Skin pattern analysis for lesion classification using local isotropy

Background/purpose: The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Skin research and technology Jg. 17; H. 2; S. 206 - 212
Hauptverfasser: She, Zhishun, Excell, Peter S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.05.2011
Schlagworte:
ISSN:0909-752X, 1600-0846, 1600-0846
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background/purpose: The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature set. Previous work, which generated a flow field of skin pattern using a measurement of local line direction and intensity, was encouraging. The aim of this paper is to investigate the possibility of extracting new features using local isotropy metrics to quantify the skin pattern disruption. Methods: The skin pattern was extracted from WLC skin images by high‐pass filtering. A local tensor matrix was computed. The local isotropy was measured by the condition number of the local tensor matrix. The difference of this measure over the lesion and normal skin areas, combined with the local line direction and the ABCD features, was used as a lesion classifier. Results: A set of images of malignant melanoma and benign naevi was analysed. A one‐dimensional scatter plot showed the potential of a local isotropy metric, showing an area of 0.70 under the receiver operating characteristic (ROC) curve. A two‐dimensional scatter plot, combined with the local line direction, indicated enhancement of the classification performance, showing an area of 0.89 under the ROC curve. A three‐dimensional scatter plot combined with the local line direction and the ABCD features, using principal component analysis, demonstrated excellent separation of benign and malignant lesions. An ROC plot for this case enclosed an area of 0.96. Conclusion: The experimental results show that the local isotropy metric has a potential to increase lesion classifier accuracy. Combined with the local line direction and the ABCD features, it is very promising as a method to distinguish malignant melanoma from benign lesions.
AbstractList Background/purpose: The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature set. Previous work, which generated a flow field of skin pattern using a measurement of local line direction and intensity, was encouraging. The aim of this paper is to investigate the possibility of extracting new features using local isotropy metrics to quantify the skin pattern disruption. Methods: The skin pattern was extracted from WLC skin images by high‐pass filtering. A local tensor matrix was computed. The local isotropy was measured by the condition number of the local tensor matrix. The difference of this measure over the lesion and normal skin areas, combined with the local line direction and the ABCD features, was used as a lesion classifier. Results: A set of images of malignant melanoma and benign naevi was analysed. A one‐dimensional scatter plot showed the potential of a local isotropy metric, showing an area of 0.70 under the receiver operating characteristic (ROC) curve. A two‐dimensional scatter plot, combined with the local line direction, indicated enhancement of the classification performance, showing an area of 0.89 under the ROC curve. A three‐dimensional scatter plot combined with the local line direction and the ABCD features, using principal component analysis, demonstrated excellent separation of benign and malignant lesions. An ROC plot for this case enclosed an area of 0.96. Conclusion: The experimental results show that the local isotropy metric has a potential to increase lesion classifier accuracy. Combined with the local line direction and the ABCD features, it is very promising as a method to distinguish malignant melanoma from benign lesions.
The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature set. Previous work, which generated a flow field of skin pattern using a measurement of local line direction and intensity, was encouraging. The aim of this paper is to investigate the possibility of extracting new features using local isotropy metrics to quantify the skin pattern disruption. The skin pattern was extracted from WLC skin images by high-pass filtering. A local tensor matrix was computed. The local isotropy was measured by the condition number of the local tensor matrix. The difference of this measure over the lesion and normal skin areas, combined with the local line direction and the ABCD features, was used as a lesion classifier. A set of images of malignant melanoma and benign naevi was analysed. A one-dimensional scatter plot showed the potential of a local isotropy metric, showing an area of 0.70 under the receiver operating characteristic (ROC) curve. A two-dimensional scatter plot, combined with the local line direction, indicated enhancement of the classification performance, showing an area of 0.89 under the ROC curve. A three-dimensional scatter plot combined with the local line direction and the ABCD features, using principal component analysis, demonstrated excellent separation of benign and malignant lesions. An ROC plot for this case enclosed an area of 0.96. The experimental results show that the local isotropy metric has a potential to increase lesion classifier accuracy. Combined with the local line direction and the ABCD features, it is very promising as a method to distinguish malignant melanoma from benign lesions.
The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature set. Previous work, which generated a flow field of skin pattern using a measurement of local line direction and intensity, was encouraging. The aim of this paper is to investigate the possibility of extracting new features using local isotropy metrics to quantify the skin pattern disruption.BACKGROUND/PURPOSEThe observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature set. Previous work, which generated a flow field of skin pattern using a measurement of local line direction and intensity, was encouraging. The aim of this paper is to investigate the possibility of extracting new features using local isotropy metrics to quantify the skin pattern disruption.The skin pattern was extracted from WLC skin images by high-pass filtering. A local tensor matrix was computed. The local isotropy was measured by the condition number of the local tensor matrix. The difference of this measure over the lesion and normal skin areas, combined with the local line direction and the ABCD features, was used as a lesion classifier.METHODSThe skin pattern was extracted from WLC skin images by high-pass filtering. A local tensor matrix was computed. The local isotropy was measured by the condition number of the local tensor matrix. The difference of this measure over the lesion and normal skin areas, combined with the local line direction and the ABCD features, was used as a lesion classifier.A set of images of malignant melanoma and benign naevi was analysed. A one-dimensional scatter plot showed the potential of a local isotropy metric, showing an area of 0.70 under the receiver operating characteristic (ROC) curve. A two-dimensional scatter plot, combined with the local line direction, indicated enhancement of the classification performance, showing an area of 0.89 under the ROC curve. A three-dimensional scatter plot combined with the local line direction and the ABCD features, using principal component analysis, demonstrated excellent separation of benign and malignant lesions. An ROC plot for this case enclosed an area of 0.96.RESULTSA set of images of malignant melanoma and benign naevi was analysed. A one-dimensional scatter plot showed the potential of a local isotropy metric, showing an area of 0.70 under the receiver operating characteristic (ROC) curve. A two-dimensional scatter plot, combined with the local line direction, indicated enhancement of the classification performance, showing an area of 0.89 under the ROC curve. A three-dimensional scatter plot combined with the local line direction and the ABCD features, using principal component analysis, demonstrated excellent separation of benign and malignant lesions. An ROC plot for this case enclosed an area of 0.96.The experimental results show that the local isotropy metric has a potential to increase lesion classifier accuracy. Combined with the local line direction and the ABCD features, it is very promising as a method to distinguish malignant melanoma from benign lesions.CONCLUSIONThe experimental results show that the local isotropy metric has a potential to increase lesion classifier accuracy. Combined with the local line direction and the ABCD features, it is very promising as a method to distinguish malignant melanoma from benign lesions.
Background/purpose: The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption on simply captured white light optical clinical (WLC) skin images could be a useful contribution to a diagnostic feature set. Previous work, which generated a flow field of skin pattern using a measurement of local line direction and intensity, was encouraging. The aim of this paper is to investigate the possibility of extracting new features using local isotropy metrics to quantify the skin pattern disruption. Methods: The skin pattern was extracted from WLC skin images by high‐pass filtering. A local tensor matrix was computed. The local isotropy was measured by the condition number of the local tensor matrix. The difference of this measure over the lesion and normal skin areas, combined with the local line direction and the ABCD features, was used as a lesion classifier. Results: A set of images of malignant melanoma and benign naevi was analysed. A one‐dimensional scatter plot showed the potential of a local isotropy metric, showing an area of 0.70 under the receiver operating characteristic (ROC) curve. A two‐dimensional scatter plot, combined with the local line direction, indicated enhancement of the classification performance, showing an area of 0.89 under the ROC curve. A three‐dimensional scatter plot combined with the local line direction and the ABCD features, using principal component analysis, demonstrated excellent separation of benign and malignant lesions. An ROC plot for this case enclosed an area of 0.96. Conclusion: The experimental results show that the local isotropy metric has a potential to increase lesion classifier accuracy. Combined with the local line direction and the ABCD features, it is very promising as a method to distinguish malignant melanoma from benign lesions.
Author She, Zhishun
Excell, Peter S.
Author_xml – sequence: 1
  givenname: Zhishun
  surname: She
  fullname: She, Zhishun
  organization: Institute of Arts, Science & Technology, Glyndwr University, University of Wales, Wrexham, UK
– sequence: 2
  givenname: Peter S.
  surname: Excell
  fullname: Excell, Peter S.
  organization: Institute of Arts, Science & Technology, Glyndwr University, University of Wales, Wrexham, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21208289$$D View this record in MEDLINE/PubMed
BookMark eNqNkE9P3DAQxa2Kqiy0X6HKjVMW20n8R0JILVBaiRYEVMtt5DgT5MUbL3ZW3f32JCxw6Alfxp55v2fN2yM7XeiQkIzRKRvO4XzKBKU5VaWYcjp0KS1VNV1_IJO3wQ6ZUE11Lit-t0v2UppTSivNik9klzNOFVd6Qk5vHlyXLU3fY-wy0xm_SS5lbYiZx-RCl1lvUnKts6Yfn6vkuvvMB2t85lLoY1huPpOPrfEJv7zUffL3x9ntyc_84vL818m3i9yWklU5Mi4bq5qWC2ssrW3daKOlFdpK0Q4tLGopUEhTNnXZNqLVDKuSI9assEoU--Rg67uM4XGFqYeFSxa9Nx2GVQJVaa6ZkmpQfn1RruoFNrCMbmHiBl4XHwTHW4GNIaWILVjXP2_YR-M8MApj0jCHMVAYA4UxaXhOGtaDgfrP4PWPd6BHW_Sf87h5Nwc317fDZcDzLe5Sj-s33MQHELKQFcz-nMOMst-zq-vvcFc8ARWvpg8
CitedBy_id crossref_primary_10_1016_j_compbiomed_2023_106624
crossref_primary_10_1109_TBME_2014_2348323
crossref_primary_10_1016_j_artmed_2012_08_002
crossref_primary_10_32604_cmc_2022_023178
Cites_doi 10.1007/978-1-4613-9777-9
10.1111/j.1600-0846.2009.00383.x
10.1016/0734-189X(87)90043-0
10.1109/TIT.1972.1054863
10.1016/B0-12-227240-4/00132-5
10.1034/j.1600-0846.2003.00044.x
10.1111/j.1600-0846.2007.00181.x
10.1109/51.232345
10.1007/978-1-4471-1925-8_4
10.1111/j.1600-0846.2009.00413.x
10.3322/caac.20006
10.1034/j.1600-0846.2000.006004183.x
10.1034/j.1600-0846.2003.00370.x
10.1016/0141-5425(92)90057-R
ContentType Journal Article
Copyright 2010 John Wiley & Sons A/S
2010 John Wiley & Sons A/S.
Copyright_xml – notice: 2010 John Wiley & Sons A/S
– notice: 2010 John Wiley & Sons A/S.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.1600-0846.2010.00485.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1600-0846
EndPage 212
ExternalDocumentID 21208289
10_1111_j_1600_0846_2010_00485_x
SRT485
ark_67375_WNG_W01MWPRB_X
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
31~
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAKAS
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADPDF
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIMD
AENEX
AFBPY
AFEBI
AFGKR
AFKRA
AFRAH
AFZJQ
AGQPQ
AGXDD
AHEFC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
CAG
CCPQU
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
HF~
HMCUK
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PHGZM
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPM
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4715-e127dc8df26cac0bcbd9a97c69c76fcace3b76e67a4db4fd6f91e542eeb13c863
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288906900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0909-752X
1600-0846
IngestDate Sat Sep 27 19:20:17 EDT 2025
Thu Apr 03 06:57:59 EDT 2025
Sat Nov 29 02:17:31 EST 2025
Tue Nov 18 21:36:22 EST 2025
Sun Sep 21 06:26:12 EDT 2025
Tue Nov 11 03:32:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2010 John Wiley & Sons A/S.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4715-e127dc8df26cac0bcbd9a97c69c76fcace3b76e67a4db4fd6f91e542eeb13c863
Notes ArticleID:SRT485
ark:/67375/WNG-W01MWPRB-X
istex:39B242BCF4AE42D2867DC0A054DC3A679B2F77F6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21208289
PQID 859291878
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_859291878
pubmed_primary_21208289
crossref_citationtrail_10_1111_j_1600_0846_2010_00485_x
crossref_primary_10_1111_j_1600_0846_2010_00485_x
wiley_primary_10_1111_j_1600_0846_2010_00485_x_SRT485
istex_primary_ark_67375_WNG_W01MWPRB_X
PublicationCentury 2000
PublicationDate May 2011
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: May 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Skin research and technology
PublicationTitleAlternate Skin Res Technol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Golub GH, Loan CFV Matrix computations. Baltimore, MD: Johns Hopkins University Press, 1989.
Setaro M, Sparavigna A. Irregularity skin index (ISI): a tool to evaluate skin surface texture. Skin Res Technol 2001; 7: 159-163.
She Z, Fish PJ. Analysis of skin line pattern for lesion classification. Skin Res Technol 2003; 9: 73-80.
Sparavigna A, Marazzato R. An image-processing analysis of skin textures. Skin Res Technol 2010; 16: 161-167.
Round AJ, Duller AWG, Fish PJ. Lesion classification using skin patterning. Skin Res Technol 2000; 6: 183-192.
Hall PN. Clinical diagnosis of melanoma. Diagnosis and management of melanoma in clinical practice. New York, NY: Springer-Verlag, 1992: 35-52.
Rao AR. A taxonomy for texture description and identification. Berlin: Spring-Verlag, 1990.
Foley DH. Consideration of sample and feature size. IEEE Trans Info Theory 1972; 18: 618-626.
Mark R. Roxburgh's common skin diseases. London: Chapman and Hall Medical, 1993.
Tabatabaie K, Esteki A, Toossi P. Extration of skin lesion texture features based on independent component analysis. Skin Res Technol 2009; 15: 433-439.
Durg A, Stoecker WV, Cookson JP, Umbaugh SE, Moss RH. Identification of variegated colouring in skin tumours. IEEE Eng Med Biol 1993; 12: 71-74.
Schmid-Saugeon P. Symmetry axis computation for almost-symmetrical and asymmetrical objects: application to pigmented skin lesions. Med Image Anal 2000; 4: 269-282.
Bigun J. Vision with direction: a systematic introduction to image processing and computer vision. Berlin: Springer, 2006.
Kass M, Witkin A. Analyzing oriented patterns. Comput Vis Graph Image Process 1987; 37: 362-385.
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009; 59: 225-249.
Mackie RM. An illustrated guide to the recognition of early malignant melanoma. Blackwood Pillans & Wilson Ltd. Edinburgh and Department of Dermatology, University of Glasgow, UK: Edinburgh, 1986.
Claridge E, Hall PN, Keffe M, Allen JP. Shape analysis for classification of malignant melanoma. J Biomed Eng 1992; 14: 229-234.
Wilhelm K, Elsnor P, Berardesca E. Bioengineering of the skin: skin surface imaging and analysis. Boca Raton, FL: CRC Press Inc, 1997.
Theodoridis S, Koutroumbas K. Pattern recognition. San Diego, CA: Academic Press, 2003.
She Z, Liu Y, Damato A. Combination of features from skin pattern and ABCD analysis for lesion classification. Skin Res Technol 2007; 13: 25-33.
Deshabhoina SV, Umbaugh SE, Stoecker WV, Moss RH, Srinivasan SK. Melanoma and seborrheic keratosis differentiation using texture features. Skin Res Technol 2003; 9: 348-356.
1993; 12
2010; 16
2001; 7
2000; 6
1990
2000; 4
2003; 9
1986
1997
2006
1992; 14
1993
1992
2003
1972; 18
2007; 13
2009; 59
2009; 15
1987; 37
1989
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
Wilhelm K (e_1_2_7_11_2) 1997
e_1_2_7_19_2
e_1_2_7_17_2
Bigun J. (e_1_2_7_18_2) 2006
e_1_2_7_16_2
Schmid‐Saugeon P. (e_1_2_7_6_2) 2000; 4
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_12_2
e_1_2_7_22_2
e_1_2_7_10_2
e_1_2_7_21_2
Mackie RM. (e_1_2_7_3_2) 1986
e_1_2_7_20_2
Setaro M (e_1_2_7_7_2) 2001; 7
Mark R. (e_1_2_7_13_2) 1993
Golub GH (e_1_2_7_23_2) 1989
References_xml – reference: Rao AR. A taxonomy for texture description and identification. Berlin: Spring-Verlag, 1990.
– reference: She Z, Liu Y, Damato A. Combination of features from skin pattern and ABCD analysis for lesion classification. Skin Res Technol 2007; 13: 25-33.
– reference: Kass M, Witkin A. Analyzing oriented patterns. Comput Vis Graph Image Process 1987; 37: 362-385.
– reference: Bigun J. Vision with direction: a systematic introduction to image processing and computer vision. Berlin: Springer, 2006.
– reference: Theodoridis S, Koutroumbas K. Pattern recognition. San Diego, CA: Academic Press, 2003.
– reference: Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009; 59: 225-249.
– reference: Schmid-Saugeon P. Symmetry axis computation for almost-symmetrical and asymmetrical objects: application to pigmented skin lesions. Med Image Anal 2000; 4: 269-282.
– reference: Sparavigna A, Marazzato R. An image-processing analysis of skin textures. Skin Res Technol 2010; 16: 161-167.
– reference: Mackie RM. An illustrated guide to the recognition of early malignant melanoma. Blackwood Pillans & Wilson Ltd. Edinburgh and Department of Dermatology, University of Glasgow, UK: Edinburgh, 1986.
– reference: She Z, Fish PJ. Analysis of skin line pattern for lesion classification. Skin Res Technol 2003; 9: 73-80.
– reference: Tabatabaie K, Esteki A, Toossi P. Extration of skin lesion texture features based on independent component analysis. Skin Res Technol 2009; 15: 433-439.
– reference: Mark R. Roxburgh's common skin diseases. London: Chapman and Hall Medical, 1993.
– reference: Hall PN. Clinical diagnosis of melanoma. Diagnosis and management of melanoma in clinical practice. New York, NY: Springer-Verlag, 1992: 35-52.
– reference: Golub GH, Loan CFV Matrix computations. Baltimore, MD: Johns Hopkins University Press, 1989.
– reference: Setaro M, Sparavigna A. Irregularity skin index (ISI): a tool to evaluate skin surface texture. Skin Res Technol 2001; 7: 159-163.
– reference: Claridge E, Hall PN, Keffe M, Allen JP. Shape analysis for classification of malignant melanoma. J Biomed Eng 1992; 14: 229-234.
– reference: Round AJ, Duller AWG, Fish PJ. Lesion classification using skin patterning. Skin Res Technol 2000; 6: 183-192.
– reference: Deshabhoina SV, Umbaugh SE, Stoecker WV, Moss RH, Srinivasan SK. Melanoma and seborrheic keratosis differentiation using texture features. Skin Res Technol 2003; 9: 348-356.
– reference: Foley DH. Consideration of sample and feature size. IEEE Trans Info Theory 1972; 18: 618-626.
– reference: Durg A, Stoecker WV, Cookson JP, Umbaugh SE, Moss RH. Identification of variegated colouring in skin tumours. IEEE Eng Med Biol 1993; 12: 71-74.
– reference: Wilhelm K, Elsnor P, Berardesca E. Bioengineering of the skin: skin surface imaging and analysis. Boca Raton, FL: CRC Press Inc, 1997.
– year: 1986
– volume: 14
  start-page: 229
  year: 1992
  end-page: 234
  article-title: Shape analysis for classification of malignant melanoma
  publication-title: J Biomed Eng
– start-page: 35
  year: 1992
  end-page: 52
– volume: 18
  start-page: 618
  year: 1972
  end-page: 626
  article-title: Consideration of sample and feature size
  publication-title: IEEE Trans Info Theory
– volume: 16
  start-page: 161
  year: 2010
  end-page: 167
  article-title: An image‐processing analysis of skin textures
  publication-title: Skin Res Technol
– volume: 37
  start-page: 362
  year: 1987
  end-page: 385
  article-title: Analyzing oriented patterns
  publication-title: Comput Vis Graph Image Process
– year: 2006
– volume: 13
  start-page: 25
  year: 2007
  end-page: 33
  article-title: Combination of features from skin pattern and ABCD analysis for lesion classification
  publication-title: Skin Res Technol
– year: 1989
– year: 2003
– volume: 4
  start-page: 269
  year: 2000
  end-page: 282
  article-title: Symmetry axis computation for almost‐symmetrical and asymmetrical objects
  publication-title: application to pigmented skin lesions
– year: 1997
– volume: 6
  start-page: 183
  year: 2000
  end-page: 192
  article-title: Lesion classification using skin patterning
  publication-title: Skin Res Technol
– volume: 15
  start-page: 433
  year: 2009
  end-page: 439
  article-title: Extration of skin lesion texture features based on independent component analysis
  publication-title: Skin Res Technol
– volume: 9
  start-page: 73
  year: 2003
  end-page: 80
  article-title: Analysis of skin line pattern for lesion classification
  publication-title: Skin Res Technol
– volume: 9
  start-page: 348
  year: 2003
  end-page: 356
  article-title: Melanoma and seborrheic keratosis differentiation using texture features
  publication-title: Skin Res Technol
– volume: 12
  start-page: 71
  year: 1993
  end-page: 74
  article-title: Identification of variegated colouring in skin tumours
  publication-title: IEEE Eng Med Biol
– volume: 59
  start-page: 225
  year: 2009
  end-page: 249
  article-title: Cancer statistics, 2009
  publication-title: CA Cancer J Clin
– year: 1990
– volume: 7
  start-page: 159
  year: 2001
  end-page: 163
  article-title: Irregularity skin index (ISI)
  publication-title: a tool to evaluate skin surface texture
– year: 1993
– ident: e_1_2_7_16_2
  doi: 10.1007/978-1-4613-9777-9
– ident: e_1_2_7_10_2
  doi: 10.1111/j.1600-0846.2009.00383.x
– volume-title: An illustrated guide to the recognition of early malignant melanoma
  year: 1986
  ident: e_1_2_7_3_2
– ident: e_1_2_7_15_2
  doi: 10.1016/0734-189X(87)90043-0
– volume: 7
  start-page: 159
  year: 2001
  ident: e_1_2_7_7_2
  article-title: Irregularity skin index (ISI)
  publication-title: a tool to evaluate skin surface texture
– ident: e_1_2_7_19_2
– ident: e_1_2_7_20_2
  doi: 10.1109/TIT.1972.1054863
– ident: e_1_2_7_21_2
  doi: 10.1016/B0-12-227240-4/00132-5
– ident: e_1_2_7_9_2
  doi: 10.1034/j.1600-0846.2003.00044.x
– ident: e_1_2_7_22_2
  doi: 10.1111/j.1600-0846.2007.00181.x
– volume-title: Matrix computations
  year: 1989
  ident: e_1_2_7_23_2
– ident: e_1_2_7_5_2
  doi: 10.1109/51.232345
– ident: e_1_2_7_12_2
  doi: 10.1007/978-1-4471-1925-8_4
– ident: e_1_2_7_8_2
  doi: 10.1111/j.1600-0846.2009.00413.x
– volume-title: Bioengineering of the skin: skin surface imaging and analysis
  year: 1997
  ident: e_1_2_7_11_2
– ident: e_1_2_7_2_2
  doi: 10.3322/caac.20006
– ident: e_1_2_7_14_2
  doi: 10.1034/j.1600-0846.2000.006004183.x
– volume: 4
  start-page: 269
  year: 2000
  ident: e_1_2_7_6_2
  article-title: Symmetry axis computation for almost‐symmetrical and asymmetrical objects
  publication-title: application to pigmented skin lesions
– ident: e_1_2_7_17_2
  doi: 10.1034/j.1600-0846.2003.00370.x
– ident: e_1_2_7_4_2
  doi: 10.1016/0141-5425(92)90057-R
– volume-title: Roxburgh's common skin diseases
  year: 1993
  ident: e_1_2_7_13_2
– volume-title: Vision with direction: a systematic introduction to image processing and computer vision
  year: 2006
  ident: e_1_2_7_18_2
SSID ssj0005913
Score 1.9400258
Snippet Background/purpose: The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of...
Background/purpose: The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of...
The observation that skin pattern tends to be disrupted by malignant skin lesions, but not by benign ones suggests that measurements of skin pattern disruption...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 206
SubjectTerms Dermoscopy - instrumentation
Dermoscopy - methods
Diagnosis, Differential
Humans
Image Interpretation, Computer-Assisted - instrumentation
Image Interpretation, Computer-Assisted - methods
lesion classification
local isotropy
melanoma
Melanoma - classification
Melanoma - pathology
Models, Theoretical
Neoplasms - classification
Neoplasms - pathology
Pattern Recognition, Automated - methods
Photophobia
Skin - pathology
Skin Neoplasms - classification
Skin Neoplasms - pathology
skin pattern
texture analysis
Title Skin pattern analysis for lesion classification using local isotropy
URI https://api.istex.fr/ark:/67375/WNG-W01MWPRB-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-0846.2010.00485.x
https://www.ncbi.nlm.nih.gov/pubmed/21208289
https://www.proquest.com/docview/859291878
Volume 17
WOSCitedRecordID wos000288906900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB6VBCF6aClQSB_Ih6q3rfbl17EtTXuACIVH9mZ5vTaKijZREhD99_V4NymROCDU22olW-vxjOez_e03AJ9yTROuyyTyWDaN8sqJSFurI4ZaXmnsrA6lE65O-GAgikKetfwn_Bem0YdYHbhhZIT1GgNcl_P1IGdx0CVlS4ZWLugXjye7qXfjvAPd42H_8uQf4UM2xZJlLCNO02Kd1_NoX2vJqot2v38Mia4D25CZ-q__55h24FWLT8nXxqHewAtb78LLB6qFu7B12t7H78Ex1u4i06DRWRPdCpwQD4TJjcVzOGIQnSMdKXgAQZr9NQkJlIznk8VsMv2zD5f9Hxfff0VtXYbI-FRGI5ukvDKicikz2sSlKSupJTdMGs6cf2WzkjPLuM6rMncVczKxNE-tzwuZESx7C516UttDIFRIv_Lnzjnj92VGaqZZ5hJdZlWs00r2gC8nQJlWtBxrZ9yoB5sXbzKFJlNoMhVMpu57kKxaThvhjie0-RzmeNVAz34j8Y1TNRr8VKM4OR2dDb-pogdk6QTKhyPesejaTm7nSlCPNxPBRQ8OGudYdeZBAuoF-jHR4ANP_ix1PrzwD--e2e49bDcH4cjS_ACdxezWfoRNc7cYz2dHsMELcdTGyl-XxRB1
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hpOJxaEspkFJaHxC3Rfvy6wi0oYgkqkJKcrO8XhtVVJsoSVH593i8m7SReqgQt9VKY63HM57P49lvAN7lmiZcF0nksWwa5aUTkbZWRwy5vNLYWR1aJ_zo8cFATCbyvGkHhP_C1PwQ64QbekbYr9HBMSG96eUsDsSkbFWilQv6wQPKdu6tiragfTLsXvRuKz5k3S1ZxjLiNJ1sFvbcO9ZGtGqj4m_ug6KbyDaEpu7Of53ULmw3CJV8rE3qOTyy1R48u8NbuAeP-82N_As4we5dZBZYOiuiG4oT4qEwubKYiSMG8TkWJAUbIFho_5OEEEouF9PlfDr7sw8X3dPR57Oo6cwQGR_MaGSTlJdGlC5lRpu4MEUpteSGScOZ869sVnBmGdd5WeSuZE4mluap9ZEhM4JlL6FVTSv7GggV0u_9uXPO-JOZkZpplrlEF1kZ67SUHeCrFVCmoS3H7hlX6s7xxatMocoUqkwFlambDiRryVlN3fEAmfdhkdcCev4LS984VePBFzWOk_74fPhJTTpAVlagvEPiLYuu7PR6oQT1iDMRXHTgVW0d68E8TEDGQD8nGozgwZ-lvg9H_uHgH-WO4cnZqN9Tva-Db2_gaZ0Wx5rNQ2gt59f2LWyZ38vLxfyocZm_ihgTfQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hBlX0wKM8Gp4-IG6L9uXXkTYEEGkUhZbkZnn9QBXVJkpS1P77eryb0Eg9VIjbaqWx1uMZz-fx7DcA70tNM66rLAlYNk9K60WindMJQy6vPPVOx9YJPwd8OBTTqRy17YDwX5iGH2KTcEPPiPs1OribW7_t5SyNxKRsXaJVCvoxAMpOSSULXtrpjfung78VH7LplixTmXCaT7cLe24daytadVDxl7dB0W1kG0NT_9F_ndRjeNgiVPKpMakncM_V-7B3g7dwH3aP2xv5p9DD7l1kHlk6a6JbihMSoDA5d5iJIwbxORYkRRsgWGj_i8QQSs6Ws9ViNr96Bqf9zydHX5O2M0NiQjCjictybo2wPmdGm7QylZVacsOk4cyHV66oOHOM69JWpbfMy8zRMnchMhRGsOI57NSz2h0AoUKGvb_03ptwMjNSM80Kn-mqsKnOrewCX6-AMi1tOXbPOFc3ji9BZQpVplBlKqpMXXYh20jOG-qOO8h8iIu8EdCL31j6xqmaDL-oSZodT0bjQzXtAllbgQoOibcsunazi6USNCDOTHDRhReNdWwGCzABGQPDnGg0gjt_lvoxPgkPL_9R7h3sjnp9Nfg2_P4KHjRZcSzZfA07q8WFewP3zZ_V2XLxtvWYa_aLEvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin+pattern+analysis+for+lesion+classification+using+local+isotropy&rft.jtitle=Skin+research+and+technology&rft.au=She%2C+Zhishun&rft.au=Excell%2C+Peter+S.&rft.date=2011-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0909-752X&rft.eissn=1600-0846&rft.volume=17&rft.issue=2&rft.spage=206&rft.epage=212&rft_id=info:doi/10.1111%2Fj.1600-0846.2010.00485.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_W01MWPRB_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon