification accuracy by using the context correlations of the EEG feature sequences. Specially, Stack AutoEncoder (SAE) is used to build and solve the linear EEG mixing model and the emotion timing model is based on the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). The framework was implemented on the DEAP dataset for an emotion recognition experiment, where the mean accuracy of emotion recognition achieved 81.10% in valence and 74.38% in arousal, and the effectiveness of our framework was verified. Our framework exhibited a better performance in emotion recognition using multi-channel EEG than the compared conventional approaches in the experiments.
Author Shu, Lin
Xu, Xiangmin
Hu, Bin
Xu, Tianyuan
Li, Zhenqi
Xing, Xiaofen
AuthorAffiliation 1 School of Electronic and Information Engineering, South China University of Technology , Guangzhou , China
2 School of Information Science and Engineering, Lanzhou University , Lanzhou , China
AuthorAffiliation_xml – name: 2 School of Information Science and Engineering, Lanzhou University , Lanzhou , China
– name: 1 School of Electronic and Information Engineering, South China University of Technology , Guangzhou , China
Author_xml – sequence: 1
  givenname: Xiaofen
  surname: Xing
  fullname: Xing, Xiaofen
– sequence: 2
  givenname: Zhenqi
  surname: Li
  fullname: Li, Zhenqi
– sequence: 3
  givenname: Tianyuan
  surname: Xu
  fullname: Xu, Tianyuan
– sequence: 4
  givenname: Lin
  surname: Shu
  fullname: Shu, Lin
– sequence: 5
  givenname: Bin
  surname: Hu
  fullname: Hu, Bin
– sequence: 6
  givenname: Xiangmin
  surname: Xu
  fullname: Xu, Xiangmin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31244638$$D View this record in MEDLINE/PubMed
BookMark eNp1kt1rFDEUxYNU7Ie--yQDvghl1iSTyYcPwrLMtoWtgq3PIZkk26wzSc3MWPrfm92tpS34lEtyzo-be88xOAgxWADeIzirKi4-u6DjOMMQiRmEsGKvwBGiFJc1RvzgSX0IjodhAyHFtOZvwGGFMCG04kfg_GrenK6uri-_FPPim70rlkn19i6mX4WLqWj6OPoYih-2jevgd_Uyxb64nLrRl4sbFYLtiqY5ewteO9UN9t3DeQJ-LpvrxXm5-n52sZivypYwxEpSG2cgrGuBiVPEtAgLDa3WtRYMWc2cM6RG3GinoHXKQK2MwpRZAgVFqjoBF3uuiWojb5PvVbqXUXm5u4hpLVUafdtZyQyh3DkmUEsJc0oImvG1cppSTSDPrK971u2ke2taG8akumfQ5y_B38h1_CPzFBGrUAZ8egCk-Huywyh7P7S261SwcRokxoRXjNWUZenHF9JNnFLIo8oqUQnOCYNZ9eFpR4-t_FtYFsC9oE1xGJJ1jxIE5TYTcpcJuc2E3GUiW-gLS-tHtV1l_pPv_m_8C923uwE
CitedBy_id crossref_primary_10_1088_1361_6579_ad5bbc
crossref_primary_10_3390_electronics12132933
crossref_primary_10_1007_s11571_021_09756_0
crossref_primary_10_1007_s12559_022_10016_4
crossref_primary_10_1038_s41598_025_10270_0
crossref_primary_10_1088_1741_2552_acb79e
crossref_primary_10_3390_diagnostics12123188
crossref_primary_10_1007_s40747_024_01682_y
crossref_primary_10_1109_ACCESS_2024_3454090
crossref_primary_10_1016_j_bspc_2023_105487
crossref_primary_10_3390_make4040053
crossref_primary_10_3390_s20164543
crossref_primary_10_1016_j_jneumeth_2024_110276
crossref_primary_10_1080_0952813X_2023_2301367
crossref_primary_10_1016_j_neucom_2024_128027
crossref_primary_10_3389_fnhum_2019_00366
crossref_primary_10_3390_s21155092
crossref_primary_10_3389_fpsyg_2024_1275142
crossref_primary_10_1109_ACCESS_2022_3201342
crossref_primary_10_3390_brainsci12080987
crossref_primary_10_1016_j_bspc_2025_108342
crossref_primary_10_1080_13803395_2024_2364403
crossref_primary_10_1016_j_neucom_2021_08_018
crossref_primary_10_3390_s20072034
crossref_primary_10_1007_s10586_024_04590_5
crossref_primary_10_1109_JBHI_2022_3198688
crossref_primary_10_1016_j_bspc_2023_104661
crossref_primary_10_1109_ACCESS_2020_3009665
crossref_primary_10_1016_j_jneumeth_2024_110317
crossref_primary_10_3389_fnins_2023_1135850
crossref_primary_10_1016_j_bspc_2024_107435
crossref_primary_10_3390_app10165662
crossref_primary_10_3390_math10173131
crossref_primary_10_1186_s40708_025_00265_y
crossref_primary_10_3390_info12070272
crossref_primary_10_3389_fnins_2023_1188696
crossref_primary_10_3390_s20185083
crossref_primary_10_3390_s22145111
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1016_j_knosys_2023_110372
crossref_primary_10_1016_j_measurement_2020_108747
crossref_primary_10_1186_s40708_021_00133_5
crossref_primary_10_1038_s41598_022_07517_5
crossref_primary_10_1109_ACCESS_2022_3221771
crossref_primary_10_3390_s19214736
crossref_primary_10_3389_fnhum_2020_589001
crossref_primary_10_3390_s25061827
crossref_primary_10_1007_s11042_023_14354_9
crossref_primary_10_1016_j_asoc_2020_106954
crossref_primary_10_1109_JBHI_2024_3392564
crossref_primary_10_1088_1741_2552_ad7060
crossref_primary_10_1007_s11571_022_09832_z
crossref_primary_10_1016_j_bspc_2024_106953
crossref_primary_10_1109_TIM_2024_3417598
crossref_primary_10_3389_fnins_2021_719869
crossref_primary_10_1145_3524499
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1109_ACCESS_2024_3402230
crossref_primary_10_1016_j_bspc_2023_105223
crossref_primary_10_1007_s11517_021_02452_5
crossref_primary_10_1007_s10489_020_02125_0
crossref_primary_10_1016_j_bspc_2022_103877
crossref_primary_10_1038_s41598_021_00812_7
crossref_primary_10_1109_ACCESS_2021_3049516
crossref_primary_10_3389_fncom_2021_743426
crossref_primary_10_1016_j_neucom_2025_129856
crossref_primary_10_1007_s10489_022_04228_2
crossref_primary_10_1007_s00521_021_06839_1
crossref_primary_10_1109_TCDS_2022_3149953
crossref_primary_10_1016_j_ifacol_2021_04_125
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_1155_2021_2520394
crossref_primary_10_1088_2057_1976_ac27c4
crossref_primary_10_3390_app13116761
crossref_primary_10_1007_s42979_022_01118_9
crossref_primary_10_1016_j_bspc_2022_104060
crossref_primary_10_3390_computers11100152
crossref_primary_10_3390_computation11020020
crossref_primary_10_3390_e24091187
crossref_primary_10_1109_TCDS_2023_3245042
crossref_primary_10_1109_TIM_2022_3165280
crossref_primary_10_3390_s23010225
crossref_primary_10_1002_jnm_70000
crossref_primary_10_1109_ACCESS_2023_3270177
crossref_primary_10_1109_ACCESS_2021_3068316
crossref_primary_10_3390_electronics11040651
crossref_primary_10_1016_j_neucom_2025_130309
crossref_primary_10_1007_s11760_022_02447_1
crossref_primary_10_4018_IJSWIS_337286
crossref_primary_10_7717_peerj_cs_2610
crossref_primary_10_1109_TAFFC_2025_3554399
crossref_primary_10_1155_2024_6091523
crossref_primary_10_3389_fnins_2024_1320645
crossref_primary_10_1007_s12559_022_10053_z
crossref_primary_10_1109_JSEN_2021_3121293
crossref_primary_10_3390_s22134679
crossref_primary_10_1016_j_bspc_2022_103660
crossref_primary_10_1038_s41598_024_60977_9
crossref_primary_10_1016_j_autcon_2023_104892
crossref_primary_10_1109_TSMC_2024_3523342
crossref_primary_10_3390_brainsci14030245
crossref_primary_10_1063_5_0258358
crossref_primary_10_1007_s11571_024_10149_2
crossref_primary_10_1109_ACCESS_2024_3384303
crossref_primary_10_3389_fnhum_2023_1280241
crossref_primary_10_3233_JIFS_237884
crossref_primary_10_3390_s19245533
crossref_primary_10_1016_j_jneumeth_2022_109642
crossref_primary_10_1109_TNNLS_2023_3319315
crossref_primary_10_1145_3712259
crossref_primary_10_1007_s11042_022_13149_8
crossref_primary_10_3390_s20247103
crossref_primary_10_1109_TAFFC_2020_3015018
crossref_primary_10_1109_TIM_2020_3006611
crossref_primary_10_3389_fnins_2022_872311
crossref_primary_10_1109_TAFFC_2025_3551330
crossref_primary_10_1155_2022_6000989
crossref_primary_10_1155_2022_1343358
crossref_primary_10_1016_j_cmpb_2022_106646
crossref_primary_10_3390_s21051589
crossref_primary_10_3390_buildings15183339
crossref_primary_10_1109_TAFFC_2020_2982143
crossref_primary_10_3390_math13010087
crossref_primary_10_1109_TIM_2021_3124056
crossref_primary_10_3390_app14020726
crossref_primary_10_3390_s20123491
crossref_primary_10_1007_s11042_023_16941_2
crossref_primary_10_3390_s22082976
crossref_primary_10_1080_10255842_2023_2252952
crossref_primary_10_1007_s00371_021_02069_7
crossref_primary_10_3389_fnins_2024_1479570
crossref_primary_10_1016_j_bspc_2022_103544
crossref_primary_10_1016_j_asoc_2025_113478
crossref_primary_10_1109_TNNLS_2022_3145365
crossref_primary_10_3389_fnhum_2023_1174104
crossref_primary_10_1016_j_heliyon_2024_e30174
crossref_primary_10_1016_j_jneumeth_2023_109879
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_1007_s13755_023_00224_z
crossref_primary_10_3390_s23031255
crossref_primary_10_1016_j_neunet_2024_106742
crossref_primary_10_1007_s10489_022_04366_7
crossref_primary_10_1016_j_bspc_2023_105422
crossref_primary_10_1109_TNSRE_2023_3320693
crossref_primary_10_1007_s00521_022_07540_7
crossref_primary_10_1007_s00773_025_01083_x
crossref_primary_10_7717_peerj_cs_1977
crossref_primary_10_1016_j_engappai_2024_108011
crossref_primary_10_1007_s11517_022_02686_x
crossref_primary_10_3389_fncom_2024_1416494
crossref_primary_10_3390_s23031622
crossref_primary_10_3390_math13071072
crossref_primary_10_1109_ACCESS_2024_3417525
crossref_primary_10_1088_1741_2552_ac49a7
crossref_primary_10_3390_app10217677
crossref_primary_10_1155_2021_8896062
crossref_primary_10_1016_j_compbiomed_2022_105519
crossref_primary_10_1109_JSEN_2020_3020828
crossref_primary_10_1109_JSEN_2020_3031163
crossref_primary_10_1016_j_bspc_2023_104835
crossref_primary_10_1109_TAFFC_2021_3064940
crossref_primary_10_3390_diagnostics12102508
crossref_primary_10_3389_fnhum_2024_1471634
crossref_primary_10_3389_fphy_2020_629620
crossref_primary_10_3390_s22218198
Cites_doi 10.21437/Interspeech.2014-80
10.1016/j.neuroimage.2010.08.064
10.1109/TAFFC.2017.2712143
10.5815/ijigsp.2011.05.05
10.1109/TBME.2010.2048568
10.1016/j.procs.2016.04.062
10.1109/78.650093
10.3389/fnbot.2014.00018
10.1037/0003-066X.50.5.372
10.1016/j.patrec.2007.01.002
10.1016/j.neucom.2015.09.085
10.1109/ACCESS.2016.2628407
10.3233/THC-174836
10.1109/TNNLS.2013.2280271
10.1109/T-AFFC.2011.15
10.1109/TBME.2016.2631620
10.1007/s00521-015-2149-8
10.1146/annurev.ne.18.030195.003011
10.1109/TAFFC.2015.2436926
10.1007/978-3-319-46672-9_58
10.1126/science.1127647
10.1016/j.asoc.2015.01.007
10.3389/fnbot.2017.00019
10.1186/s12984-016-0212-z
10.1016/j.neucom.2017.03.027
10.1007/978-981-10-8530-7_30
10.3389/fnbot.2013.00019
10.1007/s11571-013-9267-8
10.1111/1469-8986.3950641
10.1109/72.279181
10.3390/s18072074
10.1109/TMM.2014.2360798
10.1016/j.conb.2004.03.015
10.1109/T-AFFC.2012.4
10.1007/s10916-017-0843-z
10.1109/EMBC.2015.7320275
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Xing, Li, Xu, Shu, Hu and Xu. 2019 Xing, Li, Xu, Shu, Hu and Xu
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Xing, Li, Xu, Shu, Hu and Xu. 2019 Xing, Li, Xu, Shu, Hu and Xu
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnbot.2019.00037
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1662-5218
ExternalDocumentID oai_doaj_org_article_7d468ff791c647fa9967ff5afb66b408
PMC6581731
31244638
10_3389_fnbot_2019_00037
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFS
ADBBV
ADDVE
ADMLS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4717-45dfd0055924fa4dc129b0ebb5b971eb7ffd4518dbfa0efad0bada267e40961a3
IEDL.DBID DOA
ISSN 1662-5218
IngestDate Fri Oct 03 12:36:54 EDT 2025
Tue Nov 04 02:03:47 EST 2025
Thu Sep 04 17:47:23 EDT 2025
Fri Jul 25 11:42:06 EDT 2025
Wed Feb 19 02:32:40 EST 2025
Sat Nov 29 03:48:44 EST 2025
Tue Nov 18 22:16:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stack AutoEncoder
LSTM
emotion recognition
neural network
EEG
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4717-45dfd0055924fa4dc129b0ebb5b971eb7ffd4518dbfa0efad0bada267e40961a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Sung Chan Jun, Gwangju Institute of Science and Technology, South Korea; Oluwarotimi WIlliams Samuel, Shenzhen Institutes of Advanced Technology (CAS), China
Edited by: Jan Babic, Jožef Stefan Institute (IJS), Slovenia
OpenAccessLink https://doaj.org/article/7d468ff791c647fa9967ff5afb66b408
PMID 31244638
PQID 2293988470
PQPubID 4424403
ParticipantIDs doaj_primary_oai_doaj_org_article_7d468ff791c647fa9967ff5afb66b408
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581731
proquest_miscellaneous_2248377567
proquest_journals_2293988470
pubmed_primary_31244638
crossref_primary_10_3389_fnbot_2019_00037
crossref_citationtrail_10_3389_fnbot_2019_00037
PublicationCentury 2000
PublicationDate 20190612
PublicationDateYYYYMMDD 2019-06-12
PublicationDate_xml – month: 6
  year: 2019
  text: 20190612
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neurorobotics
PublicationTitleAlternate Front Neurorobot
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Li (B18) 2018; 26
Whitten (B40) 2011; 54
Gupta (B9) 2016; 174
Lang (B17) 1995; 50
Soleymani (B37) 2016; 7
Keil (B12) 2002; 39
Bonita (B4) 2014; 8
You (B43) 2004; 20
Korats (B15) 2012
Mohammadi (B26) 2017; 28
Arnau-Gonzlez (B2) 2017; 244
Singer (B36) 1995; 18
Zheng (B45) 2016; 4
Chen (B8) 2015
Liu (B23) 2016
Reddi (B30) 2018
Majumdar (B24) 2016; 99
Chen (B7)
Schuster (B34) 1997; 45
Yoo (B42) 2014; 8
Koelstra (B14) 2012; 3
Khosrowabadi (B13) 2014; 25
Sanei (B33) 2013
Li (B19); 14
Yin (B41) 2017; 11
Samuel (B32) 2017; 41
Niedermeyer (B27) 2005
Urgen (B39) 2013; 7
Li (B21) 2018
Hinton (B10) 2006; 313
Zhang (B44) 2016; 99
Hosseini (B11) 2011; 3
Lin (B22) 2010; 57
Brunner (B5) 2007; 28
Sak (B31) 2014
Shu (B35) 2018; 18
Mao (B25) 2014; 16
Alzoubi (B1) 2012; 3
Chen (B6); 30
Phelps (B29) 2004; 14
Li (B20)
Orgo (B28) 2015
Soleymani (B38) 2014
Bengio (B3) 2002; 5
Kumar (B16) 2016; 84
References_xml – volume-title: Fifteenth Annual Conference of the International Speech Communication Association
  year: 2014
  ident: B31
  article-title: “Long short-term memory recurrent neural network architectures for large scale acoustic modeling,”
  doi: 10.21437/Interspeech.2014-80
– volume: 54
  start-page: 860
  year: 2011
  ident: B40
  article-title: A better oscillation detection method robustly extracts eeg rhythms across brain state changes: the human alpha rhythm as a test case
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.064
– volume: 4
  start-page: 8375
  year: 2016
  ident: B45
  article-title: Identifying stable patterns over time for emotion recognition from eeg
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– start-page: 269
  volume-title: International Joint Conference on Biomedical Engineering Systems and Technologies
  year: 2012
  ident: B15
  article-title: “Applying ica in eeg: choice of the window length and of the decorrelation method,”
– volume: 3
  start-page: 30
  year: 2011
  ident: B11
  article-title: Emotion recognition method using entropy analysis of eeg signals
  publication-title: Int. J. Image Graph. Signal Process.
  doi: 10.5815/ijigsp.2011.05.05
– volume: 57
  start-page: 1798
  year: 2010
  ident: B22
  article-title: Eeg-based emotion recognition in music listening
  publication-title: IEEE Trans. BioMed. Eng.
  doi: 10.1109/TBME.2010.2048568
– volume: 84
  start-page: 31
  year: 2016
  ident: B16
  article-title: Bispectral analysis of eeg for emotion recognition
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2016.04.062
– start-page: 352
  volume-title: IEEE International Conference on Bioinformatics and Biomedicine
  ident: B20
  article-title: “Emotion recognition from multi-channel eeg data through convolutional recurrent neural network,”
– volume: 45
  start-page: 2673
  year: 1997
  ident: B34
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume-title: International Conference on Learning Representations
  year: 2018
  ident: B30
  article-title: “On the convergence of adam and beyond,”
– volume: 8
  start-page: 18
  year: 2014
  ident: B42
  article-title: Predictable internal brain dynamics in eeg and its relation to conscious states
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2014.00018
– volume: 50
  start-page: 372
  year: 1995
  ident: B17
  article-title: The emotion probe. Studies of motivation and attention
  publication-title: Am. Psychol.
  doi: 10.1037/0003-066X.50.5.372
– volume: 20
  start-page: 77
  year: 2004
  ident: B43
  article-title: Blind signal separation of multi-channel eeg
  publication-title: Acta Biophys. Sinica
– volume: 28
  start-page: 957
  year: 2007
  ident: B5
  article-title: Spatial filtering and selection of optimized components in four class motor imagery eeg data using independent components analysis
  publication-title: Patt. Recogn. Lett.
  doi: 10.1016/j.patrec.2007.01.002
– volume: 174
  start-page: 875
  year: 2016
  ident: B9
  article-title: Relevance vector classifier decision fusion and eeg graph-theoretic features for automatic affective state characterization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.085
– volume: 99
  start-page: 1
  year: 2016
  ident: B44
  article-title: Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2628407
– volume: 26
  start-page: 509
  year: 2018
  ident: B18
  article-title: Emotion recognition from multichannel eeg signals using k-nearest neighbor classification
  publication-title: Tech. Health Care
  doi: 10.3233/THC-174836
– volume-title: EEG Signal Processing
  year: 2013
  ident: B33
– volume: 25
  start-page: 609
  year: 2014
  ident: B13
  article-title: Ernn: a biologically inspired feedforward neural network to discriminate emotion from eeg signal
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2280271
– start-page: 1
  volume-title: IEEE International Conference on Multimedia and Expo
  year: 2014
  ident: B38
  article-title: “Continuous emotion detection using eeg signals and facial expressions,”
– volume: 3
  start-page: 18
  year: 2012
  ident: B14
  article-title: Deap: a database for emotion analysis ;using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 99
  start-page: 1
  year: 2016
  ident: B24
  article-title: Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2631620
– volume: 28
  start-page: 1985
  year: 2017
  ident: B26
  article-title: Wavelet-based emotion recognition system using eeg signal
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2149-8
– volume: 18
  start-page: 555
  year: 1995
  ident: B36
  article-title: Visual feature integration and the temporal correlation hypothesis
  publication-title: Ann. Rev. Neurosci.
  doi: 10.1146/annurev.ne.18.030195.003011
– volume: 7
  start-page: 17
  year: 2016
  ident: B37
  article-title: Analysis of eeg signals and facial expressions for continuous emotion detection
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2436926
– start-page: 521
  volume-title: International Conference on Neural Information Processing
  year: 2016
  ident: B23
  article-title: Emotion recognition using multimodal deep learning. in
  doi: 10.1007/978-3-319-46672-9_58
– volume: 313
  start-page: 504
  year: 2006
  ident: B10
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 30
  start-page: 663
  ident: B6
  article-title: Electroencephalogram-based emotion assessment system using ontology and data mining techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.007
– volume: 11
  start-page: 19
  year: 2017
  ident: B41
  article-title: Cross-subject eeg feature selection for emotion recognition using transfer recursive feature elimination
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2017.00019
– start-page: 395
  volume-title: IEEE International Conference on Bioinformatics and Biomedicine
  ident: B7
  article-title: “Feature-level fusion of multimodal physiological signals for emotion recognition,”
– volume: 14
  start-page: 2
  ident: B19
  article-title: A motion-classification strategy based on semg-eeg signal combination for upper-limb amputees
  publication-title: J. Neuroeng. Rehabilit.
  doi: 10.1186/s12984-016-0212-z
– start-page: 63
  volume-title: International Conference on Affective Computing and Intelligent Interaction
  year: 2015
  ident: B8
  article-title: “Identifying valence and arousal levels via connectivity between eeg channels,”
– volume: 244
  start-page: 81
  year: 2017
  ident: B2
  article-title: Fusing highly dimensional energy and connectivity features to identify affective states from eeg signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.027
– volume-title: Internet Multimedia Computing and Service. ICIMCS 2017
  year: 2018
  ident: B21
  article-title: “Emotion Recognition from EEG Using RASM and LSTM,”
  doi: 10.1007/978-981-10-8530-7_30
– volume-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
  year: 2005
  ident: B27
– volume: 7
  start-page: 19
  year: 2013
  ident: B39
  article-title: Eeg theta and mu oscillations during perception of human and robot actions
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2013.00019
– volume: 8
  start-page: 1
  year: 2014
  ident: B4
  article-title: Time domain measures of inter-channel eeg correlations: a comparison of linear, nonparametric and nonlinear measures
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-013-9267-8
– volume: 39
  start-page: 641
  year: 2002
  ident: B12
  article-title: Large-scale neural correlates of affective picture processing
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3950641
– volume: 5
  start-page: 157
  year: 2002
  ident: B3
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– volume: 18
  start-page: 2074
  year: 2018
  ident: B35
  article-title: A review of emotion recognition using physiological signals
  publication-title: Sensors
  doi: 10.3390/s18072074
– volume: 16
  start-page: 2203
  year: 2014
  ident: B25
  article-title: Learning salient features for speech emotion recognition using convolutional neural networks
  publication-title: IEEE Transact. Multi.
  doi: 10.1109/TMM.2014.2360798
– volume: 14
  start-page: 198
  year: 2004
  ident: B29
  article-title: Human emotion and memory: interactions of the amygdala and hippocampal complex
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.03.015
– volume: 3
  start-page: 298
  year: 2012
  ident: B1
  article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2012.4
– volume: 41
  start-page: 194
  year: 2017
  ident: B32
  article-title: Towards efficient decoding of multiple classes of motor imagery limb movements based on eeg spectral and time domain descriptors
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0843-z
– start-page: 8107
  volume-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2015
  ident: B28
  article-title: “Effect of negative and positive emotions on eeg spectral asymmetry,”
  doi: 10.1109/EMBC.2015.7320275
SSID ssj0062658
Score 2.5751042
Snippet EEG-based automatic emotion recognition can help brain-inspired robots in improving their interactions with humans. This paper presents a novel framework for...
EEG based automatic emotion recognition can help the brain-inspired robots in improving their interactions with human.This paper presents a novel framework for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 37
SubjectTerms Algorithms
Arousal
Asymmetry
Brain research
EEG
emotion recognition
Emotions
International conferences
Long short-term memory
LSTM
Methods
neural network
Neural networks
Noise
Physiology
Robotics and AI
Signal processing
Stack AutoEncoder
Wavelet transforms
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egICNxQShaO3HsmAtaUJYeaFXRIvVm2bENlUpSdlt-PzNOsuwi1Au3KHGkiefhGXvyfYS8hqRDlryqc3A0nYtCVbmFQiT3lleRaeYFaxPZhDo4qE9O9OG44bYa2yqnmJgCte9b3COfFbAu6RpiKXt__jNH1ig8XR0pNK6TG5DZcGzp2i8Op0gMuXpVD0eTUIjpWexcj-2THCEqGTKfbyxFCbH_X2nm392SG8vP4u7_Cn6P3BkTTzofLOU-uRa6B-T2BhzhQ7J3NG_efj463n9H5xSiH11MnVsUUlvaDIw_9MvUcwTXi2X_g6afeHP8T6ELZ7RpPj0iXxfN8ce9fGRayFtYnBD43EePcFxQjUUrfAtZgGPBucppxYNTMXoB8-tdtCxE65mz3hZSBYGUMbZ8THa6vgtPCS1cESsZhYe3hbDCasF1sJy1pYTirMjIbJp0044w5MiGcWagHEE1maQmg2oySU0ZebN-43yA4Lhi7AfU43ocgmenG_3ymxl90SgvZB2j0ryVQkUL5gofWNnopHSC1RnZnTRpRo9emT9qzMir9WPwRTxgsV3oL3EM4vOrSoIcTwajWUtSYiIFwS4jasuctkTdftKdfk9432DFXJX82dViPSe3cB7yxKu0S3YulpfhBbnZ_ro4XS1fJsf4DWCOFx0
  priority: 102
  providerName: ProQuest
Title SAE+LSTM: A New Framework for Emotion Recognition From Multi-Channel EEG
URI https://www.ncbi.nlm.nih.gov/pubmed/31244638
https://www.proquest.com/docview/2293988470
https://www.proquest.com/docview/2248377567
https://pubmed.ncbi.nlm.nih.gov/PMC6581731
https://doaj.org/article/7d468ff791c647fa9967ff5afb66b408
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96-qAP4rfVc4ngi0jZpE2Txrc96XqCu5S7E9ankjQJHpxd2bvz0b_dmbRddkX0xZdQmqRMJzOZGTL5DSGvwemQOS_KFBRNpyJTRWogEEmd4UVgmjnB2lhsQi2X5Wql651SX5gT1sMD94ybKidkGYLSvJVCBQPfViEUJlgpreiv-TKlx2Cq34PBSy_K_lASQjA9DZ1dY-IkR3BKhjXPd4xQxOr_k4P5e57kjuGZ3yf3Bo-RznpKH5AbvntI7u7gCD4ix6ez6u2n07PFOzqjsG3R-ZhyRcEnpVVfqoeejMlC8DzfrL_RePs2xQsGnb-gVfXhMfk8r87eH6dDiYS0BauCiOUuOMTRgjAqGOFaMN-WeWsLqxX3FljlRMFLZ4NhPhjHrHEmk8oLrPVi8ifkoFt3_hmhmc1CIYNwMFsII4wWXHvDWZtLiKqyhExHnjXtgB-OZSwuGogjkMtN5HKDXG4ilxPyZjvje4-d8ZexR7gM23GIeh1fgCw0gyw0_5KFhByOi9gMqnjZZODQ6BKMMEvIq203KBGejJjOr69xDALrq0ICHU_7Nd9SkqMHBLtUQtSeNOyRut_TnX-NQN0ghFzl_Pn_-LcX5A5yK41lkw7JwdXm2r8kt9sfV-eXmwm5qVblhNw6qpb1ySTqArSLrMZWxfZnBf31x0X95ReVHRCi
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBYwEB4SidRInTpAQWmCXrbpdVXQr9Rbs2IZKJSm7Lah_qr-RmTyWXYR664FblDiRnXzzeSYezwfwAp2OJAri1EdDy3wRythXGIj4RgWx4xk3ghe12IScTNL9_WxnDc66vTCUVtlxYk3UpiroH3kvxHkpS5FL-bujHz6pRtHqaieh0cBiy57-wpBt_nbzI37fl2E4HEw_jPxWVcAvkIipyLdxhkpPYeThlDAFzniaW61jncnAaumcEXGQGu0Ut04ZrpVRYSKtIHkUFeFzL8FlQZXFKFUw3OmYH2ODOG2WQjHwy3qu1BWlawZUEpOT0vrS1FcrBPzLrf07O3Npuhve_N9e1C240TrWrN9Ywm1Ys-UduL5UbvEujHb7g9fj3en2G9ZnyO5s2GWmMXTd2aBRNGKfu5wqPB7Oqu-s3qTs0z6M0h6yweDTPdi7kKHch_WyKu1DYKEOXZw4YfBuIZRQmQgyqwJeRAkGn6EHve4j50VbZp3UPg5zDLcIFnkNi5xgkdew8ODV4o6jpsTIOW3fE24W7ag4eH2imn3NW67JpRFJ6pzMgiIR0ik0RxxgrJxOEi146sFGh5y8Zax5_gc2HjxfXEauoQUkVdrqhNqQ_oCME-zHgwaki55E5CgimXsgV-C70tXVK-XBt7qeOVpNIKPg0fndegZXR9PtcT7enGw9hmv0TvxaQ2oD1o9nJ_YJXCl-Hh_MZ09ro2Tw5aLB_Ru9r3au
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwSHBCy4sfaayMhFKhNo7ZRRItUTmbXuwuVil2SFsRf49cx40dIEOqtB25WvLbW9jffzGRn5wN4ikFHHPpR4qKhpS4PRORKTERcLf3IeqmnuVc2YhNiMkkODtLpGvzq98JQWWXPiQ1R67qk_8iHAfqlNEEu9Ya2K4uYbuavj7-5pCBFK629nEYLkW3z8wemb_NX40381s-CIM_23265ncKAWyIpU8NvbTW1ocIsxEquS_R-yjNKRSoVvlHCWs0jP9HKSs9YqT0ltQxiYThJpcgQ73sB1jEk58EA1qfj3enH3g9gphAl7cIopoHp0FaqpuJNnxpkeqS7vuQIG72AfwW5f9dqLjm__Nr__Nquw9Uu5Gaj1kZuwJqpbsKVpUaMt2Brb5S92Nnb333JRgx5n-V9zRrDoJ5lrdYRe99XW-FxPqu_smb7sks7NCpzxLLs3W34cC6PcgcGVV2Ze8ACFdgotlzj1ZxLLlPup0b6XhnGmJYGDgz7D16UXQN20gE5KjARI4gUDUQKgkjRQMSB54srjtvmI2eMfUMYWoyjtuHND_Xsc9GxUCE0jxNrReqXMRdWoqHiA0bSqjhW3Esc2OhRVHRcNi_-QMiBJ4vTyEK0tCQrU5_SGFImEFGM87jbAnYxk5BCSKR5B8QKlFemunqmOvzSdDpHC_JF6N8_e1qP4RJiutgZT7YfwGV6JW4jLrUBg5PZqXkIF8vvJ4fz2aPOQhl8Om90_wbrSoD3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAE%2BLSTM%3A+A+New+Framework+for+Emotion+Recognition+From+Multi-Channel+EEG&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Xing%2C+Xiaofen&rft.au=Li%2C+Zhenqi&rft.au=Xu%2C+Tianyuan&rft.au=Shu%2C+Lin&rft.date=2019-06-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5218&rft.volume=13&rft_id=info:doi/10.3389%2Ffnbot.2019.00037&rft_id=info%3Apmid%2F31244638&rft.externalDocID=PMC6581731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon