A systematic methodology for kinetic modeling of chemical reactions applied to n-hexane hydroisomerization
Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in t...
Gespeichert in:
| Veröffentlicht in: | AIChE journal Jg. 61; H. 3; S. 880 - 892 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Blackwell Publishing Ltd
01.03.2015
American Institute of Chemical Engineers |
| Schlagworte: | |
| ISSN: | 0001-1541, 1547-5905 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in the field. The proposed modeling methodology pursues an adequate compromise between statistical significance and physical meaning of the kinetic model and the corresponding parameters and typically results in models of an appropriate complexity. It comprises the following activities: (1) data analysis, aiming at qualitative information on the reaction mechanism and corresponding rate equations, (2) model regression to quantify this information via optimal parameter values, and (3) validation of the statistical significance and physical meaning of the parameter estimates. This methodology is successfully applied to n‐hexane hydroisomerization on a bifunctional catalyst. © 2014 American Institute of Chemical Engineers AIChE J, 61: 880–892, 2015 |
|---|---|
| AbstractList | Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in the field. The proposed modeling methodology pursues an adequate compromise between statistical significance and physical meaning of the kinetic model and the corresponding parameters and typically results in models of an appropriate complexity. It comprises the following activities: (1) data analysis, aiming at qualitative information on the reaction mechanism and corresponding rate equations, (2) model regression to quantify this information via optimal parameter values, and (3) validation of the statistical significance and physical meaning of the parameter estimates. This methodology is successfully applied to n‐hexane hydroisomerization on a bifunctional catalyst. © 2014 American Institute of Chemical Engineers AIChE J , 61: 880–892, 2015 Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in the field. The proposed modeling methodology pursues an adequate compromise between statistical significance and physical meaning of the kinetic model and the corresponding parameters and typically results in models of an appropriate complexity. It comprises the following activities: (1) data analysis, aiming at qualitative information on the reaction mechanism and corresponding rate equations, (2) model regression to quantify this information via optimal parameter values, and (3) validation of the statistical significance and physical meaning of the parameter estimates. This methodology is successfully applied to n-hexane hydroisomerization on a bifunctional catalyst. copyright 2014 American Institute of Chemical Engineers AIChE J, 61: 880-892, 2015 Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in the field. The proposed modeling methodology pursues an adequate compromise between statistical significance and physical meaning of the kinetic model and the corresponding parameters and typically results in models of an appropriate complexity. It comprises the following activities: (1) data analysis, aiming at qualitative information on the reaction mechanism and corresponding rate equations, (2) model regression to quantify this information via optimal parameter values, and (3) validation of the statistical significance and physical meaning of the parameter estimates. This methodology is successfully applied to n-hexane hydroisomerization on a bifunctional catalyst. |
| Author | Toch, Kenneth Thybaut, Joris W. Marin, Guy B. |
| Author_xml | – sequence: 1 givenname: Kenneth surname: Toch fullname: Toch, Kenneth organization: Laboratory for Chemical Technology, Ghent University, B-9052, Ghent, Belgium – sequence: 2 givenname: Joris W. surname: Thybaut fullname: Thybaut, Joris W. email: Joris.Thybaut@UGent.be organization: Laboratory for Chemical Technology, Ghent University, B-9052, Ghent, Belgium – sequence: 3 givenname: Guy B. surname: Marin fullname: Marin, Guy B. organization: Laboratory for Chemical Technology, Ghent University, B-9052, Ghent, Belgium |
| BookMark | eNp1kU1vEzEQhi1UJNLCgX9giQsctvXnevcYolIqRaBKQKVeLMeebZx618HeiC6_HjcpHCp6Gs3oeUbj18foaIgDIPSWklNKCDsz3p5SUTfkBZpRKVQlWyKP0IwQQqsyoK_Qcc6b0jHVsBnazHGe8gi9Gb3FPYzr6GKItxPuYsJ3foD9PDoIfrjFscN2Db23JuAExo4-Dhmb7TZ4cHiMeKjWcG8GwOvJpehz7CH53-aBe41ediZkePNYT9D3T-ffFp-r5deLy8V8WVmhKKl4Z1zjeC3tiqy4E53kBiywunWtEgBSdSuuGts4Rl1TE-G6Feta1oqGSWVafoLeH_ZuU_y5gzzq3mcLIZSz4i5rWtdtIynhdUHfPUE3cZeGcl2hpBKMcEELdXagbIo5J-i09eP-SWMyPmhK9EP2umSv99kX48MTY5t8b9L0X_Zx-y8fYHoe1PPLxV-jOhi-fNz9P8OkO10rrqS-_nKhl3J5dfPxx0Jz_gevq6XI |
| CODEN | AICEAC |
| CitedBy_id | crossref_primary_10_1016_j_apcatb_2020_119408 crossref_primary_10_1016_j_enconman_2024_118697 crossref_primary_10_1016_j_fuel_2024_132777 crossref_primary_10_1002_cite_201600043 crossref_primary_10_1007_s42247_024_00648_7 crossref_primary_10_1016_j_fuel_2023_128792 crossref_primary_10_1016_j_fuproc_2018_09_024 crossref_primary_10_1016_j_cej_2023_142914 crossref_primary_10_1016_j_cherd_2024_03_040 crossref_primary_10_1039_D2RE00288D crossref_primary_10_1016_j_fuel_2022_123341 crossref_primary_10_1016_j_mcat_2025_114914 crossref_primary_10_1002_kin_21746 crossref_primary_10_1039_D4RE00403E crossref_primary_10_1016_j_ccr_2019_213064 crossref_primary_10_1016_j_cej_2016_11_104 crossref_primary_10_1016_j_asoc_2021_108286 crossref_primary_10_1016_j_ces_2022_117928 crossref_primary_10_1002_aic_18151 crossref_primary_10_1016_j_cej_2017_08_106 crossref_primary_10_1016_j_ces_2017_10_028 crossref_primary_10_1016_j_apsusc_2023_157298 crossref_primary_10_1039_D1RE00275A crossref_primary_10_1016_j_cej_2022_138541 crossref_primary_10_1016_j_fuel_2021_122055 crossref_primary_10_1016_j_apcata_2016_06_028 crossref_primary_10_1002_cite_201700155 crossref_primary_10_1016_j_cej_2017_09_063 crossref_primary_10_1039_D1RA03452A crossref_primary_10_1016_j_ces_2017_07_025 crossref_primary_10_1016_j_jiec_2017_05_040 crossref_primary_10_3390_catal13020274 crossref_primary_10_1016_j_fuel_2017_03_078 crossref_primary_10_1016_j_ijhydene_2018_05_032 crossref_primary_10_1016_j_cej_2019_123195 crossref_primary_10_1039_D1RE00073J crossref_primary_10_1016_j_cherd_2017_11_038 crossref_primary_10_1002_aic_18058 crossref_primary_10_1002_aic_16512 crossref_primary_10_1002_ceat_201600216 crossref_primary_10_1016_j_fuproc_2020_106434 crossref_primary_10_1016_j_cej_2016_05_096 crossref_primary_10_1002_jctb_6685 crossref_primary_10_1016_j_apcatb_2018_03_062 crossref_primary_10_1039_C9RE00222G crossref_primary_10_1016_j_cej_2023_141759 crossref_primary_10_1039_D1CY01180D crossref_primary_10_1039_D3RE00500C crossref_primary_10_1016_j_ces_2019_115414 crossref_primary_10_1002_cite_202200052 crossref_primary_10_1016_j_jiec_2021_09_017 crossref_primary_10_3390_catal8120626 crossref_primary_10_1016_j_cej_2016_07_075 crossref_primary_10_1039_D5CY00529A crossref_primary_10_1016_j_apcatb_2018_01_025 |
| Cites_doi | 10.1016/j.micromeso.2012.11.020 10.1002/aic.12471 10.1093/biomet/52.3-4.355 10.1023/A:1011928218694 10.1016/S0926-860X(96)00346-8 10.1021/i300012a004 10.1016/0021-9517(89)90363-1 10.1016/S0920-5861(99)00073-5 10.1016/0098-1354(85)87005-8 10.1021/ie000799n 10.1021/ie049375 10.1021/i300004a013 10.1006/jcat.2001.3292 10.1021/i300004a014 10.1021/ja980157f 10.1021/i300012a003 10.1093/comjnl/3.3.175 10.1016/j.cattod.2005.10.001 10.1016/S0065-2377(08)60184-2 10.1002/0471227617.eoc128.pub2 10.1016/B978-0-444-59520-1.50121-4 10.1021/ie960661y 10.1016/j.fuel.2014.02.017 10.1016/j.ces.2008.10.062 10.1016/S0920-5861(99)00070-X 10.1137/0111030 10.1080/01614940701803960 10.1016/j.compchemeng.2010.06.007 10.1002/aic.690130235 10.1021/ie980169 10.1016/j.apsusc.2005.02.052 10.1021/ie501533j 10.1002/9780470282038 10.1080/00401706.1970.10488700 10.1016/j.ces.2014.05.044 10.1016/j.apcata.2012.06.054 10.1515/revce-2013-0019 |
| ContentType | Journal Article |
| Copyright | 2014 American Institute of Chemical Engineers Copyright American Institute of Chemical Engineers Mar 2015 |
| Copyright_xml | – notice: 2014 American Institute of Chemical Engineers – notice: Copyright American Institute of Chemical Engineers Mar 2015 |
| DBID | BSCLL AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.14680 |
| DatabaseName | Istex CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Technology Research Database Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | 892 |
| ExternalDocumentID | 3601917531 10_1002_aic_14680 AIC14680 ark_67375_WNG_L5LQZBVC_3 |
| Genre | article Feature |
| GrantInformation_xml | – fundername: Flemish Government – fundername: European Commission in the 7th Framework Programme funderid: GA n°228953 – fundername: Long Term Structural Methusalem Funding |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PUEGO PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAYXX AFFHD CITATION O8X 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c4710-3fad8d365cb0b3d4f53aece269d974ee57fb378c8d21d8604dfb2f92948257a93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349915000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Wed Oct 01 14:25:40 EDT 2025 Mon Nov 10 02:51:58 EST 2025 Sat Nov 29 07:22:00 EST 2025 Tue Nov 18 21:58:50 EST 2025 Sun Sep 21 06:20:17 EDT 2025 Sun Sep 21 06:17:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4710-3fad8d365cb0b3d4f53aece269d974ee57fb378c8d21d8604dfb2f92948257a93 |
| Notes | istex:96AA5D1E75E6CB63E40294AF9E484D86B2249D4F European Commission in the 7th Framework Programme - No. GA n°228953 Long Term Structural Methusalem Funding ark:/67375/WNG-L5LQZBVC-3 ArticleID:AIC14680 Flemish Government SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1657420341 |
| PQPubID | 7879 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1669851036 proquest_journals_1657420341 crossref_citationtrail_10_1002_aic_14680 crossref_primary_10_1002_aic_14680 wiley_primary_10_1002_aic_14680_AIC14680 istex_primary_ark_67375_WNG_L5LQZBVC_3 |
| PublicationCentury | 2000 |
| PublicationDate | March 2015 |
| PublicationDateYYYYMMDD | 2015-03-01 |
| PublicationDate_xml | – month: 03 year: 2015 text: March 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | AIChE journal |
| PublicationTitleAlternate | AIChE J |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd American Institute of Chemical Engineers |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Institute of Chemical Engineers |
| References | Kittrell JR. Mathematical modeling of chemical reactions. Adv Chem Eng. 1970;8:97-183. Berty JM. Reactor for vapor-phase catalytic studies. Chem Eng Prog. 1974;70:78-85. Choudhary VR, Akolekar DB. Shuttlecock-shuttlebox model for shape selectivity of medium-pore zeolites in sorption and diffusion. J Catal. 1989;117:542-548. Marin GB, Yablonsky GS. Kinetics of Chemical Reactions: Decoding Complexity. New York: Wiley, 2011. Thybaut JW, Narasimhan CSL, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB. Acid-metal balance of a hydrocracking catalyst: ideal versus nonideal behavior. Ind Eng Chem Res. 2005;44:5159-5169. Baltanas MA, Vansina H, Froment GF. Hydroisomerization and hydrocracking. 5. Kinetic-analysis of rate data for n-octane. Ind Eng Chem Prod Res Dev. 1983;22:531-539. Box MJ, Draper NR, Hunter WG. Missing values in multiresponse nonlinear model fitting. Technometrics. 1970;12:613-620. Boudart M. Physical limitations to values of parameters used in rate equations for reactions catalyzed by solids. Industrie Chimique Belge-Belgische Chemische Industrie. 1966;31:74. Stewart WE, Caracotsios M. Computer-Aided Modeling of Reactive Systems. New York: Wiley, 2008. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431-441. Raghuveer CS, Thybaut JW, De Bruycker R, Metaxas K, Bera T, Marin GB. Pyridine hydrodenitrogenation over industrial NiMo/Î3-Al2O3 catalyst: application of gas phase kinetic models to liquid phase reactions. Fuel. 2014;125:206-218. Froment GF. Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev Sci Eng. 2008;50:1-18. Rosenbrock HH. An automatic method for finding the greatest or least value of a function. Comput J. 1960;3:175-184. Vansina H, Baltanas MA, Froment GF. Hydroisomerization and hydrocracking. 4. Product distribution from n-octane and 2,2,4-trimethylpentane. Ind Eng Chem Prod Res Dev. 1983;22:526-531. Baltanas MA, Froment GF. Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts. Comput Chem Eng. 1985;9:71-81. Vandegehuchte BD, Thybaut JW, Martinez A, Arribas MA, Marin GB. n-Hexadecane hydrocracking single-event microkinetics on Pt/H-beta. Appl Catal A. 2012;441-442:10-20. Savitz S, Myers AL, Gorte RJ, White D. Does the cal-ad method distinguish differences in the acid sites of H-MFI? J Am Chem Soc. 1998;120:5701-5703. van de Runstraat A, van Grondelle J, van Santen RA. Microkinetics modeling of the hydroisomerization of n-hexane. Ind Eng Chem Res. 1997;36:3116-3125. Froment GF, Bischoff KB, De Wilde J. Chemical Reactor Analysis and Design, 3rd ed. New York: Wiley, 2010. Froment GF. Fundamental kinetic modeling of catalytic hydrocarbon conversion processes. Rev Chem Eng. 2013;29:385-412. Thybaut JW, Narasimhan CSL, Marin GB. Bridging the gap between liquid and vapor phase hydrocracking. Catal Today. 2006;111:94-102. Ferreira AFP, Mittelmeijer-Hazeleger MC, Bergh JVD, Aguado S, Jansen JC, Rothenberg G, Rodrigues AE, Kapteijn F. Adsorption of hexane isomers on MFI type zeolites at ambient temperature: understanding the aluminium content effect. Microporous Mesoporous Mater. 2013;170:26-35. Box GEP, Draper NR. Bayesian estimation of common parameters from several responses. Biometrika. 1965;52:355-365. Steijns M, Froment G, Jacobs P, Uytterhoeven J, Weitkamp J. Hydroisomerization and hydrocracking. 2. Product distributions from normal-decane and normal-dodecane. Ind Eng Chem Prod Res Dev. 1981;20:654-660. Epelde E, Aguayo AT, Olazar M, Bilbao J, Gayubo AG. Kinetic model for the transformation of 1-butene on a K-modified HZSM-5 catalyst. Ind Eng Chem Res. 2014;53:10599-10607. Devoldere KR, Froment GF. Coke formation and gasification in the catalytic dehydrogenation of ethylbenzene. Ind Eng Chem Res. 1999;38:2626-2633. Robson H. Verified Synthesis of Zeolitic Materials. Amsterdam: Elsevier, 2001. Kittrell JR, Mezaki R. Discrimination among rival Hougen-Watson models through intrinsic parameters. AIchE J. 1967;13:389-392. Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA. Eurokin-chemical reaction kinetics in practice. Cattech. 2001;5:30-60. Weitkamp J. Hydrocracking, cracking and isomerization of hydrocarbons. Erdol Kohle Erdgas Petrochemie. 1978;31:13-22. Makowski W, Majda D. Equilibrated thermodesorption studies of adsorption of n-hexane and n-heptane on zeolites Y, ZSM-5 and ZSM-11. Appl Surf Sci. 2005;252:707-715. Mier D, Gayubo AG, Aguayo AT, Olazar M, Bilbao J. Olefin production by cofeeding methanol and n-butane: kinetic modeling considering the deactivation of HZSM-5 zeolite. AIchE J. 2011;57:2841-2853. Allain JF, Magnoux P, Schulz P, Guisnet M. Hydroisomerization of n-hexane over platinum mazzite and platinum mordenite catalysts-kinetics and mechanism. Appl Catal A. 1997;152:221-235. Edgar TF, Himmelblau DM, Lasdon L. Optimization of Chemical Processes. Ontario: McGraw-Hill Higher Education, 2001. Box MJ, Draper NR. Estimation and design for multiresponse nonlinear models, nonhomogenous variance structure. Ann Math Stat. 1970;41:1391. Buzzi-Ferraris G, Manenti F. Kinetic models analysis. Chem Eng Sci. 2009;64:1061-1074. Steijns M, Froment GF. Hydroisomerization and hydrocracking. 3. Kinetic-analysis of rate data for normal-decane and normal-dodecane. Ind Eng Chem Prod Res Dev. 1981;20:660-668. Buzzi-Ferraris G. Planning of experiments and kinetic analysis. Catal Today. 1999;52:125-132. Buzzi-Ferraris G, Manenti F. Better reformulation of kinetic models. Comput Chem Eng. 2010;34:1904-1906. Froment GF. Kinetic modeling of acid-catalyzed oil refining processes. Catal Today. 1999;52:153-163. Artetxe M, Lopez G, Amutio M, Bilbao J, Olazar M. Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM-5 zeolite based catalyst. Chem Eng Sci. 2014;116:635-644. Bard Y. Nonlinear Parameter Estimation. Waltham: Academic Press, 1974. Martens GG, Thybaut JW, Marin GB. Single-event rate parameters for the hydrocracking of cycloalkanes on Pt/US-Y zeolites. Ind Eng Chem Res. 2001;40:1832-1844. Thybaut JW, Marin GB, Baron GV, Jacobs PA, Martens JA. Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H-(US)Y-zeolite. J Catal. 2001;202:324-339. Dumesic JA, Rudd DF, Aparicio LM, Rekiske JE, Trevine AA. The Microkinetics of Heterogeneous Catalysis. Washington, DC: American Chemical Society, 1993. 2010; 34 1970; 8 2013; 29 1965; 52 2014; 116 1989; 117 2009; 64 2005; 252 2011 1960; 3 2010 1997; 152 1978; 31 1985; 9 1974; 70 2009 1970; 12 2008 1974 2011; 57 1993 2008; 50 2001; 40 2005; 44 1981; 20 2006; 111 1966; 31 2001; 202 1963; 11 2001 2001; 5 1999; 38 1997; 36 1970; 41 1967; 13 1999; 52 1981 2013; 170 2012; 441–442 2014; 125 1983; 22 1998; 120 2014; 53 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 Robson H (e_1_2_10_27_1) 2001 e_1_2_10_42_1 e_1_2_10_40_1 Weitkamp J (e_1_2_10_25_1) 1978; 31 Froment GF (e_1_2_10_33_1) 1981 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_13_1 Dumesic JA (e_1_2_10_5_1) 1993 e_1_2_10_11_1 Thybaut JW (e_1_2_10_6_1) 2009 e_1_2_10_30_1 e_1_2_10_51_1 Box MJ (e_1_2_10_37_1) 1970; 12 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 Marin GB (e_1_2_10_3_1) 2011 Edgar TF (e_1_2_10_34_1) 2001 Boudart M (e_1_2_10_43_1) 1966; 31 Bard Y (e_1_2_10_32_1) 1974 Box MJ (e_1_2_10_36_1) 1970; 41 e_1_2_10_52_1 e_1_2_10_19_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_31_1 e_1_2_10_50_1 Berty JM (e_1_2_10_29_1) 1974; 70 Froment GF (e_1_2_10_2_1) 2010 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – reference: Steijns M, Froment G, Jacobs P, Uytterhoeven J, Weitkamp J. Hydroisomerization and hydrocracking. 2. Product distributions from normal-decane and normal-dodecane. Ind Eng Chem Prod Res Dev. 1981;20:654-660. – reference: Berty JM. Reactor for vapor-phase catalytic studies. Chem Eng Prog. 1974;70:78-85. – reference: Froment GF. Fundamental kinetic modeling of catalytic hydrocarbon conversion processes. Rev Chem Eng. 2013;29:385-412. – reference: Bard Y. Nonlinear Parameter Estimation. Waltham: Academic Press, 1974. – reference: Steijns M, Froment GF. Hydroisomerization and hydrocracking. 3. Kinetic-analysis of rate data for normal-decane and normal-dodecane. Ind Eng Chem Prod Res Dev. 1981;20:660-668. – reference: Devoldere KR, Froment GF. Coke formation and gasification in the catalytic dehydrogenation of ethylbenzene. Ind Eng Chem Res. 1999;38:2626-2633. – reference: Boudart M. Physical limitations to values of parameters used in rate equations for reactions catalyzed by solids. Industrie Chimique Belge-Belgische Chemische Industrie. 1966;31:74. – reference: Weitkamp J. Hydrocracking, cracking and isomerization of hydrocarbons. Erdol Kohle Erdgas Petrochemie. 1978;31:13-22. – reference: Thybaut JW, Narasimhan CSL, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB. Acid-metal balance of a hydrocracking catalyst: ideal versus nonideal behavior. Ind Eng Chem Res. 2005;44:5159-5169. – reference: Froment GF. Kinetic modeling of acid-catalyzed oil refining processes. Catal Today. 1999;52:153-163. – reference: Buzzi-Ferraris G, Manenti F. Better reformulation of kinetic models. Comput Chem Eng. 2010;34:1904-1906. – reference: Thybaut JW, Marin GB, Baron GV, Jacobs PA, Martens JA. Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H-(US)Y-zeolite. J Catal. 2001;202:324-339. – reference: Marin GB, Yablonsky GS. Kinetics of Chemical Reactions: Decoding Complexity. New York: Wiley, 2011. – reference: Baltanas MA, Froment GF. Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts. Comput Chem Eng. 1985;9:71-81. – reference: Mier D, Gayubo AG, Aguayo AT, Olazar M, Bilbao J. Olefin production by cofeeding methanol and n-butane: kinetic modeling considering the deactivation of HZSM-5 zeolite. AIchE J. 2011;57:2841-2853. – reference: Edgar TF, Himmelblau DM, Lasdon L. Optimization of Chemical Processes. Ontario: McGraw-Hill Higher Education, 2001. – reference: Ferreira AFP, Mittelmeijer-Hazeleger MC, Bergh JVD, Aguado S, Jansen JC, Rothenberg G, Rodrigues AE, Kapteijn F. Adsorption of hexane isomers on MFI type zeolites at ambient temperature: understanding the aluminium content effect. Microporous Mesoporous Mater. 2013;170:26-35. – reference: Rosenbrock HH. An automatic method for finding the greatest or least value of a function. Comput J. 1960;3:175-184. – reference: Artetxe M, Lopez G, Amutio M, Bilbao J, Olazar M. Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM-5 zeolite based catalyst. Chem Eng Sci. 2014;116:635-644. – reference: Epelde E, Aguayo AT, Olazar M, Bilbao J, Gayubo AG. Kinetic model for the transformation of 1-butene on a K-modified HZSM-5 catalyst. Ind Eng Chem Res. 2014;53:10599-10607. – reference: Choudhary VR, Akolekar DB. Shuttlecock-shuttlebox model for shape selectivity of medium-pore zeolites in sorption and diffusion. J Catal. 1989;117:542-548. – reference: Buzzi-Ferraris G. Planning of experiments and kinetic analysis. Catal Today. 1999;52:125-132. – reference: Buzzi-Ferraris G, Manenti F. Kinetic models analysis. Chem Eng Sci. 2009;64:1061-1074. – reference: Raghuveer CS, Thybaut JW, De Bruycker R, Metaxas K, Bera T, Marin GB. Pyridine hydrodenitrogenation over industrial NiMo/Î3-Al2O3 catalyst: application of gas phase kinetic models to liquid phase reactions. Fuel. 2014;125:206-218. – reference: Box MJ, Draper NR, Hunter WG. Missing values in multiresponse nonlinear model fitting. Technometrics. 1970;12:613-620. – reference: Thybaut JW, Narasimhan CSL, Marin GB. Bridging the gap between liquid and vapor phase hydrocracking. Catal Today. 2006;111:94-102. – reference: Vandegehuchte BD, Thybaut JW, Martinez A, Arribas MA, Marin GB. n-Hexadecane hydrocracking single-event microkinetics on Pt/H-beta. Appl Catal A. 2012;441-442:10-20. – reference: Robson H. Verified Synthesis of Zeolitic Materials. Amsterdam: Elsevier, 2001. – reference: Baltanas MA, Vansina H, Froment GF. Hydroisomerization and hydrocracking. 5. Kinetic-analysis of rate data for n-octane. Ind Eng Chem Prod Res Dev. 1983;22:531-539. – reference: Martens GG, Thybaut JW, Marin GB. Single-event rate parameters for the hydrocracking of cycloalkanes on Pt/US-Y zeolites. Ind Eng Chem Res. 2001;40:1832-1844. – reference: Box MJ, Draper NR. Estimation and design for multiresponse nonlinear models, nonhomogenous variance structure. Ann Math Stat. 1970;41:1391. – reference: Dumesic JA, Rudd DF, Aparicio LM, Rekiske JE, Trevine AA. The Microkinetics of Heterogeneous Catalysis. Washington, DC: American Chemical Society, 1993. – reference: Savitz S, Myers AL, Gorte RJ, White D. Does the cal-ad method distinguish differences in the acid sites of H-MFI? J Am Chem Soc. 1998;120:5701-5703. – reference: Froment GF. Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev Sci Eng. 2008;50:1-18. – reference: Kittrell JR. Mathematical modeling of chemical reactions. Adv Chem Eng. 1970;8:97-183. – reference: van de Runstraat A, van Grondelle J, van Santen RA. Microkinetics modeling of the hydroisomerization of n-hexane. Ind Eng Chem Res. 1997;36:3116-3125. – reference: Vansina H, Baltanas MA, Froment GF. Hydroisomerization and hydrocracking. 4. Product distribution from n-octane and 2,2,4-trimethylpentane. Ind Eng Chem Prod Res Dev. 1983;22:526-531. – reference: Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431-441. – reference: Box GEP, Draper NR. Bayesian estimation of common parameters from several responses. Biometrika. 1965;52:355-365. – reference: Froment GF, Bischoff KB, De Wilde J. Chemical Reactor Analysis and Design, 3rd ed. New York: Wiley, 2010. – reference: Makowski W, Majda D. Equilibrated thermodesorption studies of adsorption of n-hexane and n-heptane on zeolites Y, ZSM-5 and ZSM-11. Appl Surf Sci. 2005;252:707-715. – reference: Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA. Eurokin-chemical reaction kinetics in practice. Cattech. 2001;5:30-60. – reference: Stewart WE, Caracotsios M. Computer-Aided Modeling of Reactive Systems. New York: Wiley, 2008. – reference: Allain JF, Magnoux P, Schulz P, Guisnet M. Hydroisomerization of n-hexane over platinum mazzite and platinum mordenite catalysts-kinetics and mechanism. Appl Catal A. 1997;152:221-235. – reference: Kittrell JR, Mezaki R. Discrimination among rival Hougen-Watson models through intrinsic parameters. AIchE J. 1967;13:389-392. – year: 2011 – volume: 11 start-page: 431 year: 1963 end-page: 441 article-title: An algorithm for least‐squares estimation of nonlinear parameters publication-title: J Soc Ind Appl Math. – volume: 34 start-page: 1904 year: 2010 end-page: 1906 article-title: Better reformulation of kinetic models publication-title: Comput Chem Eng. – year: 2009 – volume: 64 start-page: 1061 year: 2009 end-page: 1074 article-title: Kinetic models analysis publication-title: Chem Eng Sci. – volume: 22 start-page: 526 year: 1983 end-page: 531 article-title: Hydroisomerization and hydrocracking. 4. Product distribution from ‐octane and 2,2,4‐trimethylpentane publication-title: Ind Eng Chem Prod Res Dev. – year: 1981 – volume: 52 start-page: 125 year: 1999 end-page: 132 article-title: Planning of experiments and kinetic analysis publication-title: Catal Today. – volume: 40 start-page: 1832 year: 2001 end-page: 1844 article-title: Single‐event rate parameters for the hydrocracking of cycloalkanes on Pt/US‐Y zeolites publication-title: Ind Eng Chem Res. – volume: 117 start-page: 542 year: 1989 end-page: 548 article-title: Shuttlecock‐shuttlebox model for shape selectivity of medium‐pore zeolites in sorption and diffusion publication-title: J Catal. – volume: 13 start-page: 389 year: 1967 end-page: 392 article-title: Discrimination among rival Hougen‐Watson models through intrinsic parameters publication-title: AIchE J. – volume: 252 start-page: 707 year: 2005 end-page: 715 article-title: Equilibrated thermodesorption studies of adsorption of ‐hexane and ‐heptane on zeolites Y, ZSM‐5 and ZSM‐11 publication-title: Appl Surf Sci. – volume: 120 start-page: 5701 year: 1998 end-page: 5703 article-title: Does the cal‐ad method distinguish differences in the acid sites of H‐MFI? publication-title: J Am Chem Soc – year: 2001 – volume: 12 start-page: 613 year: 1970 end-page: 620 article-title: Missing values in multiresponse nonlinear model fitting publication-title: Technometrics. – volume: 152 start-page: 221 year: 1997 end-page: 235 article-title: Hydroisomerization of ‐hexane over platinum mazzite and platinum mordenite catalysts—kinetics and mechanism publication-title: Appl Catal A. – volume: 36 start-page: 3116 year: 1997 end-page: 3125 article-title: Microkinetics modeling of the hydroisomerization of ‐hexane publication-title: Ind Eng Chem Res. – volume: 9 start-page: 71 year: 1985 end-page: 81 article-title: Computer‐generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt‐containing bifunctional catalysts publication-title: Comput Chem Eng. – volume: 125 start-page: 206 year: 2014 end-page: 218 article-title: Pyridine hydrodenitrogenation over industrial NiMo/Î ‐Al2O3 catalyst: application of gas phase kinetic models to liquid phase reactions publication-title: Fuel. – volume: 5 start-page: 30 year: 2001 end-page: 60 article-title: Eurokin—chemical reaction kinetics in practice publication-title: Cattech. – volume: 22 start-page: 531 year: 1983 end-page: 539 article-title: Hydroisomerization and hydrocracking. 5. Kinetic‐analysis of rate data for ‐octane publication-title: Ind Eng Chem Prod Res Dev. – volume: 52 start-page: 153 year: 1999 end-page: 163 article-title: Kinetic modeling of acid‐catalyzed oil refining processes publication-title: Catal Today. – volume: 70 start-page: 78 year: 1974 end-page: 85 article-title: Reactor for vapor‐phase catalytic studies publication-title: Chem Eng Prog. – volume: 8 start-page: 97 year: 1970 end-page: 183 article-title: Mathematical modeling of chemical reactions publication-title: Adv Chem Eng. – volume: 41 start-page: 1391 year: 1970 article-title: Estimation and design for multiresponse nonlinear models, nonhomogenous variance structure publication-title: Ann Math Stat. – year: 2010 – volume: 50 start-page: 1 year: 2008 end-page: 18 article-title: Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation publication-title: Catal Rev Sci Eng. – volume: 31 start-page: 74 year: 1966 article-title: Physical limitations to values of parameters used in rate equations for reactions catalyzed by solids publication-title: Industrie Chimique Belge‐Belgische Chemische Industrie. – volume: 20 start-page: 660 year: 1981 end-page: 668 article-title: Hydroisomerization and hydrocracking. 3. Kinetic‐analysis of rate data for normal‐decane and normal‐dodecane publication-title: Ind Eng Chem Prod Res Dev. – volume: 3 start-page: 175 year: 1960 end-page: 184 article-title: An automatic method for finding the greatest or least value of a function publication-title: Comput J. – volume: 29 start-page: 385 year: 2013 end-page: 412 article-title: Fundamental kinetic modeling of catalytic hydrocarbon conversion processes publication-title: Rev Chem Eng. – volume: 111 start-page: 94 year: 2006 end-page: 102 article-title: Bridging the gap between liquid and vapor phase hydrocracking publication-title: Catal Today. – volume: 202 start-page: 324 year: 2001 end-page: 339 article-title: Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H‐(US)Y‐zeolite publication-title: J Catal. – year: 2008 – volume: 53 start-page: 10599 year: 2014 end-page: 10607 article-title: Kinetic model for the transformation of 1‐butene on a K‐modified HZSM‐5 catalyst publication-title: Ind Eng Chem Res. – volume: 38 start-page: 2626 year: 1999 end-page: 2633 article-title: Coke formation and gasification in the catalytic dehydrogenation of ethylbenzene publication-title: Ind Eng Chem Res. – volume: 441–442 start-page: 10 year: 2012 end-page: 20 article-title: ‐Hexadecane hydrocracking single‐event microkinetics on Pt/H‐beta publication-title: Appl Catal A. – year: 1974 – volume: 31 start-page: 13 year: 1978 end-page: 22 article-title: Hydrocracking, cracking and isomerization of hydrocarbons publication-title: Erdol Kohle Erdgas Petrochemie. – volume: 52 start-page: 355 year: 1965 end-page: 365 article-title: Bayesian estimation of common parameters from several responses publication-title: Biometrika. – volume: 20 start-page: 654 year: 1981 end-page: 660 article-title: Hydroisomerization and hydrocracking. 2. Product distributions from normal‐decane and normal‐dodecane publication-title: Ind Eng Chem Prod Res Dev. – volume: 44 start-page: 5159 year: 2005 end-page: 5169 article-title: Acid‐metal balance of a hydrocracking catalyst: ideal versus nonideal behavior publication-title: Ind Eng Chem Res. – volume: 116 start-page: 635 year: 2014 end-page: 644 article-title: Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM‐5 zeolite based catalyst publication-title: Chem Eng Sci. – year: 1993 – year: 2001 publication-title: Verified Synthesis of Zeolitic Materials – volume: 170 start-page: 26 year: 2013 end-page: 35 article-title: Adsorption of hexane isomers on MFI type zeolites at ambient temperature: understanding the aluminium content effect publication-title: Microporous Mesoporous Mater. – volume: 57 start-page: 2841 year: 2011 end-page: 2853 article-title: Olefin production by cofeeding methanol and ‐butane: kinetic modeling considering the deactivation of HZSM‐5 zeolite publication-title: AIchE J. – ident: e_1_2_10_50_1 doi: 10.1016/j.micromeso.2012.11.020 – ident: e_1_2_10_13_1 doi: 10.1002/aic.12471 – ident: e_1_2_10_30_1 – volume: 70 start-page: 78 year: 1974 ident: e_1_2_10_29_1 article-title: Reactor for vapor‐phase catalytic studies publication-title: Chem Eng Prog. – volume: 31 start-page: 74 year: 1966 ident: e_1_2_10_43_1 article-title: Physical limitations to values of parameters used in rate equations for reactions catalyzed by solids publication-title: Industrie Chimique Belge‐Belgische Chemische Industrie. – ident: e_1_2_10_28_1 – ident: e_1_2_10_35_1 doi: 10.1093/biomet/52.3-4.355 – volume: 31 start-page: 13 year: 1978 ident: e_1_2_10_25_1 article-title: Hydrocracking, cracking and isomerization of hydrocarbons publication-title: Erdol Kohle Erdgas Petrochemie. – ident: e_1_2_10_8_1 doi: 10.1023/A:1011928218694 – volume-title: Nonlinear Parameter Estimation year: 1974 ident: e_1_2_10_32_1 – ident: e_1_2_10_14_1 doi: 10.1016/S0926-860X(96)00346-8 – volume-title: Catalysis Science and Technology year: 1981 ident: e_1_2_10_33_1 – volume: 41 start-page: 1391 year: 1970 ident: e_1_2_10_36_1 article-title: Estimation and design for multiresponse nonlinear models, nonhomogenous variance structure publication-title: Ann Math Stat. – ident: e_1_2_10_16_1 doi: 10.1021/i300012a004 – ident: e_1_2_10_49_1 doi: 10.1016/0021-9517(89)90363-1 – ident: e_1_2_10_46_1 doi: 10.1016/S0920-5861(99)00073-5 – ident: e_1_2_10_15_1 doi: 10.1016/0098-1354(85)87005-8 – ident: e_1_2_10_17_1 doi: 10.1021/ie000799n – ident: e_1_2_10_22_1 doi: 10.1021/ie049375 – ident: e_1_2_10_18_1 doi: 10.1021/i300004a013 – year: 2001 ident: e_1_2_10_27_1 publication-title: Verified Synthesis of Zeolitic Materials – ident: e_1_2_10_51_1 doi: 10.1006/jcat.2001.3292 – ident: e_1_2_10_19_1 doi: 10.1021/i300004a014 – ident: e_1_2_10_53_1 doi: 10.1021/ja980157f – ident: e_1_2_10_24_1 doi: 10.1021/i300012a003 – ident: e_1_2_10_47_1 doi: 10.1093/comjnl/3.3.175 – ident: e_1_2_10_23_1 doi: 10.1016/j.cattod.2005.10.001 – ident: e_1_2_10_4_1 doi: 10.1016/S0065-2377(08)60184-2 – ident: e_1_2_10_7_1 doi: 10.1002/0471227617.eoc128.pub2 – ident: e_1_2_10_42_1 doi: 10.1016/B978-0-444-59520-1.50121-4 – ident: e_1_2_10_20_1 doi: 10.1021/ie960661y – volume-title: The Microkinetics of Heterogeneous Catalysis year: 1993 ident: e_1_2_10_5_1 – ident: e_1_2_10_21_1 doi: 10.1016/j.fuel.2014.02.017 – ident: e_1_2_10_41_1 – ident: e_1_2_10_39_1 doi: 10.1016/j.ces.2008.10.062 – ident: e_1_2_10_38_1 doi: 10.1016/S0920-5861(99)00070-X – ident: e_1_2_10_48_1 doi: 10.1137/0111030 – ident: e_1_2_10_11_1 doi: 10.1080/01614940701803960 – ident: e_1_2_10_40_1 doi: 10.1016/j.compchemeng.2010.06.007 – ident: e_1_2_10_44_1 doi: 10.1002/aic.690130235 – ident: e_1_2_10_10_1 doi: 10.1021/ie980169 – volume-title: Catalysis, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO year: 2009 ident: e_1_2_10_6_1 – volume-title: Optimization of Chemical Processes year: 2001 ident: e_1_2_10_34_1 – ident: e_1_2_10_52_1 doi: 10.1016/j.apsusc.2005.02.052 – ident: e_1_2_10_45_1 doi: 10.1021/ie501533j – ident: e_1_2_10_31_1 doi: 10.1002/9780470282038 – volume-title: Kinetics of Chemical Reactions: Decoding Complexity year: 2011 ident: e_1_2_10_3_1 – volume: 12 start-page: 613 year: 1970 ident: e_1_2_10_37_1 article-title: Missing values in multiresponse nonlinear model fitting publication-title: Technometrics. doi: 10.1080/00401706.1970.10488700 – ident: e_1_2_10_9_1 doi: 10.1016/j.ces.2014.05.044 – volume-title: Chemical Reactor Analysis and Design year: 2010 ident: e_1_2_10_2_1 – ident: e_1_2_10_26_1 doi: 10.1016/j.apcata.2012.06.054 – ident: e_1_2_10_12_1 doi: 10.1515/revce-2013-0019 |
| SSID | ssj0012782 |
| Score | 2.4126544 |
| Snippet | Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 880 |
| SubjectTerms | bifunctional zeolite Catalysts Chemical engineering Chemical engineers Chemical reactions Data analysis hydroisomerization kinetic modeling Kinetics Mathematical analysis Mathematical models Methodology n-hexane Optimization Reaction kinetics Regression systematic approach |
| Title | A systematic methodology for kinetic modeling of chemical reactions applied to n-hexane hydroisomerization |
| URI | https://api.istex.fr/ark:/67375/WNG-L5LQZBVC-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14680 https://www.proquest.com/docview/1657420341 https://www.proquest.com/docview/1669851036 |
| Volume | 61 |
| WOSCitedRecordID | wos000349915000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA_lzgd9sH7S0ypRRHxZupuPTRafztNT4ThUrBZfQjYf9Gi5ldtrad_8E_wb_UucJHvbFhQE35bdWQgzmcxvksxvEHpGLXGmkiZjluuMMeYzWYZLjtQzUwghcxN5ZmdiPpcHB9WHLfRyUwuT-CH6DbfgGXG9Dg6u63bvgjRUL0xwcwn5-pDAvOUDNHz9abo_6w8RiJCJLBwyZkAKxYZYKCd7_c9XwtEwaPbsCta8jFhjyJlu_9dgb6GbHdLE4zQ1bqMtt7yDblziH7yLjsf4gskZp2bScZsdA5TFRyAY34dmOSCPG49Nxy-AAWvGiogW64Rj8brBy18_fh6GghmHD8_tqlm0TTgQSpWe99D-9M3nybusa7-QGYhYsDp7baWlJTd1XlPLPKfaGUfKykIS4hwXvqZCGmlJYWWZM-tr4gFuMcg6ha7ofTRYNku3g7CXVVFbTXVZeAbpuDa8oHVZhcrt3EgzQi82VlCm4yYPLTKOVWJVJgoUqKICR-hpL_o9EXL8Seh5NGUvoVdH4Qab4Orr_K2a8dnHb6--TBQdod2NrVXnvK0qSi4YySG-j9CT_jO4XThLARU2J0GmrGRgIyxh7NHyfx-NGr-fxIcH_y76EF0HaMbTbbddNFivTtwjdM2crhft6nE3038DMQkCog |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-lJ6gPfounVaOI-LJ0d_O54Mt5era4HiqtFl9CNh_0aLmVu6vom3-Cf6N_iZNkb9uCguDbsjsLITOT-U2S-Q1CT4gtnamkyahlOqOU-kzycMmReGoKIWRuIs9sLaZTeXBQvdtAz9e1MIkfot9wC54R1-vg4GFDevuUNVTPTPBzCQn7gIIZgX0PXn6Y7Nf9KUIpZGILh5QZoEKxZhbKy-3-53PxaBCm9ts5sHkWssaYM7n6f6O9hq50WBOPknFcRxtufgNdPsNAeBMdj_AplzNO7aTjRjsGMIuPQDC-D-1yQB63HpuOYQAD2ow1EUusE5LFqxbPf_34eRhKZhw-_G4X7WzZhiOhVOt5C-1PXu2Nd7KuAUNmIGbB-uy1lZZwZpq8IZZ6RrQzruSVhTTEOSZ8Q4Q00paFlTyn1jelB8BFIe8UuiK30ea8nbs7CHtZFY3VRPPCU0jItWEFaXgVardzI80QPVurQZmOnTw0yThWiVe5VDCBKk7gED3uRb8kSo4_CT2Nuuwl9OIo3GETTH2avlY1q99_fvFxrMgQba2VrTr3XaqCM0HLHCL8ED3qP4PjhdMUmML2JMjwSgY-Qg5jj6r_-2jUaHccH-7-u-hDdHFn722t6t3pm3voEgA1lu6-baHN1eLE3UcXzNfVbLl40Jn9b6MvBpI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB_KnYg-tP7Fq1VXEfElNMluNhvoy3n1tBiOKlaLL8tm_9Cj5VLurqJvfgQ_Yz9JZze5tAUFwbeQTGCZ2dn5ze7ObwBeUpNaXQgdMZOpiDHmIsH9JUfqmE7yXMQ68MyW-WQiDg-L_TXYWdXCNPwQ3Yab94ywXnsHt6fGbV-yhqqp9n4uMGHvM99Epgf93U_jg7I7RUhz0bCFY8qMUCFZMQvF6Xb387V41Peq_XENbF6FrCHmjDf-b7R3YL3FmmTYTI67sGZn9-D2FQbC-3AyJJdczqRpJx022gmCWXKMguG9b5eD8qR2RLcMAwTRZqiJWBDVIFmyrMns_NfvI18yY8nRTzOvp4vaHwk1tZ4P4GD89vPofdQ2YIg0xixcn50ywlCe6SquqGEuo8pqm_LCYBpibZa7iuZCC5MmRvCYGVelDgEXw7wzVwV9CL1ZPbOPgDhRJJVRVPHEMUzIlc4SWvHC127HWugBvF6ZQeqWndw3yTiRDa9yKlGBMihwAC860dOGkuNPQq-CLTsJNT_2d9jyTH6dvJNlVn789ubLSNIBbK2MLVv3XciEZzlLY4zwA3jefUbH86cpqML6zMvwQng-Qo5jD6b_-2jkcG8UHjb_XfQZ3NzfHctyb_LhMdxCnJY1V9-2oLecn9kncEN_X04X86ftrL8AJYYGDQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+methodology+for+kinetic+modeling+of+chemical+reactions+applied+to+n-hexane+hydroisomerization&rft.jtitle=AIChE+journal&rft.au=Toch%2C+Kenneth&rft.au=Thybaut%2C+Joris+W.&rft.au=Marin%2C+Guy+B.&rft.date=2015-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=61&rft.issue=3&rft.spage=880&rft.epage=892&rft_id=info:doi/10.1002%2Faic.14680&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_L5LQZBVC_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |