Machine Learning in Polymer Research
Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical patterns in the polymer structures that help improve specific properties. To facilitate this, a chemical dataset needs to be translated into...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 37; číslo 11; s. e2413695 - n/a |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.03.2025
John Wiley and Sons Inc |
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical patterns in the polymer structures that help improve specific properties. To facilitate this, a chemical dataset needs to be translated into machine readable descriptors. However, limited and inadequately curated datasets, broad molecular weight distributions, and irregular polymer configurations pose significant challenges. Most off the shelf mathematical models often need refinement for specific applications. Addressing these challenges demand a close collaboration between chemists and mathematicians as chemists must formulate research questions in mathematical terms while mathematicians are required to refine models for specific applications. This review unites both disciplines to address dataset curation hurdles and highlight advances in polymer synthesis and modeling that enhance data availability. It then surveys ML approaches used to predict solid‐state properties, solution behavior, composite performance, and emerging applications such as drug delivery and the polymer–biology interface. A perspective of the field is concluded and the importance of FAIR (findability, accessibility, interoperability, and reusability) data and the integration of polymer theory and data are discussed, and the thoughts on the machine–human interface are shared.
Artificial intelligence (AI) has permeated every aspect of science, including polymer research. Researchers from both fields need to collaborate to understand the challenges and opportunities of each domain. This review is therefore written by mathematicians and polymer chemists to highlight the key research questions polymer chemists aim to address and how machine learning can assist in answering them. |
|---|---|
| AbstractList | Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical patterns in the polymer structures that help improve specific properties. To facilitate this, a chemical dataset needs to be translated into machine readable descriptors. However, limited and inadequately curated datasets, broad molecular weight distributions, and irregular polymer configurations pose significant challenges. Most off the shelf mathematical models often need refinement for specific applications. Addressing these challenges demand a close collaboration between chemists and mathematicians as chemists must formulate research questions in mathematical terms while mathematicians are required to refine models for specific applications. This review unites both disciplines to address dataset curation hurdles and highlight advances in polymer synthesis and modeling that enhance data availability. It then surveys ML approaches used to predict solid‐state properties, solution behavior, composite performance, and emerging applications such as drug delivery and the polymer–biology interface. A perspective of the field is concluded and the importance of FAIR (findability, accessibility, interoperability, and reusability) data and the integration of polymer theory and data are discussed, and the thoughts on the machine–human interface are shared. Artificial intelligence (AI) has permeated every aspect of science, including polymer research. Researchers from both fields need to collaborate to understand the challenges and opportunities of each domain. This review is therefore written by mathematicians and polymer chemists to highlight the key research questions polymer chemists aim to address and how machine learning can assist in answering them. Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical patterns in the polymer structures that help improve specific properties. To facilitate this, a chemical dataset needs to be translated into machine readable descriptors. However, limited and inadequately curated datasets, broad molecular weight distributions, and irregular polymer configurations pose significant challenges. Most off the shelf mathematical models often need refinement for specific applications. Addressing these challenges demand a close collaboration between chemists and mathematicians as chemists must formulate research questions in mathematical terms while mathematicians are required to refine models for specific applications. This review unites both disciplines to address dataset curation hurdles and highlight advances in polymer synthesis and modeling that enhance data availability. It then surveys ML approaches used to predict solid‐state properties, solution behavior, composite performance, and emerging applications such as drug delivery and the polymer–biology interface. A perspective of the field is concluded and the importance of FAIR (findability, accessibility, interoperability, and reusability) data and the integration of polymer theory and data are discussed, and the thoughts on the machine–human interface are shared. Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical patterns in the polymer structures that help improve specific properties. To facilitate this, a chemical dataset needs to be translated into machine readable descriptors. However, limited and inadequately curated datasets, broad molecular weight distributions, and irregular polymer configurations pose significant challenges. Most off the shelf mathematical models often need refinement for specific applications. Addressing these challenges demand a close collaboration between chemists and mathematicians as chemists must formulate research questions in mathematical terms while mathematicians are required to refine models for specific applications. This review unites both disciplines to address dataset curation hurdles and highlight advances in polymer synthesis and modeling that enhance data availability. It then surveys ML approaches used to predict solid-state properties, solution behavior, composite performance, and emerging applications such as drug delivery and the polymer-biology interface. A perspective of the field is concluded and the importance of FAIR (findability, accessibility, interoperability, and reusability) data and the integration of polymer theory and data are discussed, and the thoughts on the machine-human interface are shared.Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical patterns in the polymer structures that help improve specific properties. To facilitate this, a chemical dataset needs to be translated into machine readable descriptors. However, limited and inadequately curated datasets, broad molecular weight distributions, and irregular polymer configurations pose significant challenges. Most off the shelf mathematical models often need refinement for specific applications. Addressing these challenges demand a close collaboration between chemists and mathematicians as chemists must formulate research questions in mathematical terms while mathematicians are required to refine models for specific applications. This review unites both disciplines to address dataset curation hurdles and highlight advances in polymer synthesis and modeling that enhance data availability. It then surveys ML approaches used to predict solid-state properties, solution behavior, composite performance, and emerging applications such as drug delivery and the polymer-biology interface. A perspective of the field is concluded and the importance of FAIR (findability, accessibility, interoperability, and reusability) data and the integration of polymer theory and data are discussed, and the thoughts on the machine-human interface are shared. Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical patterns in the polymer structures that help improve specific properties. To facilitate this, a chemical dataset needs to be translated into machine readable descriptors. However, limited and inadequately curated datasets, broad molecular weight distributions, and irregular polymer configurations pose significant challenges. Most off the shelf mathematical models often need refinement for specific applications. Addressing these challenges demand a close collaboration between chemists and mathematicians as chemists must formulate research questions in mathematical terms while mathematicians are required to refine models for specific applications. This review unites both disciplines to address dataset curation hurdles and highlight advances in polymer synthesis and modeling that enhance data availability. It then surveys ML approaches used to predict solid‐state properties, solution behavior, composite performance, and emerging applications such as drug delivery and the polymer–biology interface. A perspective of the field is concluded and the importance of FAIR (findability, accessibility, interoperability, and reusability) data and the integration of polymer theory and data are discussed, and the thoughts on the machine–human interface are shared. Artificial intelligence (AI) has permeated every aspect of science, including polymer research. Researchers from both fields need to collaborate to understand the challenges and opportunities of each domain. This review is therefore written by mathematicians and polymer chemists to highlight the key research questions polymer chemists aim to address and how machine learning can assist in answering them. |
| Author | Fan, Yanan De Silva, Ramindu Sisson, Scott A. Stenzel, Martina H. Ge, Wei |
| AuthorAffiliation | 3 Data61, CSIRO Sydney NSW 2015 Australia 2 School of Mathematics and Statistics and UNSW Data Science Hub University of New South Wales Sydney 2052 Australia 1 School of Chemistry University of New South Wales Sydney 2052 Australia |
| AuthorAffiliation_xml | – name: 1 School of Chemistry University of New South Wales Sydney 2052 Australia – name: 3 Data61, CSIRO Sydney NSW 2015 Australia – name: 2 School of Mathematics and Statistics and UNSW Data Science Hub University of New South Wales Sydney 2052 Australia |
| Author_xml | – sequence: 1 givenname: Wei surname: Ge fullname: Ge, Wei organization: University of New South Wales – sequence: 2 givenname: Ramindu surname: De Silva fullname: De Silva, Ramindu organization: Data61, CSIRO – sequence: 3 givenname: Yanan surname: Fan fullname: Fan, Yanan email: Yanan.Fan@data61.csiro.au organization: Data61, CSIRO – sequence: 4 givenname: Scott A. surname: Sisson fullname: Sisson, Scott A. email: scott.sisson@unsw.edu.au organization: University of New South Wales – sequence: 5 givenname: Martina H. orcidid: 0000-0002-6433-4419 surname: Stenzel fullname: Stenzel, Martina H. email: M.Stenzel@unsw.edu.au organization: University of New South Wales |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39924835$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1PGzEQxS0EKiHtlSOK1B64bPD32qcqSqFFCqKqcrcc7ywx2rXBTqjy39dRIAWkqqeRPL_3ZsbvBB2GGAChU4LHBGN6YZvejimmnDCpxQEaEEFJxbEWh2iANROVllwdo5Oc7zHGWmL5AR0zrSlXTAzQlxvrlj7AaAY2BR_uRj6MfsZu00Ma_YJcXt3yIzpqbZfh03MdovnV5Xz6o5rdfr-eTmaV4zURlZUMBG-tAOZEKxqLa1cT0gLFsuWOWEWZbIlkDQfVLBpVqtQg-aImFBo2RF93tg_rRQ-Ng7BKtjMPyfc2bUy03rztBL80d_HJEKIpEwwXh_NnhxQf15BXpvfZQdfZAHGdDSNSYEWE0gX9_A69j-sUynmFqpVWNVd1oc5er7Tf5eUDCzDeAS7FnBO0e4Rgs03IbBMy-4SKgL8TOL-yKx-3J_nu3zK9k_32HWz-M8RMvt1M_mr_ADMhpEI |
| CitedBy_id | crossref_primary_10_1002_marc_202500251 crossref_primary_10_1002_marc_202500361 crossref_primary_10_3390_polym17091172 crossref_primary_10_1021_acs_chemmater_5c00940 crossref_primary_10_3390_polym17131852 crossref_primary_10_1021_acs_jctc_5c00381 crossref_primary_10_1039_D5NR02446C crossref_primary_10_1016_j_mtphys_2025_101799 crossref_primary_10_1016_j_commatsci_2025_113909 crossref_primary_10_1002_marc_202500380 crossref_primary_10_1007_s11831_025_10325_5 crossref_primary_10_1039_D5PY00148J crossref_primary_10_1039_D5PY00439J crossref_primary_10_1016_j_conbuildmat_2025_141828 crossref_primary_10_1080_20550340_2025_2547335 crossref_primary_10_1002_adma_202506243 crossref_primary_10_1021_acspolymersau_5c00057 crossref_primary_10_1039_D5RA02951A crossref_primary_10_1007_s10118_025_3402_y crossref_primary_10_1016_j_cis_2025_103612 crossref_primary_10_1038_s41524_025_01767_3 crossref_primary_10_1155_adv_9685300 |
| Cites_doi | 10.1016/j.patrec.2017.03.008 10.3934/mbe.2024061 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 10.1109/ICADIWT.2014.6814687 10.1021/ci010062o 10.1021/ci100050t 10.1016/j.icheatmasstransfer.2015.06.002 10.1186/s40649-019-0069-y 10.1016/j.pmatsci.2024.101282 10.1016/j.ces.2024.119952 10.1088/1674-1056/27/11/118101 10.1002/ceat.201900096 10.1186/s40537-016-0043-6 10.1016/j.apsadv.2021.100068 10.1002/pola.28378 10.1002/bit.21531 10.1007/s00396-009-2035-y 10.1016/j.chemolab.2012.10.003 10.1016/j.polymer.2020.122341 10.1002/ange.201600112 10.1016/j.carbon.2019.02.001 10.1007/s00396-012-2743-6 10.1039/C5MH00282F 10.1016/j.polymer.2021.123558 10.1063/1.474002 10.1023/B:STCO.0000035301.49549.88 10.1186/s40425-018-0416-9 10.1007/978-3-642-41136-6_11 10.1109/TKDE.2017.2720168 10.1016/j.heliyon.2020.e05055 10.1038/s41524-023-01000-z 10.1021/acs.jcim.1c00554 10.20982/tqmp.09.1.p015 10.1007/978-3-030-40245-7_18 10.1002/pi.6345 10.1039/C7SM02472J 10.1007/s10822-016-9938-8 10.1126/sciadv.abc6216 10.1246/bcsj.20210253 10.3390/polym14010082 10.1021/acs.molpharmaceut.3c00880 10.1016/j.compositesb.2023.111099 10.1002/marc.202100400 10.1063/1.1723621 10.1109/TKDE.2019.2953728 10.1016/S0167-9473(01)00065-2 10.1002/app.23112 10.1109/MIPRO.2014.6859735 10.1016/j.crfs.2021.01.002 10.1038/s41598-017-05723-0 10.1038/s41467-023-39868-6 10.1016/j.inffus.2020.07.007 10.1016/j.msec.2008.08.041 10.1080/14686996.2019.1673670 10.1038/s41580-021-00407-0 10.1186/s13321-019-0397-9 10.1145/2939672.2939785 10.1016/j.isci.2020.101922 10.1039/D3PY01028G 10.1038/s42254-021-00314-5 10.3390/ph15111405 10.1021/acsmacrolett.0c00264 10.1021/acs.chemmater.0c03332 10.1063/1.5017661 10.1021/i260029a002 10.1021/acsmacrolett.7b00228 10.1016/j.physd.2019.132306 10.1016/j.matpr.2022.03.051 10.1021/acs.accounts.0c00785 10.1186/1758-2946-3-1 10.3390/polym12010163 10.1002/adts.202100565 10.1002/aisy.202200243 10.1016/j.jpdc.2019.04.008 10.1021/acs.chemmater.3c02358 10.1021/acsami.1c20947 10.1038/npjcompumats.2016.31 10.1016/j.joule.2017.10.006 10.1016/j.commatsci.2021.110278 10.1103/PhysRevLett.114.105503 10.1039/D3PY00246B 10.3390/app132111991 10.1016/j.apmt.2021.101158 10.1021/acspolymersau.2c00053 10.1021/acsapm.0c01376 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M 10.1021/acs.bioconjchem.8b00804 10.1021/acs.macromol.2c00245 10.1039/D1ME00160D 10.1246/cl.180847 10.1016/S0032-3861(97)01024-0 10.3390/nano11071656 10.1016/j.compchemeng.2023.108356 10.1021/acscentsci.9b00476 10.1021/cr60030a010 10.1016/S0263-8223(00)00179-3 10.1016/j.commatsci.2008.09.027 10.1021/acs.macromol.2c02600 10.1016/j.polymdegradstab.2004.03.006 10.1021/jacsau.3c00275 10.1002/app.45237 10.1088/2632-2153/aba947 10.1021/acs.jpcc.8b02913 10.1186/s13321-021-00502-6 10.1093/nar/gkaa1088 10.1021/acs.jpclett.1c03526 10.1557/mrc.2019.90 10.1021/acs.nanolett.1c04469 10.1038/s41524-017-0056-5 10.1038/s41467-023-40459-8 10.1021/acs.macromol.2c02249 10.1016/j.polymer.2020.123351 10.1021/acs.chemmater.2c02991 10.1038/s41586-021-03819-2 10.1002/wics.1198 10.1021/ci3001925 10.1039/D3PY00314K 10.1023/A:1010933404324 10.1103/PhysRevE.105.035304 10.1007/s00366-020-01226-1 10.1007/s00018-005-5350-6 10.1021/acsabm.2c00962 10.1021/mz4003744 10.1109/TNN.2008.2005605 10.1016/j.porgcoat.2004.05.004 10.1103/PhysRevE.106.014503 10.1021/acs.macromol.4c00835 10.1021/acspolymersau.1c00027 10.1002/anie.202104204 10.1007/978-1-4302-5990-9 10.4028/www.scientific.net/AMR.455-456.436 10.1002/wnan.35 10.1002/pol.20210555 10.1016/j.memsci.2024.123169 10.1557/mrc.2019.32 10.1371/journal.pone.0224365 10.1021/j150415a018 10.1039/D4SM00453A 10.1186/s40537-014-0007-7 10.3390/ijms231810712 10.1080/09669582.2019.1631318 10.1088/2058-6272/aaaade 10.1109/TNNLS.2020.2978386 10.1002/adts.201800069 10.1038/sdata.2016.12 10.1016/j.ces.2022.118326 10.1016/j.jbiotec.2017.07.028 10.1109/TKDE.2009.191 10.1109/ICPR48806.2021.9412492 10.1038/npjcompumats.2016.28 10.1007/s00521-020-05191-0 10.1002/aisy.202070042 10.1021/ci00057a005 10.17849/insm-47-01-31-39.1 10.1201/b18063 10.1021/acs.iecr.1c02142 10.1038/sdata.2016.18 10.1016/j.compscitech.2018.04.017 10.1063/1.1729054 10.1186/s13321-020-00456-1 10.1016/j.inffus.2019.12.001 10.1038/s41524-019-0203-2 10.1016/j.aiopen.2021.01.001 10.1039/C6EE02697D 10.1021/acs.jcim.3c00460 10.1021/acs.molpharmaceut.4c00086 10.1016/j.apsusc.2015.07.066 10.1016/S0895-4356(96)00002-9 10.1002/app.1981.070260429 10.1016/B978-012691360-6/50013-6 10.1039/D0PY01551B 10.1021/jacs.1c08181 10.1021/acs.jpca.3c05892 10.1021/acscentsci.3c00011 10.1109/45.329294 10.1021/acs.jcim.1c01031 10.1109/MSP.2017.2765202 10.1021/acsmacrolett.1c00117 10.1007/s00018-011-0852-x 10.1002/adfm.202309844 10.1007/978-3-319-23871-5 10.1016/j.chemolab.2014.11.008 10.1007/s11433-011-4319-8 10.1021/acssensors.0c00329 10.1016/j.chempr.2022.12.003 10.1016/j.commatsci.2021.110511 10.1039/D1SM01012C 10.1016/j.colsurfa.2005.02.029 10.1002/inf2.12167 10.1007/s10118-022-2716-2 10.1021/acsnano.0c08549 10.1016/j.tibtech.2010.04.002 10.1038/s41578-021-00282-3 10.1021/acs.chemmater.7b03500 10.1039/b909690f 10.1021/acs.macromol.8b01836 10.1021/la2015034 10.1021/jacs.3c12502 10.1016/j.commatsci.2021.110460 10.1039/D2PY01531E 10.1016/j.memsci.2008.04.030 10.1080/08927022.2020.1851028 10.1007/s42107-023-00721-2 10.1016/j.acha.2006.04.006 10.1016/j.compscitech.2022.109818 10.1016/j.spinee.2020.10.006 10.1021/ci060164k 10.1002/pol.1958.1202711515 10.1109/JPROC.2020.3004555 10.1016/j.commatsci.2020.110108 10.1038/s41524-020-0333-6 10.1016/j.commatsci.2022.111859 10.1016/j.commatsci.2004.11.001 10.1021/cr500286d 10.1093/nar/gkv352 10.1021/cr60137a003 10.3390/membranes12090857 10.1021/acs.macromol.7b01379 10.1016/j.compscitech.2022.109293 10.1021/acsami.2c14543 10.1021/acs.jpclett.8b00635 10.1038/s41578-020-0202-4 10.1021/acscentsci.7b00572 10.1021/acs.jcim.9b00587 10.1021/acscentsci.9b00804 10.1002/adfm.202011168 10.1038/s41467-020-15259-z 10.1002/9783527628407 10.1002/minf.201700133 10.1016/j.chemphys.2006.11.029 10.1021/ja501745g 10.1021/ci5004834 10.3389/fmats.2016.00028 10.1039/D2DD00035K 10.1109/MCSE.2023.3342149 10.1063/5.0008026 10.1021/acs.jcim.0c00259 10.1109/2.485891 10.1021/acs.jcim.0c00726 10.3389/fchem.2021.820417 10.1016/j.actbio.2022.02.027 10.1103/PhysRevE.65.021507 10.1016/j.xcrp.2022.100911 10.1016/j.eurpolymj.2016.05.004 10.1016/j.mser.2020.100595 10.1109/IISA52424.2021.9555522 10.1063/5.0023759 10.1021/c160017a018 10.1109/ICIEA.2019.8833686 10.1038/s41598-019-53570-y 10.1039/D0NH00382D 10.1016/j.jmp.2018.03.001 10.1038/s41598-024-59252-8 10.1557/mrc.2019.78 10.1016/j.engappai.2023.107796 10.1016/j.compstruct.2019.111840 10.1016/j.ijfatigue.2006.03.004 10.1021/acsomega.2c04649 10.1021/acsami.3c03298 10.1021/acs.jcim.7b00690 10.1007/978-81-322-3972-7 10.1038/s41427-022-00416-1 10.1186/s13321-018-0258-y 10.1002/app.39059 10.1002/anie.202308838 10.1109/JAS.2017.7510583 10.1021/acspolymersau.1c00050 10.1515/pac-2022-0101 10.1016/j.xcrp.2022.100931 10.1038/s41428-022-00734-9 10.1021/acsanm.4c00430 10.1039/D3PY00395G 10.1007/s11831-021-09700-9 10.1063/5.0131067 10.2147/IJN.S344208 10.1021/acsmacrolett.9b00039 10.1109/ACCESS.2020.3018151 10.1016/j.aej.2023.11.085 10.1039/D4AN00658E 10.1038/s41524-019-0221-0 10.1126/sciadv.aav9784 10.1186/2008-6695-4-7 10.1021/acsnano.8b02454 10.1016/j.commatsci.2023.112479 10.1016/j.ces.2020.116325 10.1002/advs.202101864 10.1021/acs.jpcc.3c00267 10.1038/nmat1543 10.1038/s42256-020-0166-5 10.1016/j.commatsci.2020.110224 10.1016/j.pmatsci.2016.05.001 10.1021/acsami.1c04017 10.3390/polym16010115 10.1021/ma5021209 10.3390/ma12091475 10.1201/9780203910115 10.1021/acsmacrolett.2c00369 10.1021/acspolymersau.1c00035 10.3390/polym14020357 10.1016/j.matpr.2021.02.730 10.1021/jacs.1c05055 10.1039/D1SM00725D 10.1002/adfm.201501919 10.1002/adma.202201809 10.1021/acs.macromol.4c00508 10.1088/1361-651X/aaf8ca 10.1103/PhysRevE.99.043307 10.1038/s41586-018-0337-2 10.1016/j.ijleo.2018.03.121 10.3390/pharmaceutics15020495 10.3390/polym16081049 10.1109/XLOOP49562.2019.00006 10.1021/acs.jctc.3c01385 10.1002/chem.202001505 10.3390/polym14091802 10.1111/j.2517-6161.1996.tb02080.x 10.1021/acs.jcim.9b00807 10.1038/nmat3568 10.1145/3065386 10.1002/macp.202300232 10.1016/0022-5193(79)90085-7 10.1007/978-3-030-05318-5 10.1002/aenm.201900891 10.1093/nar/gky1075 10.1016/j.addr.2022.114172 10.1097/01.psy.0000127692.23278.a9 10.1016/j.compscitech.2006.07.026 10.1016/j.ijhydene.2020.07.265 10.1039/D0ME00020E 10.1002/adem.202101072 10.1021/acspolymersau.2c00037 10.1002/wics.14 10.1609/aaai.v35i1.16072 10.1007/s10924-022-02557-4 10.3390/polym14010026 10.1007/s10822-022-00442-9 10.1038/s41524-024-01328-0 10.1021/acspolymersau.3c00007 10.1016/S0031-3203(01)00178-9 10.1038/s41524-018-0081-z 10.1177/0003702816675361 10.1016/j.spl.2018.02.031 10.1016/j.giant.2023.100171 10.1186/1471-2105-14-106 10.1063/5.0046854 10.1007/978-1-59745-210-6 10.1021/ed100697w 10.1016/j.progpolymsci.2010.01.003 10.1103/PhysRevLett.71.3158 10.1016/j.addr.2020.11.009 10.1371/journal.pone.0161788 10.1021/acsami.1c24715 10.1016/j.renene.2023.01.017 10.1038/s41467-022-35343-w 10.1017/9781108348973 10.1002/anie.201711105 10.1016/j.trechm.2020.11.004 10.1016/j.compbiomed.2020.104134 10.1039/D4SM00590B 10.1002/wcms.1603 10.1142/S0219633608004416 10.1039/D2PY01056A 10.1186/s40537-022-00652-w 10.1021/acsapm.0c00524 10.1016/0098-3004(93)90090-R 10.1038/s41598-021-85601-y 10.1039/D3TA06385B 10.1023/A:1007379606734 10.1038/s41524-023-01034-3 10.1109/EIDWT.2011.13 10.1073/pnas.1607412113 10.1021/acs.jpcb.0c00708 10.3390/polym11081250 10.1016/j.matt.2021.06.036 10.1021/acsmacrolett.1c00521 10.1016/j.matlet.2021.130622 |
| ContentType | Journal Article |
| Copyright | 2025 Commonwealth of Australia and The Author(s). Advanced Materials published by Wiley‐VCH GmbH 2025 Commonwealth of Australia and The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 Commonwealth of Australia and The Author(s). Advanced Materials published by Wiley‐VCH GmbH – notice: 2025 Commonwealth of Australia and The Author(s). Advanced Materials published by Wiley‐VCH GmbH. – notice: 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1002/adma.202413695 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | PMC11923530 39924835 10_1002_adma_202413695 ADMA202413695 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Australian Research Council funderid: FL200100124 – fundername: Australian Research Council grantid: FL200100124 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 53G 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c4715-a63e54fa5e3c5f5da07c711fe206f4c1a8236f163d4e8dbd8d4e69e64b712ed3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001419079100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Tue Nov 04 02:03:24 EST 2025 Fri Jul 11 13:39:27 EDT 2025 Fri Jul 25 21:25:55 EDT 2025 Sun Mar 23 01:27:35 EDT 2025 Sat Nov 29 07:25:08 EST 2025 Tue Nov 18 22:14:51 EST 2025 Thu Mar 20 09:30:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | chemical descriptors polymers machine learning FAIR data |
| Language | English |
| License | Attribution-NonCommercial 2025 Commonwealth of Australia and The Author(s). Advanced Materials published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4715-a63e54fa5e3c5f5da07c711fe206f4c1a8236f163d4e8dbd8d4e69e64b712ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6433-4419 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202413695 |
| PMID | 39924835 |
| PQID | 3178987487 |
| PQPubID | 2045203 |
| PageCount | 47 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11923530 proquest_miscellaneous_3165081589 proquest_journals_3178987487 pubmed_primary_39924835 crossref_primary_10_1002_adma_202413695 crossref_citationtrail_10_1002_adma_202413695 wiley_primary_10_1002_adma_202413695_ADMA202413695 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2015; 140 2017; 85 2019; 11 2019; 12 2013; 129 2019; 14 2016; 30 2023; 224 2020; 14 2020; 12 2024; 34 2020; 11 2024; 36 2021; 71 2001; 45 1997; 9 2017; 71 2019; 20 2000; 13 2023; 216 2019; 27 2024; 20 2024; 21 1967; 14 2001; 53 21 2021; 46 2021; 49 2019; 30 2022; 94 2021; 304 2023; 204 2024; 10 2020; 33 2024; 12 2020; 32 2024; 14 2011; 3 2017; 134 2024; 15 2024; 16 2016; 11 2016; 4 2017; 50 2021; 59 2021; 54 2004; 51 2016; 2 2016; 3 2022; 183 2022; 3 2015; 115 2022; 5 2015; 114 2015; 355 2022; 7 2017; 55 2002; 65 2022; 9 2019; 48 2019; 47 2020; 28 2020; 26 1994; 13 2017; 261 2022; 1 2022; 2 2020; 21 2021; 61 2021; 60 2006; 101 2004; 66 2023; 35 2020; 64 2024; 269 2019; 52 2024; 149 2017; 47 2020; 60 2021; 128 2019; 59 2020; 127 2020; 128 2008; 7 2020; 57 2024; 144 2016; 225 2020; 124 2024; 146 2008; 75 2020; 8 2007; 29 1969; 8 2020; 6 2020; 5 2017; 30 2019; 60 1996; 29 2005; 260 2023; 24 2013; 14 2020; 3 2023; 25 1996; 28 2020; 2 2020; 1 1963; 34 2001 2002; 41 2021; 596 2002; 42 2000 1993; 71 2013; 12 2024; 712 2021; 118 2020; 9 2016; 113 2020; 46 2020; 45 2020; 43 2021; 231 2012; 455 2014; 54 2021; 9 2002; 38 2015; 2 2021; 109 2004; 85 2021; 6 2021; 87 2023; 13 2023; 14 2021; 4 2021; 3 2012 2011 2023; 15 2010 2023; 16 2002; 35 2009 2008 2007 2006 2016; 128 2017; 29 2008; 99 2024; 57 2021; 220 2002 2021; 94 1996; 58 2021; 1 2008; 320 1942; 46 2023 2022 2018; 559 2021 2021; 214 2020 2022, preprint 2017; 10 2019 2020; 236 2018 2017 2016 2020; 68 2015 2023, 347 2014 2013 2009; 2 1990; 792 2009; 1 1996; 49 2007; 47 2024; 291 2018; 58 2018; 57 2018; 165 2018; 162 2013; 2 2019; 99 1983; 5 2022; 23 2022; 24 2011; 54 2022; 22 2014; 136 2022; 29 2013; 9 2018; 6 2010; 22 2023; 62 2018; 9 2007; 332 2023; 63 2009; 10 2018; 4 2006; 21 2022; 40 2010; 28 2024; 7 1965; 5 2023; 177 2022; 34 2022; 36 2022; 30 2009; 19 2007; 67 2018; 37 1942; 10 2018; 35 2019; 8 2019; 9 2006; 50 2019; 6 2019; 5 2023; 56 2010; 35 2019; 2 2014; 47 1997; 28 1981; 26 1993 2021; 144 2021; 143 1995; 4 2018; 20 2018; 27 2014; 43 2022; 220 1958; 27 2015; 66 1988; 28 2022; 12 2024; 130 2022; 13 2022; 14 2022; 15 1997; 38 2024; 86 1931; 8 2022; 11 2018; 12 2018; 10 2022; 106 2022; 105 2012; 119 1979; 81 2022; 17 2010; 50 2018; 14 2021; 25 2009; 45 2017; 6 2021; 24 2017; 7 2018; 122 2021; 21 2017; 1 2017; 3 2017; 4 2023; 5 2023; 7 2023; 267 2023; 9 2020; 404 2023; 1 2011; 12 2023; 3 2012; 52 2021; 35 2021; 38 1997; 106 2021; 32 2006; 63 2021; 31 2021; 33 2012; 291 2015; 43 2018; 136 2009; 287 2021; 194 2016; 83 2021; 196 2016; 80 2012; 69 2011; 27 1950; 3 2005; 34 2021; 190 2009; 20 2018; 148 2023; 127 2006; 5 2019; 146 2022; 43 2006; 1 2021; 188 2021; 187 2009; 29 2021; 14 2021; 13 1998; 37 2022; 143 2015; 25 2021; 10 2015; 28 1993; 19 2015; 27 2017; 90 1949; 44 2021; 12 2021; 11 2023; 230 2004; 14 2021; 17 2020; 193 2023; 231 2021; 171 2022; 57 2022; 55 2012; 4 2019; 131 2012; 9 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_309_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_407_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_385_1 Sivanandam S. (e_1_2_8_302_1) 2008 e_1_2_8_9_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_299_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_429_1 e_1_2_8_374_1 e_1_2_8_397_1 e_1_2_8_351_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_48_1 Gorbach N. S. (e_1_2_8_244_1) 2017 e_1_2_8_408_1 e_1_2_8_288_1 Nield T. (e_1_2_8_114_1) 2022 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_386_1 e_1_2_8_363_1 e_1_2_8_340_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_277_1 e_1_2_8_428_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_375_1 e_1_2_8_352_1 Hamilton W. (e_1_2_8_220_1) 2017; 30 e_1_2_8_398_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_409_1 e_1_2_8_266_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_439_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_341_1 e_1_2_8_364_1 Song Y. Y. (e_1_2_8_184_1) 2015; 27 e_1_2_8_387_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_427_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_353_1 e_1_2_8_376_1 e_1_2_8_399_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_27_1 Saxena A. (e_1_2_8_362_1) 2023 e_1_2_8_267_1 e_1_2_8_438_1 e_1_2_8_80_1 e_1_2_8_342_1 e_1_2_8_8_1 e_1_2_8_365_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_388_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_426_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_354_1 Ehrenstein G. W. (e_1_2_8_4_1) 2012 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_377_1 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_207_1 Felder R. M. (e_1_2_8_159_1) 2009; 2 e_1_2_8_151_1 e_1_2_8_381_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_328_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_305_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_440_1 e_1_2_8_415_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_370_1 e_1_2_8_393_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_317_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_329_1 e_1_2_8_261_1 e_1_2_8_404_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_382_1 e_1_2_8_175_1 e_1_2_8_306_1 e_1_2_8_82_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_318_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 Ali J. (e_1_2_8_254_1) 2012; 9 Massimo A. (e_1_2_8_130_1) 2021; 6 e_1_2_8_416_1 e_1_2_8_94_1 e_1_2_8_394_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_262_1 e_1_2_8_307_1 e_1_2_8_285_1 Gerdolle D. A. (e_1_2_8_235_1) 2008; 75 e_1_2_8_360_1 e_1_2_8_383_1 e_1_2_8_405_1 e_1_2_8_153_1 e_1_2_8_209_1 Schölkopf B. (e_1_2_8_145_1) 2000; 13 e_1_2_8_62_1 e_1_2_8_85_1 Medsker L. (e_1_2_8_173_1) 2001 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_319_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_417_1 e_1_2_8_372_1 e_1_2_8_395_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_187_1 Michael C. J. N. (e_1_2_8_238_1) 1983 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_308_1 Pedregosa F. (e_1_2_8_371_1) 2011; 12 e_1_2_8_406_1 e_1_2_8_154_1 e_1_2_8_384_1 Novaković J. D. (e_1_2_8_129_1) 2017; 7 e_1_2_8_131_1 e_1_2_8_361_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 Agresti A. (e_1_2_8_115_1) 1990 He H. (e_1_2_8_53_1); 21 Babyak M. A. (e_1_2_8_260_1) 2004; 66 e_1_2_8_418_1 e_1_2_8_165_1 e_1_2_8_373_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_396_1 e_1_2_8_350_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_188_1 e_1_2_8_249_1 e_1_2_8_433_1 e_1_2_8_226_1 Li Zixin Z. N. (e_1_2_8_55_1) 2020; 2 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_290_1 Hansen C. M. (e_1_2_8_331_1) 1967 e_1_2_8_324_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_301_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_347_1 e_1_2_8_291_1 e_1_2_8_215_1 e_1_2_8_411_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_181_1 Carreira‐Perpinán M. A. (e_1_2_8_205_1) 1997; 9 e_1_2_8_76_1 e_1_2_8_313_1 e_1_2_8_30_1 e_1_2_8_336_1 e_1_2_8_359_1 e_1_2_8_280_1 e_1_2_8_432_1 Van Der Maaten L. (e_1_2_8_203_1) 2009; 10 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 Hildebrand J. H. (e_1_2_8_330_1) 1950 e_1_2_8_400_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_325_1 e_1_2_8_40_1 e_1_2_8_348_1 e_1_2_8_292_1 e_1_2_8_420_1 e_1_2_8_443_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_412_1 e_1_2_8_98_1 e_1_2_8_390_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_314_1 e_1_2_8_337_1 e_1_2_8_281_1 e_1_2_8_431_1 e_1_2_8_228_1 e_1_2_8_401_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 Jones R. G. (e_1_2_8_421_1) 2008 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_303_1 e_1_2_8_349_1 e_1_2_8_326_1 Kotu V. (e_1_2_8_445_1) 2015 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_442_1 e_1_2_8_217_1 e_1_2_8_413_1 e_1_2_8_391_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_315_1 e_1_2_8_338_1 Haldurai L. (e_1_2_8_323_1) 2016; 4 e_1_2_8_282_1 e_1_2_8_430_1 Rasmussen C. E. (e_1_2_8_403_1) 2006 e_1_2_8_229_1 e_1_2_8_206_1 e_1_2_8_402_1 e_1_2_8_380_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_304_1 e_1_2_8_327_1 e_1_2_8_196_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_441_1 e_1_2_8_218_1 e_1_2_8_414_1 e_1_2_8_161_1 Wang T. (e_1_2_8_177_1) 2012 e_1_2_8_392_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 (e_1_2_8_150_1) 2006 e_1_2_8_339_1 e_1_2_8_316_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_245_1 e_1_2_8_437_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_320_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_366_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_57_1 Oka H. (e_1_2_8_419_1) 2021; 1 Kaur R. (e_1_2_8_444_1) 2020; 68 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_425_1 e_1_2_8_257_1 e_1_2_8_448_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_332_1 e_1_2_8_355_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_378_1 e_1_2_8_200_1 e_1_2_8_436_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_321_1 e_1_2_8_367_1 e_1_2_8_44_1 e_1_2_8_344_1 e_1_2_8_137_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_424_1 e_1_2_8_447_1 e_1_2_8_258_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_310_1 e_1_2_8_356_1 e_1_2_8_33_1 e_1_2_8_333_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_125_1 e_1_2_8_379_1 e_1_2_8_24_1 e_1_2_8_47_1 Upadhya R. (e_1_2_8_389_1) 2022 Duvenaud D. K. (e_1_2_8_223_1) 2015; 28 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_435_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_322_1 e_1_2_8_345_1 e_1_2_8_368_1 e_1_2_8_138_1 Drucker H. (e_1_2_8_160_1) 1996; 28 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_423_1 e_1_2_8_446_1 e_1_2_8_236_1 e_1_2_8_311_1 e_1_2_8_334_1 e_1_2_8_357_1 e_1_2_8_149_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 Nasrin T. (e_1_2_8_128_1) 2023; 62 e_1_2_8_434_1 Arthur D. (e_1_2_8_343_1) 2007 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_116_1 e_1_2_8_346_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_369_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_422_1 e_1_2_8_410_1 e_1_2_8_127_1 e_1_2_8_335_1 e_1_2_8_12_1 e_1_2_8_312_1 e_1_2_8_104_1 e_1_2_8_358_1 |
| References_xml | – volume: 559 start-page: 547 year: 2018 publication-title: Nature – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1117 year: 2022 publication-title: ACS Macro Lett. – volume: 128 start-page: 4576 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 14 year: 2019 publication-title: PLoS One – volume: 35 start-page: 1560 year: 2023 publication-title: Chem. Mater. – volume: 15 start-page: 1273 year: 2024 publication-title: Polym. Chem. – volume: 10 start-page: 749 year: 2021 publication-title: ACS Macro Lett. – volume: 24 year: 2022 publication-title: Adv. Eng. Mater. – volume: 42 start-page: 232 year: 2002 publication-title: J. Chem. Inf. Comput. Sci. – volume: 46 start-page: 5838 year: 2021 publication-title: Mater. Today: Proc. – volume: 9 year: 2021 publication-title: Front. Chem. – volume: 37 start-page: 2754 year: 1998 publication-title: Angew. Chem., Int. Ed. – volume: 231 year: 2021 publication-title: Chem. Eng. Sci. – volume: 106 start-page: 9327 year: 1997 publication-title: J. Chem. Phys. – volume: 287 start-page: 811 year: 2009 publication-title: Colloid Polym. Sci. – year: 2014 – volume: 35 start-page: 459 year: 2010 publication-title: Prog. Polym. Sci. – volume: 3 start-page: 9 year: 2016 publication-title: J. Big Data – volume: 75 start-page: 125 year: 2008 publication-title: J. Dent. Child. – volume: 11 start-page: 74 year: 2019 publication-title: J. Cheminf. – volume: 4 start-page: 2702 year: 2021 publication-title: Matter – volume: 85 start-page: 667 year: 2004 publication-title: Polym. Degrad. Stab. – volume: 12 start-page: 1603 year: 2022 publication-title: WIREs Comput. Mol. Sci. – volume: 12 start-page: 2209 year: 2024 publication-title: J. Mater. Chem. A – volume: 24 start-page: 3399 year: 2023 publication-title: Asian J. Civ. Eng. – volume: 50 start-page: 742 year: 2010 publication-title: J. Chem. Inf. Model. – start-page: 323 year: 2000 end-page: 352 – volume: 54 start-page: 878 year: 2011 publication-title: Sci. China: Phys., Mech. Astron. – volume: 127 year: 2020 publication-title: J. Appl. Phys. – volume: 28 start-page: 31 year: 1988 publication-title: J. Chem. Inf. Comput. Sci. – volume: 105 year: 2022 publication-title: Phys. Rev. E – volume: 46 start-page: 1509 year: 2020 publication-title: Mol. Simul. – volume: 6 year: 2021 publication-title: Mach. Learn. Appl. – volume: 64 start-page: 205 year: 2020 publication-title: Inf. Fusion – volume: 1 start-page: 57 year: 2020 publication-title: AI Open – volume: 4 start-page: 139 year: 2016 publication-title: Int. J. Comput. Sci. Eng. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 2639 year: 2018 publication-title: J. Phys. Chem. Lett. – year: 2002 – volume: 26 start-page: 9982 year: 2020 publication-title: Chem.‐ Eur. J. – volume: 455 start-page: 436 year: 2012 publication-title: Adv. Mater. Res. – volume: 30 start-page: 4800 year: 2022 publication-title: J. Polym. Environ. – volume: 9 start-page: 924 year: 2023 publication-title: Chem – volume: 87 start-page: 1123 year: 2021 publication-title: J. Chem. Educ. – volume: 60 start-page: 4684 year: 2020 publication-title: J. Chem. Inf. Model. – volume: 404 year: 2020 publication-title: Phys. D – volume: 6 start-page: 1078 year: 2017 publication-title: ACS Macro Lett. – volume: 53 start-page: 65 year: 2001 publication-title: Compos. Struct – volume: 27 year: 2018 publication-title: Chin. Phys. B – volume: 17 start-page: 7607 year: 2021 publication-title: Soft Matter – volume: 25 year: 2021 publication-title: Appl. Mater. Today – volume: 2 start-page: 775 year: 2013 publication-title: ACS Macro Lett. – start-page: 306 year: 2017 publication-title: Pattern Recognit. – volume: 21 start-page: 1413 year: 2024 publication-title: Math. Biosci. Eng. – volume: 86 start-page: 405 year: 2024 publication-title: Alexandria Eng. J. – volume: 14 start-page: 1327 year: 2018 publication-title: Soft Matter – volume: 3 year: 1950 – volume: 190 year: 2021 publication-title: Comput. Mater. Sci. – volume: 14 start-page: 4838 year: 2023 publication-title: Nat. Commun. – volume: 43 year: 2022 publication-title: Macromol. Rapid Commun. – volume: 22 start-page: 2660 year: 2022 publication-title: Nano Lett. – volume: 12 start-page: 857 year: 2022 publication-title: Membranes – volume: 62 start-page: 6239 year: 2023 publication-title: J. Polym. Sci. – volume: 3 start-page: 2510 year: 2023 publication-title: JACS Au – volume: 25 start-page: 4 year: 2023 publication-title: Comput. Sci. Eng. – volume: 36 start-page: 355 year: 2022 publication-title: J. Comput.‐Aided Mol. Des. – volume: 9 start-page: 1 year: 1997 publication-title: University of Sheffield. Tech. Rep. – volume: 106 year: 2022 publication-title: Phys. Rev. E – volume: 20 start-page: 4905 year: 2024 publication-title: Soft Matter – volume: 320 start-page: 390 year: 2008 publication-title: J. Membr. Sci. – volume: 67 start-page: 168 year: 2007 publication-title: Compos. Sci. Technol. – volume: 291 start-page: 551 year: 2012 publication-title: Colloid Polym. Sci. – volume: 49 start-page: 8 year: 2021 publication-title: Nucleic Acids Res. – volume: 60 start-page: 4457 year: 2020 publication-title: J. Chem. Inf. Model. – volume: 40 start-page: 834 year: 2022 publication-title: Chin. J. Polym. Sci. – year: 2015 – volume: 115 start-page: 1106 year: 2015 publication-title: Chem. Rev. – volume: 99 year: 2019 publication-title: Phys. Rev. E – volume: 56 start-page: 3945 year: 2023 publication-title: Macromolecules – volume: 61 start-page: 5395 year: 2021 publication-title: J. Chem. Inf. Model. – volume: 55 start-page: 117 year: 2022 publication-title: Polym. J. – volume: 5 start-page: 39 year: 2006 publication-title: Nat. Mater. – volume: 27 start-page: 130 year: 2015 publication-title: Shanghai Arch. Psychiatry – volume: 47 start-page: 150 year: 2007 publication-title: J. Chem. Inf. Model. – volume: 14 year: 1967 – volume: 94 start-page: 2410 year: 2021 publication-title: Bull. Chem. Soc. Jpn. – volume: 2 start-page: 8 year: 2022 publication-title: ACS Polym. Au – volume: 2 year: 2020 publication-title: Adv. Intell. Syst. – volume: 3 start-page: 141 year: 2023 publication-title: ACS Polym. Au – volume: 30 year: 2017 publication-title: Adv. Neural Inf. Process. Syst. – start-page: 12 year: 2021 end-page: 16 – volume: 71 start-page: 3158 year: 1993 publication-title: Phys. Rev. Lett. – volume: 127 start-page: 6179 year: 2023 publication-title: J. Phys. Chem. C – volume: 2 year: 2016 publication-title: npj Comput. Mater. – volume: 17 start-page: 7697 year: 2021 publication-title: Soft Matter – volume: 3 year: 2016 publication-title: Sci. Data – volume: 43 year: 2014 – volume: 29 start-page: 3341 year: 2022 publication-title: Arch Computat Methods Eng – volume: 131 start-page: 1 year: 2019 publication-title: J. Parallel Distrib. Comput. – volume: 59 start-page: 5013 year: 2019 publication-title: J. Chem. Inf. Model. – volume: 596 start-page: 583 year: 2021 publication-title: Nature – volume: 127 start-page: 9863 year: 2023 publication-title: J. Phys. Chem. A – volume: 81 start-page: 123 year: 1979 publication-title: J. Theory Biol. – volume: 20 start-page: 61 year: 2009 publication-title: IEEE Trans. Neural Netw. – volume: 14 start-page: 199 year: 2004 publication-title: Stat. Comput. – volume: 12 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 226 year: 2016 publication-title: Mater. Horiz. – volume: 59 start-page: 2613 year: 2021 publication-title: J. Polym. Sci. – volume: 225 year: 2016 – volume: 29 start-page: 2318 year: 2017 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 71 start-page: 537 year: 2021 publication-title: Polym. Int. – volume: 4 year: 2021 publication-title: Appl. Surf. Sci. – volume: 4 start-page: 28 year: 2021 publication-title: Curr. Res. Food Sci. – volume: 148 year: 2018 publication-title: J. Chem. Phys. – start-page: 505 year: 2019 end-page: 510 – start-page: 785 year: 2016 end-page: 794 – volume: 3 year: 2016 publication-title: Front. Mater. – volume: 50 start-page: 7410 year: 2017 publication-title: Macromolecules – volume: 35 start-page: 2279 year: 2002 publication-title: Pattern Recognit – volume: 21 start-page: 333 year: 2024 publication-title: Mol. Pharmaceutics – volume: 162 start-page: 146 year: 2018 publication-title: Compos. Sci. Technol. – volume: 144 year: 2024 publication-title: Prog. Mater. Sci. – volume: 5 year: 2023 publication-title: Adv. Intell. Syst. – volume: 30 start-page: 503 year: 2019 publication-title: Bioconjugate Chem. – volume: 119 start-page: 21 year: 2012 publication-title: Chemom. Intell. Lab. Syst. – volume: 90 start-page: 8 year: 2017 publication-title: Pattern Recognit. Lett. – volume: 38 start-page: 367 year: 2002 publication-title: Comput. Stat. Data Anal. – volume: 7 start-page: 9 year: 2017 publication-title: Theory Appl. Math. Comput. Sci. – volume: 3 start-page: 284 year: 2023 publication-title: ACS Polym. Au – year: 1993 – volume: 9 start-page: 90 year: 2023 publication-title: npj Comput. Mater. – volume: 144 year: 2021 publication-title: Mater. Sci. Eng., R – volume: 71 start-page: 456 year: 2017 publication-title: Appl. Spectrosc. – volume: 10 start-page: 66 year: 2009 publication-title: J. Mach. Learn. Res. – volume: 4 start-page: 7 year: 2012 publication-title: Int. J. Adv. Struct. Eng. – volume: 129 start-page: 3297 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 101 start-page: 2167 year: 2006 publication-title: J. Appl. Polym. Sci. – volume: 8 start-page: 540 year: 2019 publication-title: ACS Macro Lett. – volume: 22 start-page: 1345 year: 2010 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 57 start-page: 115 year: 2020 publication-title: Inf. Fusion – volume: 14 start-page: 9641 year: 2024 publication-title: Sci. Rep. – volume: 236 year: 2020 publication-title: Compos. Struct. – volume: 3 start-page: 353 year: 2021 publication-title: InfoMat – year: 2016 – volume: 38 start-page: 2553 year: 2021 publication-title: Eng. Comput. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 66 start-page: 246 year: 2015 publication-title: Int. Commun. Heat Mass Transfer – volume: 57 start-page: 3515 year: 2024 publication-title: Macromolecules – volume: 7 year: 2022 publication-title: ACS Omega – volume: 21 start-page: 1 year: 2020 – volume: 37 year: 2018 publication-title: Mol. Inf. – volume: 27 start-page: 7663 year: 2011 publication-title: Langmuir – start-page: 1112 year: 2014 end-page: 1117 – volume: 269 year: 2024 publication-title: Composites, Part B – start-page: 22 year: 2011 end-page: 29 – volume: 109 start-page: 43 year: 2021 publication-title: Proc. IEEE – volume: 1 year: 2006 – start-page: 105 year: 2013 end-page: 116 – volume: 28 start-page: 363 year: 2010 publication-title: Trends Biotechnol. – volume: 28 start-page: 41 year: 1997 publication-title: Mach. Learn. – volume: 14 start-page: 35 year: 2023 publication-title: Nat. Commun. – volume: 15 start-page: 1405 year: 2022 publication-title: Pharmaceuticals – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Inter. – volume: 4 start-page: 268 year: 2018 publication-title: ACS Cent. Sci. – volume: 4 start-page: 275 year: 2012 publication-title: WIREs Comput Stat – volume: 1 year: 2020 publication-title: Mach. Learn.: Sci. Technol. – volume: 7 start-page: 953 year: 2008 publication-title: J. Theor. Comput. Chem. – volume: 214 year: 2021 publication-title: Polymer – start-page: 397 year: 2020 end-page: 412 – volume: 171 start-page: 1 year: 2021 publication-title: Adv. Drug Delivery Rev – volume: 2 start-page: 1 year: 2009 publication-title: ASQ Higher Education Brief – year: 2018 – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 9 start-page: 272 year: 2012 publication-title: Int. J. Comput. Sci. – volume: 2 start-page: 200 year: 2020 publication-title: Nat Mach Intell – volume: 83 start-page: 236 year: 2016 publication-title: Prog. Mater. Sci. – volume: 5 start-page: 107 year: 1965 publication-title: J. Chem. Doc. – volume: 3 start-page: 1525 year: 2021 publication-title: ACS Appl. Polym. Mater. – volume: 12 start-page: 163 year: 2020 publication-title: Polymers – volume: 26 start-page: 1383 year: 1981 publication-title: J. Appl. Polym. Sci. – volume: 24 year: 2021 publication-title: iScience – volume: 14 start-page: 26 year: 2021 publication-title: Polymers – volume: 21 start-page: 5 year: 2006 – volume: 5 start-page: 1394 year: 2020 publication-title: Nanoscale Horiz. – volume: 63 start-page: 3288 year: 2023 publication-title: J. Chem. Inf. Model. – volume: 1 start-page: 492 year: 2009 publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 23 year: 2022 publication-title: Int. J. Mol. Sci. – volume: 9 start-page: 1086 year: 2020 publication-title: ACS Macro Lett. – volume: 3 start-page: 422 year: 2021 publication-title: Nat. Rev. Phys. – volume: 2 year: 2019 publication-title: Adv. Theory Simul. – volume: 38 start-page: 2567 year: 1997 publication-title: Polymer – volume: 52 start-page: 755 year: 2019 publication-title: Macromolecules – volume: 2 start-page: 78 year: 2020 publication-title: Front. Data Comput. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 80 start-page: 268 year: 2016 publication-title: Eur. Polym. J. – volume: 9 start-page: 330 year: 2023 publication-title: ACS Cent. Sci. – volume: 128 year: 2021 publication-title: Comput. Biol. Med. – start-page: 1 year: 2019 end-page: 7 – year: 2006 – volume: 25 start-page: 6495 year: 2015 publication-title: Adv. Funct. Mater. – volume: 13 year: 2000 publication-title: Adv. Neural Inf. Process Syst. – volume: 5 start-page: 66 year: 2019 publication-title: npj Comput. Mater. – volume: 1 year: 2023 publication-title: APL Mach. Learn. – year: 2017 – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 806 year: 2019 publication-title: MRS Commun. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 933 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 1225 year: 1996 publication-title: J. Clin. Epidemiol. – volume: 43 start-page: W612 year: 2015 publication-title: Nucleic Acids Res. – volume: 20 start-page: 1010 year: 2019 publication-title: Sci. Technol. Adv. Mater. – volume: 15 start-page: 495 year: 2023 publication-title: Pharmaceutics – volume: 224 year: 2023 publication-title: Macromol. Chem. Phys. – volume: 11 year: 2016 publication-title: PLoS One – volume: 32 start-page: 4 year: 2021 publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 13 start-page: 27 year: 1994 publication-title: IEEE Potentials – volume: 14 start-page: 357 year: 2022 publication-title: Polymers – volume: 54 start-page: 849 year: 2021 publication-title: Acc. Chem. Res. – volume: 29 start-page: 9436 year: 2017 publication-title: Chem. Mater. – volume: 216 year: 2023 publication-title: Comput. Mater. Sci. – volume: 27 year: 2019 publication-title: Modelling Simul. Mater. Sci. Eng. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – year: 2008 – volume: 21 start-page: 1610 year: 2021 publication-title: Spine J. – volume: 47 start-page: 8541 year: 2014 publication-title: Macromolecules – volume: 13 year: 2023 publication-title: Appl. Sci. – volume: 29 start-page: 470 year: 2009 publication-title: Mater. Sci. Eng. C – year: 2019 – volume: 29 start-page: 31 year: 1996 publication-title: Computer – volume: 231 year: 2023 publication-title: Compos. Sci. Technol. – volume: 14 start-page: 1622 year: 2023 publication-title: Polym. Chem. – volume: 14 start-page: 4099 year: 2023 publication-title: Nat. Commun. – volume: 48 start-page: 130 year: 2019 publication-title: Chem. Lett. – volume: 33 start-page: 3621 year: 2020 publication-title: Neural Comput. Appl. – volume: 94 start-page: 637 year: 2022 publication-title: Pure Appl. Chem. – volume: 3 start-page: 133 year: 2021 publication-title: Trends Chem – volume: 6 start-page: 61 year: 2020 publication-title: npj Comput. Mater. – year: 2007 – volume: 21 start-page: 1263 publication-title: IEEE Trans. Knowl. Data Eng. 2009 – volume: 9 start-page: 102 year: 2022 publication-title: J. Big Data – volume: 267 year: 2023 publication-title: Chem. Eng. Sci. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 5 year: 1983 – volume: 196 year: 2021 publication-title: Comput. Mater. Sci. – volume: 149 start-page: 4747 year: 2024 publication-title: Analyst – volume: 33 start-page: 2669 year: 2021 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 130 year: 2024 publication-title: Eng. Appl. Artif. Intell. – year: 2022, preprint publication-title: ChemRxiv – volume: 55 start-page: 191 year: 2017 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 11 start-page: 6343 year: 2021 publication-title: Sci. Rep. – volume: 128 year: 2020 publication-title: J. Appl. Phys. – volume: 5 start-page: 1717 year: 2019 publication-title: ACS Cent. Sci. – volume: 45 year: 2020 publication-title: Int. J. Hydrogen Energy – volume: 261 start-page: 149 year: 2017 publication-title: J. Biotechnol. – volume: 50 start-page: 0 year: 2006 – volume: 47 start-page: 31 year: 2017 publication-title: J. Insur. Med. – volume: 35 start-page: 12 year: 2021 publication-title: Proc. of the AAAI Conf. on Artificial Intelligence – year: 2009 – volume: 12 start-page: 2825 year: 2011 publication-title: J. Mach. Learn. Res. – volume: 355 start-page: 842 year: 2015 publication-title: Appl. Surf. Sci. – volume: 13 start-page: 22 year: 2021 publication-title: J. Cheminf. – volume: 42 start-page: 232 year: 2002 publication-title: J. Chem. Inf. Comput. – volume: 4 start-page: 588 year: 2017 publication-title: IEEE/CAA J. Autom. Sin. – volume: 12 start-page: 51 year: 2020 publication-title: J. Cheminf. – year: 2021 – volume: 66 start-page: 11 year: 2004 publication-title: Psychosom. Med. – volume: 3 start-page: 239 year: 2023 publication-title: ACS Polym. Au – volume: 136 start-page: 5508 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 40 year: 2022 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 1 start-page: 857 year: 2017 publication-title: Joule – volume: 165 start-page: 179 year: 2018 publication-title: Optik – volume: 85 start-page: 1 year: 2017 publication-title: J. Math. Psychol. – volume: 99 start-page: 117 year: 2008 publication-title: Biotechnol. Bioeng. – volume: 14 start-page: 69 year: 2022 publication-title: NPG Asia Mater. – volume: 204 start-page: 774 year: 2023 publication-title: Renewable Energy – volume: 9 start-page: 42 year: 2023 publication-title: npj Comput. Mater. – volume: 58 start-page: 1194 year: 2018 publication-title: J. Chem. Inf. Model. – volume: 193 year: 2020 publication-title: Polymer – volume: 3 year: 2022 publication-title: Cell Rep. Phys. Sci. – volume: 332 start-page: 115 year: 2007 publication-title: Chem. Phys. – volume: 28 start-page: 779 year: 1996 publication-title: Adv Neural Inform Process Syst. – volume: 12 start-page: 1475 year: 2019 publication-title: Materials – volume: 6 start-page: 11 year: 2019 publication-title: Comput Soc Netw – volume: 177 year: 2023 publication-title: Comput. Chem. Eng. – volume: 41 start-page: 2034 year: 2002 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 620 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 9 start-page: 15 year: 2013 publication-title: Tutorials Quant. Methods Psychol. – volume: 6 start-page: 105 year: 2018 publication-title: J. Immunother. Cancer – volume: 57 start-page: 1944 year: 2022 publication-title: Mater. Today: Proc. – volume: 1 start-page: 519 year: 2022 publication-title: Digital Discovery – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – year: 2020 – volume: 19 start-page: 8907 year: 2009 publication-title: J. Mater. Chem. – volume: 20 start-page: 5652 year: 2024 publication-title: Soft Matter – volume: 183 year: 2022 publication-title: Adv. Drug Delivery Rev. – volume: 10 start-page: 4 year: 2018 publication-title: J. Cheminf. – volume: 1 start-page: 93 year: 2009 publication-title: WIREs Comput Stat – volume: 10 start-page: 306 year: 2017 publication-title: Energy Environ. Sci. – volume: 136 start-page: 142 year: 2018 publication-title: Stat. Probab. Lett. – volume: 7 start-page: 510 year: 2023 publication-title: ACS Appl. Bio Mater. – volume: 60 start-page: 22 year: 2019 publication-title: J. Chem. Inf. Model. – start-page: 1 year: 2021 end-page: 8 – volume: 291 year: 2024 publication-title: Chem. Eng. Sci. – volume: 8 year: 2020 publication-title: IEEE Access – volume: 28 year: 2015 publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 134 year: 2021 publication-title: ACS Polym. Au – volume: 7 start-page: 8939 year: 2024 publication-title: ACS Appl. Nano Mater. – start-page: 1 year: 2008 end-page: 50 – volume: 792 year: 1990 – volume: 4 year: 1995 – volume: 143 start-page: 1 year: 2022 publication-title: Acta Biomater. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 8 start-page: 2 year: 1969 publication-title: Ind. Eng. Chem. Prod. Res. Dev. – volume: 146 start-page: 265 year: 2019 publication-title: Carbon – year: 2022 – volume: 63 start-page: 36 year: 2006 publication-title: Cell. Mol. Life Sci. – volume: 140 start-page: 86 year: 2015 publication-title: Chemom. Intell. Lab. Syst. – volume: 55 start-page: 2691 year: 2022 publication-title: Macromolecules – volume: 230 year: 2023 publication-title: Comput. Mater. Sci. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Ind. Eng. Chem. Res. – volume: 20 year: 2018 publication-title: Plasma Sci. Technol. – start-page: 2490 year: 2021 end-page: 2497 – volume: 3 start-page: 1 year: 2011 publication-title: J. Cheminf. – volume: 13 start-page: 6108 year: 2022 publication-title: Polym. Chem. – volume: 4 start-page: 25 year: 2018 publication-title: npj Comput. Mater. – volume: 14 start-page: 3325 year: 2023 publication-title: Polym. Chem. – start-page: 232 end-page: 238 – volume: 14 start-page: 82 year: 2022 publication-title: Polymers – volume: 10 start-page: 139 year: 2024 publication-title: npj Comput. Mater. – volume: 8 start-page: 321 year: 1931 publication-title: Chem. Rev. – volume: 58 start-page: 267 year: 1996 publication-title: J. R. Stat. – volume: 11 start-page: 1250 year: 2019 publication-title: Polymers – volume: 12 start-page: 7946 year: 2018 publication-title: ACS Nano – volume: 52 start-page: 2796 year: 2012 publication-title: J. Chem. Inf. Model. – volume: 19 start-page: 303 year: 1993 publication-title: Comput. Geosci. – year: 2010 – volume: 134 year: 2017 publication-title: J. Appl. Polym. Sci. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 661 year: 2022 publication-title: Mol. Syst. Des. Eng. – volume: 5 year: 2022 publication-title: Adv. Theory Simul. – volume: 2 start-page: 213 year: 2022 publication-title: ACS Polym. Au – volume: 5 start-page: 1689 year: 2020 publication-title: ACS Sens. – volume: 34 start-page: 99 year: 2005 publication-title: Comput. Mater. Sci. – start-page: 3304 year: 2012 end-page: 3308 – volume: 29 start-page: 20 year: 2007 publication-title: Int. J. Fatigue – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 1365 year: 2022 publication-title: Int. J. Nanomed. – volume: 61 start-page: 5377 year: 2021 publication-title: J. Chem. Inf. Model. – volume: 304 year: 2021 publication-title: Mater. Lett. – volume: 15 year: 2023 publication-title: Giant – volume: 32 year: 2020 publication-title: Chem. Mater. – volume: 9 start-page: 860 year: 2019 publication-title: MRS Commun. – volume: 10 start-page: 1339 year: 2021 publication-title: ACS Macro Lett. – volume: 9 start-page: 556 year: 2019 publication-title: MRS Commun. – volume: 146 start-page: 8120 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 5 year: 2001 publication-title: Mach. Learn. – volume: 5 start-page: 1523 year: 2019 publication-title: ACS Cent. Sci – volume: 57 start-page: 6727 year: 2024 publication-title: Macromolecules – year: 2001 – volume: 11 start-page: 1486 year: 2020 publication-title: Nat. Commun. – volume: 20 start-page: 2908 year: 2024 publication-title: J. Chem. Theory Comput. – volume: 124 start-page: 3873 year: 2020 publication-title: J. Phys. Chem. B – volume: 35 start-page: 53 year: 2018 publication-title: IEEE Signal Process Mag. – volume: 712 year: 2024 publication-title: J. Membr. Sci. – volume: 30 start-page: 595 year: 2016 publication-title: J. Comput.‐Aided Mol. Des. – volume: 66 start-page: 411 year: 2004 publication-title: Psychosom. Med. – volume: 11 start-page: 1656 year: 2021 publication-title: Nanomaterials – volume: 2 start-page: 1 year: 2015 publication-title: J. Big Data – volume: 187 year: 2021 publication-title: Comput. Mater. Sci. – volume: 46 start-page: 151 year: 1942 publication-title: J. Phys. Chem. – volume: 14 start-page: 106 year: 2013 publication-title: BMC Bioinf. – volume: 44 start-page: 37 year: 1949 publication-title: Chem. Rev. – volume: 14 start-page: 1802 year: 2022 publication-title: Polymers – volume: 3 start-page: 54 year: 2017 publication-title: npj Comput. Mater. – volume: 16 start-page: 1049 year: 2024 publication-title: Polymers – volume: 5 start-page: 562 year: 2020 publication-title: Nat. Rev. Mater. – volume: 6 year: 2020 publication-title: Heliyon – volume: 47 start-page: D930 year: 2019 publication-title: Nucleic Acids Res. – volume: 14 start-page: 2779 year: 2023 publication-title: Polym. Chem. – volume: 45 start-page: 257 year: 2009 publication-title: Comput. Mater. Sci. – volume: 36 start-page: 2602 year: 2024 publication-title: Chem. Mater. – volume: 5 start-page: 9784 year: 2019 publication-title: Sci. Adv. – volume: 6 start-page: 642 year: 2021 publication-title: Nat. Rev. Mater. – volume: 69 start-page: 337 year: 2012 publication-title: Cell. Mol. Life Sci. – volume: 14 start-page: 2383 year: 2023 publication-title: Polym. Chem. – volume: 9 year: 2019 publication-title: Sci. Rep. – volume: 43 start-page: 514 year: 2020 publication-title: Chem. Eng. Technol. – volume: 27 start-page: 177 year: 1958 publication-title: J. Polym. Sci. – volume: 65 year: 2002 publication-title: Phys. Rev. E – year: 2012 – year: 2023, 347 publication-title: Mater. Today: Proc. – volume: 188 year: 2021 publication-title: Comput. Mater. Sci. – volume: 220 year: 2022 publication-title: Compos. Sci. Technol. – volume: 7 start-page: 5683 year: 2017 publication-title: Sci. Rep. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Inter. – volume: 260 start-page: 29 year: 2005 publication-title: Colloids Surf., A – volume: 10 start-page: 51 year: 1942 publication-title: J. Chem. Phys. – volume: 28 start-page: 144 year: 2020 publication-title: J. Sustainable Tourism – volume: 54 start-page: 3396 year: 2014 publication-title: J. Chem. Inf. Model. – year: 2023 – volume: 12 start-page: 191 year: 2013 publication-title: Nat. Mater. – volume: 6 start-page: 6216 year: 2020 publication-title: Sci. Adv. – volume: 16 start-page: 115 year: 2023 publication-title: Polymers – volume: 68 start-page: 30 year: 2020 publication-title: IJETT – volume: 5 start-page: 962 year: 2020 publication-title: Mol. Syst. Des. Eng. – volume: 51 start-page: 77 year: 2004 publication-title: Prog. Org. Coat. – volume: 12 start-page: 1002 year: 2021 publication-title: Polym. Chem. – volume: 21 start-page: 3356 year: 2024 publication-title: Mol. Pharmaceutics – volume: 1 start-page: 12 year: 2021 publication-title: Sci. Technol. Adv. Mater.: Methods – volume: 194 year: 2021 publication-title: Comput. Mater. Sci. – volume: 56 start-page: 5446 year: 2023 publication-title: Macromolecules – volume: 34 start-page: 13 year: 1963 publication-title: J. Appl. Phys. – volume: 5 start-page: 83 year: 2019 publication-title: npj Comput. Mater. – volume: 220 year: 2021 publication-title: Polymer – ident: e_1_2_8_265_1 doi: 10.1016/j.patrec.2017.03.008 – ident: e_1_2_8_189_1 doi: 10.3934/mbe.2024061 – ident: e_1_2_8_386_1 doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 – ident: e_1_2_8_118_1 doi: 10.1109/ICADIWT.2014.6814687 – ident: e_1_2_8_156_1 – ident: e_1_2_8_113_1 doi: 10.1021/ci010062o – ident: e_1_2_8_94_1 doi: 10.1021/ci100050t – ident: e_1_2_8_299_1 doi: 10.1016/j.icheatmasstransfer.2015.06.002 – ident: e_1_2_8_225_1 doi: 10.1186/s40649-019-0069-y – ident: e_1_2_8_358_1 doi: 10.1016/j.pmatsci.2024.101282 – ident: e_1_2_8_319_1 doi: 10.1016/j.ces.2024.119952 – ident: e_1_2_8_54_1 doi: 10.1088/1674-1056/27/11/118101 – ident: e_1_2_8_186_1 doi: 10.1002/ceat.201900096 – volume-title: Proceedings of the eighteenth annual ACM‐SIAM symposium on Discrete algorithms year: 2007 ident: e_1_2_8_343_1 – ident: e_1_2_8_63_1 doi: 10.1186/s40537-016-0043-6 – ident: e_1_2_8_347_1 doi: 10.1016/j.apsadv.2021.100068 – ident: e_1_2_8_379_1 doi: 10.1002/pola.28378 – ident: e_1_2_8_269_1 – ident: e_1_2_8_139_1 doi: 10.1002/bit.21531 – ident: e_1_2_8_138_1 doi: 10.1007/s00396-009-2035-y – volume-title: Essential Math for Data Science year: 2022 ident: e_1_2_8_114_1 – ident: e_1_2_8_144_1 doi: 10.1016/j.chemolab.2012.10.003 – ident: e_1_2_8_288_1 doi: 10.1016/j.polymer.2020.122341 – ident: e_1_2_8_377_1 doi: 10.1002/ange.201600112 – ident: e_1_2_8_43_1 doi: 10.1016/j.carbon.2019.02.001 – ident: e_1_2_8_137_1 doi: 10.1007/s00396-012-2743-6 – ident: e_1_2_8_325_1 doi: 10.1039/C5MH00282F – ident: e_1_2_8_297_1 doi: 10.1016/j.polymer.2021.123558 – ident: e_1_2_8_15_1 doi: 10.1063/1.474002 – ident: e_1_2_8_163_1 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: e_1_2_8_365_1 doi: 10.1186/s40425-018-0416-9 – ident: e_1_2_8_146_1 doi: 10.1007/978-3-642-41136-6_11 – ident: e_1_2_8_436_1 doi: 10.1109/TKDE.2017.2720168 – volume: 68 start-page: 30 year: 2020 ident: e_1_2_8_444_1 publication-title: IJETT – ident: e_1_2_8_286_1 doi: 10.1016/j.heliyon.2020.e05055 – ident: e_1_2_8_52_1 doi: 10.1038/s41524-023-01000-z – ident: e_1_2_8_422_1 doi: 10.1021/acs.jcim.1c00554 – start-page: 3304 volume-title: ICPR2012 year: 2012 ident: e_1_2_8_177_1 – ident: e_1_2_8_194_1 doi: 10.20982/tqmp.09.1.p015 – ident: e_1_2_8_423_1 doi: 10.1007/978-3-030-40245-7_18 – ident: e_1_2_8_28_1 doi: 10.1002/pi.6345 – ident: e_1_2_8_382_1 doi: 10.1039/C7SM02472J – ident: e_1_2_8_222_1 doi: 10.1007/s10822-016-9938-8 – ident: e_1_2_8_89_1 doi: 10.1126/sciadv.abc6216 – ident: e_1_2_8_230_1 doi: 10.1246/bcsj.20210253 – ident: e_1_2_8_352_1 doi: 10.3390/polym14010082 – ident: e_1_2_8_404_1 doi: 10.1021/acs.molpharmaceut.3c00880 – ident: e_1_2_8_305_1 doi: 10.1016/j.compositesb.2023.111099 – ident: e_1_2_8_80_1 doi: 10.1002/marc.202100400 – ident: e_1_2_8_315_1 doi: 10.1063/1.1723621 – ident: e_1_2_8_153_1 doi: 10.1109/TKDE.2019.2953728 – ident: e_1_2_8_187_1 doi: 10.1016/S0167-9473(01)00065-2 – ident: e_1_2_8_185_1 doi: 10.1002/app.23112 – ident: e_1_2_8_448_1 doi: 10.1109/MIPRO.2014.6859735 – ident: e_1_2_8_268_1 doi: 10.1016/j.crfs.2021.01.002 – ident: e_1_2_8_7_1 doi: 10.1038/s41598-017-05723-0 – ident: e_1_2_8_106_1 doi: 10.1038/s41467-023-39868-6 – ident: e_1_2_8_149_1 doi: 10.1016/j.inffus.2020.07.007 – ident: e_1_2_8_267_1 doi: 10.1016/j.msec.2008.08.041 – ident: e_1_2_8_241_1 doi: 10.1080/14686996.2019.1673670 – ident: e_1_2_8_198_1 doi: 10.1038/s41580-021-00407-0 – ident: e_1_2_8_77_1 doi: 10.1186/s13321-019-0397-9 – ident: e_1_2_8_369_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_8_418_1 doi: 10.1016/j.isci.2020.101922 – ident: e_1_2_8_317_1 doi: 10.1039/D3PY01028G – ident: e_1_2_8_431_1 doi: 10.1038/s42254-021-00314-5 – ident: e_1_2_8_167_1 doi: 10.3390/ph15111405 – ident: e_1_2_8_204_1 – volume-title: Categorical Data Analysis year: 1990 ident: e_1_2_8_115_1 – volume-title: Recurrent Neural Networks year: 2001 ident: e_1_2_8_173_1 – ident: e_1_2_8_424_1 doi: 10.1021/acsmacrolett.0c00264 – ident: e_1_2_8_73_1 doi: 10.1021/acs.chemmater.0c03332 – volume: 4 start-page: 139 year: 2016 ident: e_1_2_8_323_1 publication-title: Int. J. Comput. Sci. Eng. – ident: e_1_2_8_123_1 doi: 10.1063/1.5017661 – ident: e_1_2_8_332_1 doi: 10.1021/i260029a002 – ident: e_1_2_8_32_1 doi: 10.1021/acsmacrolett.7b00228 – ident: e_1_2_8_174_1 doi: 10.1016/j.physd.2019.132306 – ident: e_1_2_8_233_1 – ident: e_1_2_8_443_1 doi: 10.1016/j.matpr.2022.03.051 – ident: e_1_2_8_33_1 doi: 10.1021/acs.accounts.0c00785 – ident: e_1_2_8_109_1 doi: 10.1186/1758-2946-3-1 – ident: e_1_2_8_273_1 doi: 10.3390/polym12010163 – volume: 6 year: 2021 ident: e_1_2_8_130_1 publication-title: Mach. Learn. Appl. – volume: 75 start-page: 125 year: 2008 ident: e_1_2_8_235_1 publication-title: J. Dent. Child. – ident: e_1_2_8_12_1 doi: 10.1002/adts.202100565 – ident: e_1_2_8_11_1 doi: 10.1002/aisy.202200243 – ident: e_1_2_8_121_1 doi: 10.1016/j.jpdc.2019.04.008 – ident: e_1_2_8_321_1 doi: 10.1021/acs.chemmater.3c02358 – ident: e_1_2_8_208_1 doi: 10.1021/acsami.1c20947 – ident: e_1_2_8_51_1 doi: 10.1002/adts.202100565 – ident: e_1_2_8_59_1 doi: 10.1038/npjcompumats.2016.31 – ident: e_1_2_8_326_1 doi: 10.1016/j.joule.2017.10.006 – ident: e_1_2_8_76_1 doi: 10.1016/j.commatsci.2021.110278 – ident: e_1_2_8_70_1 doi: 10.1103/PhysRevLett.114.105503 – ident: e_1_2_8_282_1 doi: 10.1039/D3PY00246B – ident: e_1_2_8_274_1 doi: 10.3390/app132111991 – ident: e_1_2_8_219_1 – ident: e_1_2_8_148_1 doi: 10.1016/j.apmt.2021.101158 – ident: e_1_2_8_19_1 doi: 10.1021/acspolymersau.2c00053 – ident: e_1_2_8_383_1 doi: 10.1021/acsapm.0c01376 – ident: e_1_2_8_348_1 doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M – ident: e_1_2_8_387_1 doi: 10.1021/acs.bioconjchem.8b00804 – volume: 2 start-page: 1 year: 2009 ident: e_1_2_8_159_1 publication-title: ASQ Higher Education Brief – volume: 13 year: 2000 ident: e_1_2_8_145_1 publication-title: Adv. Neural Inf. Process Syst. – ident: e_1_2_8_345_1 doi: 10.1021/acs.macromol.2c00245 – ident: e_1_2_8_30_1 doi: 10.1039/D1ME00160D – ident: e_1_2_8_255_1 doi: 10.1246/cl.180847 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_8_371_1 publication-title: J. Mach. Learn. Res. – ident: e_1_2_8_341_1 doi: 10.1016/S0032-3861(97)01024-0 – ident: e_1_2_8_395_1 doi: 10.3390/nano11071656 – ident: e_1_2_8_280_1 doi: 10.1016/j.compchemeng.2023.108356 – ident: e_1_2_8_93_1 doi: 10.1021/acscentsci.9b00476 – ident: e_1_2_8_328_1 doi: 10.1021/cr60030a010 – ident: e_1_2_8_182_1 doi: 10.1016/S0263-8223(00)00179-3 – ident: e_1_2_8_246_1 doi: 10.1016/j.commatsci.2008.09.027 – ident: e_1_2_8_338_1 doi: 10.1021/acs.macromol.2c02600 – ident: e_1_2_8_237_1 doi: 10.1016/j.polymdegradstab.2004.03.006 – ident: e_1_2_8_271_1 doi: 10.1021/jacsau.3c00275 – ident: e_1_2_8_261_1 doi: 10.1002/app.45237 – ident: e_1_2_8_110_1 doi: 10.1088/2632-2153/aba947 – ident: e_1_2_8_112_1 doi: 10.1021/acs.jpcc.8b02913 – ident: e_1_2_8_239_1 – ident: e_1_2_8_41_1 doi: 10.1186/s13321-021-00502-6 – ident: e_1_2_8_45_1 doi: 10.1093/nar/gkaa1088 – ident: e_1_2_8_256_1 doi: 10.1021/acs.jpclett.1c03526 – volume: 28 start-page: 779 year: 1996 ident: e_1_2_8_160_1 publication-title: Adv Neural Inform Process Syst. – ident: e_1_2_8_442_1 doi: 10.1557/mrc.2019.90 – ident: e_1_2_8_78_1 doi: 10.1021/acs.nanolett.1c04469 – ident: e_1_2_8_31_1 doi: 10.1038/s41524-017-0056-5 – ident: e_1_2_8_279_1 doi: 10.1038/s41467-023-40459-8 – ident: e_1_2_8_370_1 – ident: e_1_2_8_425_1 doi: 10.1021/acs.macromol.2c02249 – ident: e_1_2_8_353_1 doi: 10.1016/j.polymer.2020.123351 – ident: e_1_2_8_228_1 doi: 10.1021/acs.chemmater.2c02991 – ident: e_1_2_8_20_1 doi: 10.1038/s41586-021-03819-2 – ident: e_1_2_8_232_1 doi: 10.1002/wics.1198 – ident: e_1_2_8_108_1 doi: 10.1021/ci3001925 – ident: e_1_2_8_429_1 – volume: 10 start-page: 66 year: 2009 ident: e_1_2_8_203_1 publication-title: J. Mach. Learn. Res. – ident: e_1_2_8_24_1 doi: 10.1039/D3PY00314K – ident: e_1_2_8_190_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_8_119_1 doi: 10.1103/PhysRevE.105.035304 – ident: e_1_2_8_253_1 doi: 10.1007/s00366-020-01226-1 – ident: e_1_2_8_428_1 doi: 10.1007/s00018-005-5350-6 – ident: e_1_2_8_221_1 – ident: e_1_2_8_294_1 – ident: e_1_2_8_401_1 doi: 10.1021/acsabm.2c00962 – ident: e_1_2_8_375_1 doi: 10.1021/mz4003744 – volume: 28 year: 2015 ident: e_1_2_8_223_1 publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_8_215_1 doi: 10.1109/TNN.2008.2005605 – ident: e_1_2_8_333_1 doi: 10.1016/j.porgcoat.2004.05.004 – ident: e_1_2_8_133_1 – ident: e_1_2_8_434_1 doi: 10.1103/PhysRevE.106.014503 – ident: e_1_2_8_281_1 doi: 10.1021/acs.macromol.4c00835 – ident: e_1_2_8_320_1 doi: 10.1021/acspolymersau.1c00027 – volume: 1 start-page: 12 year: 2021 ident: e_1_2_8_419_1 publication-title: Sci. Technol. Adv. Mater.: Methods – ident: e_1_2_8_380_1 doi: 10.1002/anie.202104204 – ident: e_1_2_8_162_1 doi: 10.1007/978-1-4302-5990-9 – ident: e_1_2_8_164_1 doi: 10.4028/www.scientific.net/AMR.455-456.436 – ident: e_1_2_8_364_1 doi: 10.1002/wnan.35 – ident: e_1_2_8_87_1 doi: 10.1002/pol.20210555 – ident: e_1_2_8_301_1 doi: 10.1016/j.memsci.2024.123169 – ident: e_1_2_8_234_1 doi: 10.1557/mrc.2019.32 – ident: e_1_2_8_400_1 doi: 10.1371/journal.pone.0224365 – ident: e_1_2_8_316_1 doi: 10.1021/j150415a018 – ident: e_1_2_8_388_1 doi: 10.1039/D4SM00453A – ident: e_1_2_8_251_1 doi: 10.1186/s40537-014-0007-7 – start-page: 306 year: 2017 ident: e_1_2_8_244_1 publication-title: Pattern Recognit. – ident: e_1_2_8_304_1 doi: 10.3390/ijms231810712 – ident: e_1_2_8_50_1 doi: 10.1080/09669582.2019.1631318 – ident: e_1_2_8_195_1 doi: 10.1088/2058-6272/aaaade – ident: e_1_2_8_217_1 doi: 10.1109/TNNLS.2020.2978386 – ident: e_1_2_8_339_1 doi: 10.1002/adts.201800069 – ident: e_1_2_8_39_1 doi: 10.1038/sdata.2016.12 – ident: e_1_2_8_22_1 doi: 10.1016/j.ces.2022.118326 – ident: e_1_2_8_446_1 doi: 10.1016/j.jbiotec.2017.07.028 – ident: e_1_2_8_441_1 doi: 10.1109/TKDE.2009.191 – ident: e_1_2_8_69_1 doi: 10.1109/ICPR48806.2021.9412492 – ident: e_1_2_8_71_1 doi: 10.1038/npjcompumats.2016.28 – ident: e_1_2_8_245_1 doi: 10.1007/s00521-020-05191-0 – ident: e_1_2_8_111_1 doi: 10.1002/aisy.202070042 – ident: e_1_2_8_92_1 doi: 10.1021/ci00057a005 – ident: e_1_2_8_257_1 doi: 10.17849/insm-47-01-31-39.1 – volume: 30 year: 2017 ident: e_1_2_8_220_1 publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_8_311_1 doi: 10.1201/b18063 – ident: e_1_2_8_335_1 doi: 10.1021/acs.iecr.1c02142 – ident: e_1_2_8_48_1 doi: 10.1038/sdata.2016.18 – ident: e_1_2_8_242_1 doi: 10.1016/j.compscitech.2018.04.017 – year: 2023 ident: e_1_2_8_362_1 publication-title: Mater. Today: Proc. – ident: e_1_2_8_447_1 – ident: e_1_2_8_314_1 doi: 10.1063/1.1729054 – ident: e_1_2_8_98_1 doi: 10.1186/s13321-020-00456-1 – ident: e_1_2_8_420_1 doi: 10.1016/j.inffus.2019.12.001 – ident: e_1_2_8_65_1 doi: 10.1038/s41524-019-0203-2 – ident: e_1_2_8_216_1 doi: 10.1016/j.aiopen.2021.01.001 – volume: 66 start-page: 11 year: 2004 ident: e_1_2_8_260_1 publication-title: Psychosom. Med. – ident: e_1_2_8_300_1 doi: 10.1039/C6EE02697D – ident: e_1_2_8_392_1 doi: 10.1021/acs.jcim.3c00460 – ident: e_1_2_8_409_1 doi: 10.1021/acs.molpharmaceut.4c00086 – ident: e_1_2_8_200_1 doi: 10.1016/j.apsusc.2015.07.066 – ident: e_1_2_8_252_1 doi: 10.1016/S0895-4356(96)00002-9 – ident: e_1_2_8_307_1 doi: 10.1002/app.1981.070260429 – ident: e_1_2_8_120_1 doi: 10.1016/B978-012691360-6/50013-6 – ident: e_1_2_8_381_1 doi: 10.1039/D0PY01551B – ident: e_1_2_8_84_1 doi: 10.1021/jacs.1c08181 – ident: e_1_2_8_340_1 doi: 10.1021/acs.jpca.3c05892 – ident: e_1_2_8_426_1 doi: 10.1021/acscentsci.3c00011 – ident: e_1_2_8_172_1 doi: 10.1109/45.329294 – ident: e_1_2_8_102_1 doi: 10.1021/acs.jcim.1c01031 – ident: e_1_2_8_181_1 doi: 10.1109/MSP.2017.2765202 – ident: e_1_2_8_440_1 – ident: e_1_2_8_433_1 doi: 10.1021/acsmacrolett.1c00117 – ident: e_1_2_8_374_1 doi: 10.1007/s00018-011-0852-x – volume: 7 start-page: 9 year: 2017 ident: e_1_2_8_129_1 publication-title: Theory Appl. Math. Comput. Sci. – ident: e_1_2_8_360_1 doi: 10.1002/adfm.202309844 – ident: e_1_2_8_1_1 doi: 10.1007/978-3-319-23871-5 – ident: e_1_2_8_231_1 doi: 10.1016/j.chemolab.2014.11.008 – ident: e_1_2_8_166_1 doi: 10.1007/s11433-011-4319-8 – ident: e_1_2_8_18_1 doi: 10.1021/acssensors.0c00329 – ident: e_1_2_8_415_1 doi: 10.1016/j.chempr.2022.12.003 – ident: e_1_2_8_391_1 doi: 10.1016/j.commatsci.2021.110511 – ident: e_1_2_8_68_1 – ident: e_1_2_8_390_1 doi: 10.1039/D1SM01012C – ident: e_1_2_8_201_1 doi: 10.1016/j.colsurfa.2005.02.029 – ident: e_1_2_8_209_1 – ident: e_1_2_8_3_1 doi: 10.1002/inf2.12167 – ident: e_1_2_8_336_1 doi: 10.1007/s10118-022-2716-2 – ident: e_1_2_8_406_1 doi: 10.1021/acsnano.0c08549 – ident: e_1_2_8_363_1 doi: 10.1016/j.tibtech.2010.04.002 – volume: 9 start-page: 1 year: 1997 ident: e_1_2_8_205_1 publication-title: University of Sheffield. Tech. Rep. – ident: e_1_2_8_61_1 doi: 10.1038/s41578-021-00282-3 – ident: e_1_2_8_57_1 doi: 10.1021/acs.chemmater.7b03500 – ident: e_1_2_8_306_1 doi: 10.1039/b909690f – ident: e_1_2_8_6_1 doi: 10.1021/acs.macromol.8b01836 – ident: e_1_2_8_175_1 – ident: e_1_2_8_393_1 doi: 10.1021/la2015034 – ident: e_1_2_8_384_1 doi: 10.1021/jacs.3c12502 – ident: e_1_2_8_309_1 doi: 10.1016/j.commatsci.2021.110460 – ident: e_1_2_8_283_1 doi: 10.1039/D2PY01531E – ident: e_1_2_8_310_1 doi: 10.1016/j.memsci.2008.04.030 – ident: e_1_2_8_117_1 doi: 10.1080/08927022.2020.1851028 – ident: e_1_2_8_259_1 doi: 10.1007/s42107-023-00721-2 – ident: e_1_2_8_122_1 doi: 10.1016/j.acha.2006.04.006 – ident: e_1_2_8_214_1 – ident: e_1_2_8_355_1 doi: 10.1016/j.compscitech.2022.109818 – ident: e_1_2_8_135_1 doi: 10.1016/j.spinee.2020.10.006 – ident: e_1_2_8_191_1 doi: 10.1021/ci060164k – ident: e_1_2_8_313_1 doi: 10.1002/pol.1958.1202711515 – ident: e_1_2_8_64_1 doi: 10.1109/JPROC.2020.3004555 – ident: e_1_2_8_258_1 doi: 10.1016/j.commatsci.2020.110108 – ident: e_1_2_8_157_1 doi: 10.1038/s41524-020-0333-6 – ident: e_1_2_8_158_1 doi: 10.1016/j.commatsci.2022.111859 – ident: e_1_2_8_247_1 doi: 10.1016/j.commatsci.2004.11.001 – ident: e_1_2_8_367_1 doi: 10.1021/cr500286d – ident: e_1_2_8_46_1 doi: 10.1093/nar/gkv352 – ident: e_1_2_8_329_1 doi: 10.1021/cr60137a003 – ident: e_1_2_8_312_1 doi: 10.3390/membranes12090857 – ident: e_1_2_8_378_1 doi: 10.1021/acs.macromol.7b01379 – ident: e_1_2_8_303_1 doi: 10.1016/j.compscitech.2022.109293 – ident: e_1_2_8_354_1 doi: 10.1021/acsami.2c14543 – ident: e_1_2_8_193_1 doi: 10.1021/acs.jpclett.8b00635 – ident: e_1_2_8_350_1 doi: 10.1038/s41578-020-0202-4 – ident: e_1_2_8_74_1 doi: 10.1021/acscentsci.7b00572 – ident: e_1_2_8_103_1 doi: 10.1021/acs.jcim.9b00587 – ident: e_1_2_8_62_1 doi: 10.1021/acscentsci.9b00804 – ident: e_1_2_8_414_1 doi: 10.1002/adfm.202011168 – volume-title: The Three Dimensional Solubility Parameter year: 1967 ident: e_1_2_8_331_1 – ident: e_1_2_8_396_1 doi: 10.1038/s41467-020-15259-z – ident: e_1_2_8_83_1 doi: 10.1002/9783527628407 – ident: e_1_2_8_206_1 doi: 10.1002/minf.201700133 – ident: e_1_2_8_285_1 doi: 10.1016/j.chemphys.2006.11.029 – ident: e_1_2_8_82_1 doi: 10.1021/ja501745g – ident: e_1_2_8_292_1 doi: 10.1021/ci5004834 – ident: e_1_2_8_435_1 doi: 10.3389/fmats.2016.00028 – ident: e_1_2_8_58_1 doi: 10.1039/D2DD00035K – ident: e_1_2_8_151_1 doi: 10.1109/MCSE.2023.3342149 – ident: e_1_2_8_147_1 doi: 10.1063/5.0008026 – ident: e_1_2_8_171_1 – ident: e_1_2_8_134_1 – ident: e_1_2_8_179_1 – ident: e_1_2_8_318_1 doi: 10.1021/acs.jcim.0c00259 – ident: e_1_2_8_169_1 doi: 10.1109/2.485891 – ident: e_1_2_8_38_1 doi: 10.1021/acs.jcim.0c00726 – ident: e_1_2_8_13_1 doi: 10.3389/fchem.2021.820417 – ident: e_1_2_8_296_1 – ident: e_1_2_8_2_1 doi: 10.1016/j.actbio.2022.02.027 – ident: e_1_2_8_218_1 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRevE.65.021507 – ident: e_1_2_8_289_1 doi: 10.1016/j.xcrp.2022.100911 – ident: e_1_2_8_349_1 doi: 10.1016/j.eurpolymj.2016.05.004 – ident: e_1_2_8_10_1 doi: 10.1016/j.mser.2020.100595 – ident: e_1_2_8_155_1 doi: 10.1109/IISA52424.2021.9555522 – ident: e_1_2_8_9_1 doi: 10.1063/5.0023759 – ident: e_1_2_8_96_1 doi: 10.1021/c160017a018 – ident: e_1_2_8_275_1 doi: 10.1109/ICIEA.2019.8833686 – ident: e_1_2_8_357_1 doi: 10.1038/s41598-019-53570-y – ident: e_1_2_8_116_1 doi: 10.1039/D0NH00382D – ident: e_1_2_8_152_1 doi: 10.1016/j.jmp.2018.03.001 – ident: e_1_2_8_210_1 doi: 10.1038/s41598-024-59252-8 – ident: e_1_2_8_124_1 doi: 10.1557/mrc.2019.78 – ident: e_1_2_8_211_1 doi: 10.1016/j.engappai.2023.107796 – ident: e_1_2_8_266_1 doi: 10.1016/j.compstruct.2019.111840 – ident: e_1_2_8_250_1 doi: 10.1016/j.ijfatigue.2006.03.004 – ident: e_1_2_8_178_1 – ident: e_1_2_8_105_1 – ident: e_1_2_8_226_1 doi: 10.1021/acsomega.2c04649 – ident: e_1_2_8_100_1 doi: 10.1021/acsami.3c03298 – ident: e_1_2_8_213_1 doi: 10.1021/acs.jcim.7b00690 – ident: e_1_2_8_104_1 doi: 10.1007/978-81-322-3972-7 – ident: e_1_2_8_126_1 doi: 10.1038/s41427-022-00416-1 – ident: e_1_2_8_97_1 doi: 10.1186/s13321-018-0258-y – ident: e_1_2_8_264_1 doi: 10.1002/app.39059 – ident: e_1_2_8_85_1 doi: 10.1002/anie.202308838 – ident: e_1_2_8_276_1 doi: 10.1109/JAS.2017.7510583 – ident: e_1_2_8_227_1 doi: 10.1021/acspolymersau.1c00050 – ident: e_1_2_8_427_1 doi: 10.1515/pac-2022-0101 – ident: e_1_2_8_416_1 doi: 10.1016/j.xcrp.2022.100931 – ident: e_1_2_8_25_1 doi: 10.1038/s41428-022-00734-9 – ident: e_1_2_8_372_1 doi: 10.1021/acsanm.4c00430 – ident: e_1_2_8_91_1 doi: 10.1039/D3PY00395G – ident: e_1_2_8_136_1 doi: 10.1007/s11831-021-09700-9 – ident: e_1_2_8_101_1 doi: 10.1063/5.0131067 – ident: e_1_2_8_405_1 doi: 10.2147/IJN.S344208 – volume-title: Genetic Algorithms year: 2008 ident: e_1_2_8_302_1 – ident: e_1_2_8_334_1 doi: 10.1021/acsmacrolett.9b00039 – ident: e_1_2_8_272_1 doi: 10.1109/ACCESS.2020.3018151 – ident: e_1_2_8_351_1 doi: 10.1016/j.aej.2023.11.085 – ident: e_1_2_8_197_1 doi: 10.1039/D4AN00658E – ident: e_1_2_8_27_1 doi: 10.1038/s41524-019-0221-0 – ident: e_1_2_8_407_1 doi: 10.1126/sciadv.aav9784 – ident: e_1_2_8_248_1 doi: 10.1186/2008-6695-4-7 – volume-title: Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner year: 2015 ident: e_1_2_8_445_1 – ident: e_1_2_8_243_1 doi: 10.1021/acsnano.8b02454 – ident: e_1_2_8_356_1 doi: 10.1016/j.commatsci.2023.112479 – ident: e_1_2_8_344_1 doi: 10.1016/j.ces.2020.116325 – ident: e_1_2_8_107_1 doi: 10.1002/advs.202101864 – ident: e_1_2_8_322_1 doi: 10.1021/acs.jpcc.3c00267 – ident: e_1_2_8_16_1 doi: 10.1038/nmat1543 – ident: e_1_2_8_284_1 doi: 10.1038/s42256-020-0166-5 – ident: e_1_2_8_417_1 doi: 10.1016/j.commatsci.2020.110224 – ident: e_1_2_8_5_1 doi: 10.1016/j.pmatsci.2016.05.001 – volume: 21 start-page: 1263 ident: e_1_2_8_53_1 publication-title: IEEE Trans. Knowl. Data Eng. 2009 – ident: e_1_2_8_240_1 doi: 10.1021/acsami.1c04017 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: e_1_2_8_403_1 – volume-title: The Solubility of Nonelectrolytes year: 1950 ident: e_1_2_8_330_1 – ident: e_1_2_8_413_1 doi: 10.3390/polym16010115 – ident: e_1_2_8_81_1 doi: 10.1021/ma5021209 – ident: e_1_2_8_412_1 doi: 10.3390/ma12091475 – ident: e_1_2_8_308_1 doi: 10.1201/9780203910115 – ident: e_1_2_8_438_1 doi: 10.1021/acsmacrolett.2c00369 – ident: e_1_2_8_29_1 doi: 10.1021/acspolymersau.1c00035 – ident: e_1_2_8_99_1 – ident: e_1_2_8_141_1 doi: 10.3390/polym14020357 – ident: e_1_2_8_291_1 doi: 10.1016/j.matpr.2021.02.730 – ident: e_1_2_8_373_1 doi: 10.1021/jacs.1c05055 – ident: e_1_2_8_212_1 doi: 10.1039/D1SM00725D – ident: e_1_2_8_324_1 doi: 10.1002/adfm.201501919 – ident: e_1_2_8_21_1 doi: 10.1002/adma.202201809 – ident: e_1_2_8_277_1 doi: 10.1021/acs.macromol.4c00508 – ident: e_1_2_8_42_1 – ident: e_1_2_8_36_1 doi: 10.1088/1361-651X/aaf8ca – ident: e_1_2_8_127_1 doi: 10.1103/PhysRevE.99.043307 – ident: e_1_2_8_56_1 doi: 10.1038/s41586-018-0337-2 – volume: 62 start-page: 6239 year: 2023 ident: e_1_2_8_128_1 publication-title: J. Polym. Sci. – ident: e_1_2_8_263_1 doi: 10.1016/j.ijleo.2018.03.121 – ident: e_1_2_8_402_1 doi: 10.3390/pharmaceutics15020495 – ident: e_1_2_8_287_1 doi: 10.3390/polym16081049 – ident: e_1_2_8_60_1 doi: 10.1109/XLOOP49562.2019.00006 – ident: e_1_2_8_278_1 doi: 10.1021/acs.jctc.3c01385 – ident: e_1_2_8_366_1 doi: 10.1002/chem.202001505 – ident: e_1_2_8_140_1 doi: 10.3390/polym14091802 – ident: e_1_2_8_262_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_8_290_1 doi: 10.1021/acs.jcim.9b00807 – ident: e_1_2_8_411_1 doi: 10.1021/ci010062o – ident: e_1_2_8_72_1 doi: 10.1038/nmat3568 – ident: e_1_2_8_295_1 doi: 10.1145/3065386 – ident: e_1_2_8_346_1 doi: 10.1002/macp.202300232 – ident: e_1_2_8_385_1 doi: 10.1016/0022-5193(79)90085-7 – ident: e_1_2_8_368_1 doi: 10.1007/978-3-030-05318-5 – ident: e_1_2_8_327_1 doi: 10.1002/aenm.201900891 – ident: e_1_2_8_47_1 doi: 10.1093/nar/gky1075 – ident: e_1_2_8_410_1 doi: 10.1016/j.addr.2022.114172 – ident: e_1_2_8_142_1 doi: 10.1097/01.psy.0000127692.23278.a9 – ident: e_1_2_8_249_1 doi: 10.1016/j.compscitech.2006.07.026 – ident: e_1_2_8_399_1 doi: 10.1016/j.ijhydene.2020.07.265 – ident: e_1_2_8_430_1 doi: 10.1039/D0ME00020E – ident: e_1_2_8_196_1 doi: 10.1002/adem.202101072 – volume: 9 start-page: 272 year: 2012 ident: e_1_2_8_254_1 publication-title: Int. J. Comput. Sci. – ident: e_1_2_8_26_1 doi: 10.1021/acspolymersau.2c00037 – ident: e_1_2_8_143_1 doi: 10.1002/wics.14 – ident: e_1_2_8_432_1 doi: 10.1609/aaai.v35i1.16072 – ident: e_1_2_8_199_1 doi: 10.1007/s10924-022-02557-4 – ident: e_1_2_8_40_1 doi: 10.3390/polym14010026 – ident: e_1_2_8_161_1 doi: 10.1007/s10822-022-00442-9 – ident: e_1_2_8_165_1 – ident: e_1_2_8_207_1 doi: 10.1038/s41524-024-01328-0 – year: 2022 ident: e_1_2_8_389_1 publication-title: ChemRxiv – ident: e_1_2_8_88_1 doi: 10.1021/acspolymersau.3c00007 – ident: e_1_2_8_176_1 doi: 10.1016/S0031-3203(01)00178-9 – ident: e_1_2_8_67_1 doi: 10.1038/s41524-018-0081-z – volume: 27 start-page: 130 year: 2015 ident: e_1_2_8_184_1 publication-title: Shanghai Arch. Psychiatry – ident: e_1_2_8_202_1 doi: 10.1177/0003702816675361 – volume-title: Compendium of Polymer Terminology and Nomenclature year: 2008 ident: e_1_2_8_421_1 – ident: e_1_2_8_49_1 doi: 10.1016/j.spl.2018.02.031 – ident: e_1_2_8_439_1 doi: 10.1016/j.giant.2023.100171 – ident: e_1_2_8_66_1 doi: 10.1186/1471-2105-14-106 – ident: e_1_2_8_168_1 doi: 10.1063/5.0046854 – ident: e_1_2_8_398_1 doi: 10.1007/978-1-59745-210-6 – volume-title: Polymeric Materials: Structure, Properties, Applications year: 2012 ident: e_1_2_8_4_1 – ident: e_1_2_8_44_1 doi: 10.1021/ed100697w – ident: e_1_2_8_132_1 – ident: e_1_2_8_180_1 – ident: e_1_2_8_394_1 doi: 10.1016/j.progpolymsci.2010.01.003 – volume: 2 start-page: 78 year: 2020 ident: e_1_2_8_55_1 publication-title: Front. Data Comput. – ident: e_1_2_8_35_1 doi: 10.1016/j.inffus.2019.12.001 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.71.3158 – ident: e_1_2_8_86_1 doi: 10.1016/j.addr.2020.11.009 – ident: e_1_2_8_131_1 doi: 10.1371/journal.pone.0161788 – volume-title: Applied Linear Statistical Models year: 1983 ident: e_1_2_8_238_1 – ident: e_1_2_8_361_1 doi: 10.1021/acsami.1c24715 – ident: e_1_2_8_293_1 doi: 10.1016/j.renene.2023.01.017 – ident: e_1_2_8_408_1 doi: 10.1038/s41467-022-35343-w – ident: e_1_2_8_170_1 – ident: e_1_2_8_154_1 doi: 10.1017/9781108348973 – ident: e_1_2_8_298_1 – ident: e_1_2_8_8_1 doi: 10.1002/anie.201711105 – ident: e_1_2_8_95_1 doi: 10.1016/j.trechm.2020.11.004 – ident: e_1_2_8_342_1 doi: 10.1016/j.compbiomed.2020.104134 – ident: e_1_2_8_337_1 doi: 10.1039/D4SM00590B – ident: e_1_2_8_90_1 doi: 10.1002/wcms.1603 – ident: e_1_2_8_183_1 doi: 10.1142/S0219633608004416 – ident: e_1_2_8_397_1 doi: 10.1039/D2PY01056A – ident: e_1_2_8_125_1 doi: 10.1186/s40537-022-00652-w – ident: e_1_2_8_79_1 doi: 10.1021/acsapm.0c00524 – ident: e_1_2_8_270_1 doi: 10.1016/0098-3004(93)90090-R – ident: e_1_2_8_23_1 doi: 10.1038/s41598-021-85601-y – ident: e_1_2_8_359_1 doi: 10.1039/D3TA06385B – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: e_1_2_8_150_1 – ident: e_1_2_8_229_1 doi: 10.1023/A:1007379606734 – ident: e_1_2_8_224_1 doi: 10.1038/s41524-023-01034-3 – ident: e_1_2_8_188_1 doi: 10.1007/s00366-020-01226-1 – ident: e_1_2_8_37_1 doi: 10.1109/EIDWT.2011.13 – ident: e_1_2_8_437_1 doi: 10.1073/pnas.1607412113 – ident: e_1_2_8_75_1 doi: 10.1021/acs.jpcb.0c00708 – ident: e_1_2_8_236_1 doi: 10.3390/polym11081250 – ident: e_1_2_8_34_1 doi: 10.1016/j.matt.2021.06.036 – ident: e_1_2_8_192_1 doi: 10.1021/acsmacrolett.1c00521 – ident: e_1_2_8_376_1 doi: 10.1016/j.matlet.2021.130622 |
| SSID | ssj0009606 |
| Score | 2.6099887 |
| SecondaryResourceType | review_article |
| Snippet | Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2413695 |
| SubjectTerms | chemical descriptors Chemical synthesis Chemists Datasets FAIR data Machine learning Mathematicians Molecular weight distribution Polymer chemistry Polymers Review |
| Title | Machine Learning in Polymer Research |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202413695 https://www.ncbi.nlm.nih.gov/pubmed/39924835 https://www.proquest.com/docview/3178987487 https://www.proquest.com/docview/3165081589 https://pubmed.ncbi.nlm.nih.gov/PMC11923530 |
| Volume | 37 |
| WOSCitedRecordID | wos001419079100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTg-1FfVBA8FZtH0-S4qIsHlUVU9lbSJNWFtSu7KvjvTdJu3UVE0EsfZEKaTqbztTP9BuCYWS9DGUKRwrGMaJHoiDNhj5A2RmjOtWfnf7hKb254tys6E3_xV_wQzQc3Zxn-ee0MXOaj0y_SUKk9b5CLCzGRzMI8QiR16xrTzhftLvPVNV20LxKM8jFtY4xPp_tPu6VvWPN7yuQklPW-qL3y_1mswnKNQ8NWtXDWYMaU67A0wU64AcfXPtHShDUH62PYK8POoP_xbIbhOGNvE-7aF3dnl1FdVCFS1g8lkWTEJLSQiSEqsaqRcapShAqDY1ZQhaSrgF5YlKap4TrX3O6ZMIzmKcJGky2YKwel2YHQoT1CtECFQjQnPC-YVFTlWKmcpoQGEI1vaaZqwnFX96KfVVTJOHOTz5rJB3DSyL9UVBs_Su6PNZTVJjfKLBDigqf2BSyAo6bZGouLgMjSDN6cjAOkKOEigO1Koc1QjqGXWjwaAJ9SdSPgiLinW8rekyfkRg4mJyQOAHtd_3L5Wev8utWc7f6l0x4sYleI2CfD7cPc6_DNHMCCen_tjYaH3gbsNu3yQ5g_v23fX30Cv28Huw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6ZLDtod333GWbB4E9mVi2JEuPYW3oWBLCyEbejC3JXSBzRtoO9t9PJ38kIYxC6ZNtdLYsn873s-78O4A-t16GckICFYVZQAumA8Gl3SPaGKmF0I6d_8c4mU7FYiFndTYh_gtT8UO0C25oGe59jQaOC9KDLWtoph1xEAaGuGQPoEvtXGId6J59G30fb5l3uSuwiQG_QHIqGubGMBrsX2HfMx3AzcOsyV0069zR6OQeBvIUjmss6g-ryfMMjkz5HJ7sMBS-gP7EJVsav-ZhvfSXpT9br_7-Mhu_ydp7CfPR-fzzRVAXVgiU9UUsyHhsGC0yZmLFrHqyMFEJIYWJQl5QRTKsgl5YpKapETrXwm65NJzmCYmMjl9Bp1yX5g34iPjiWEtSKELzWOQFzxRVeaRUTpOYehA0zzRVNek41r5YpRVdcpTi4NN28B58auV_V3Qb_5XsNSpKa7O7Si0YElIk9iPMg49tszUYjIJkpVnfoAyCUsKE9OB1pdG2K2TppRaTeiD2dN0KIBn3fku5_OlIuQlCZRaHHkRO2bfcfjo8mwzbo9O7nPQBHl3MJ-N0_GX69S08jrAwsUuO60HnenNj3sFD9ed6ebV5X5vEP8vxCrA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMcHX4gefD_qs4LgqWzTJmlyXNRFUZc9iHgrbZLqgnZlfYDf3kzarS4ignhqSxLadDrJv830NwCH3M4ylBMSqCjMAlowHQgu7R7RxkgthHZ0_pvLpNsVt7eyV0cT4r8wFR-i-eCGnuHGa3Rw86SL1ic1NNMOHIQLQ1yySZimzA60CHemvU_uLnfpNXG5L5CcihG3MYxa4-3H56VvYvN7zORXLesmo87iP3RjCRZqJeq3q0dnGSZMuQLzX_iEq3B45UItjV9TWO_8fun3Bg_vj2boj2L21uC6c3p9fBbUaRUCZWciFmQ8NowWGTOxYtY4WZiohJDCRCEvqCIZ5kAvrE7T1Aida2G3XBpO84RERsfrMFUOSrMJPuq9ONaSFIrQPBZ5wTNFVR4pldMkph4Eo3uaqho5jpkvHtIKlhyl2Pm06bwHR039pwq28WPNnZGJ0trpnlMrhYQUiX0F8-CgKbbugmsgWWkGr1gHJSlhQnqwUVm0ORUyeqlVpB6IMVs3FRDFPV5S9u8dkpugUGZx6EHkjP3L5aftk6t2c7T1l0b7MNs76aSX592LbZiLMCuxi4zbgamX4avZhRn19tJ_Hu45f_gAgpMImQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+in+Polymer+Research&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ge%2C+Wei&rft.au=De+Silva%2C+Ramindu&rft.au=Fan%2C+Yanan&rft.au=Sisson%2C+Scott+A.&rft.date=2025-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202413695&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202413695 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |