A systematic methodology for kinetic modeling of chemical reactions applied to n-hexane hydroisomerization

Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal Jg. 61; H. 3; S. 880 - 892
Hauptverfasser: Toch, Kenneth, Thybaut, Joris W., Marin, Guy B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Blackwell Publishing Ltd 01.03.2015
American Institute of Chemical Engineers
Schlagworte:
ISSN:0001-1541, 1547-5905
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in the field. The proposed modeling methodology pursues an adequate compromise between statistical significance and physical meaning of the kinetic model and the corresponding parameters and typically results in models of an appropriate complexity. It comprises the following activities: (1) data analysis, aiming at qualitative information on the reaction mechanism and corresponding rate equations, (2) model regression to quantify this information via optimal parameter values, and (3) validation of the statistical significance and physical meaning of the parameter estimates. This methodology is successfully applied to n‐hexane hydroisomerization on a bifunctional catalyst. © 2014 American Institute of Chemical Engineers AIChE J, 61: 880–892, 2015
AbstractList Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in the field. The proposed modeling methodology pursues an adequate compromise between statistical significance and physical meaning of the kinetic model and the corresponding parameters and typically results in models of an appropriate complexity. It comprises the following activities: (1) data analysis, aiming at qualitative information on the reaction mechanism and corresponding rate equations, (2) model regression to quantify this information via optimal parameter values, and (3) validation of the statistical significance and physical meaning of the parameter estimates. This methodology is successfully applied to n‐hexane hydroisomerization on a bifunctional catalyst. © 2014 American Institute of Chemical Engineers AIChE J , 61: 880–892, 2015
Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in the field. The proposed modeling methodology pursues an adequate compromise between statistical significance and physical meaning of the kinetic model and the corresponding parameters and typically results in models of an appropriate complexity. It comprises the following activities: (1) data analysis, aiming at qualitative information on the reaction mechanism and corresponding rate equations, (2) model regression to quantify this information via optimal parameter values, and (3) validation of the statistical significance and physical meaning of the parameter estimates. This methodology is successfully applied to n-hexane hydroisomerization on a bifunctional catalyst. copyright 2014 American Institute of Chemical Engineers AIChE J, 61: 880-892, 2015
Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in particular. How to systematically approach a modeling assignment in chemical reaction kinetics is typically less clear, especially for novices in the field. The proposed modeling methodology pursues an adequate compromise between statistical significance and physical meaning of the kinetic model and the corresponding parameters and typically results in models of an appropriate complexity. It comprises the following activities: (1) data analysis, aiming at qualitative information on the reaction mechanism and corresponding rate equations, (2) model regression to quantify this information via optimal parameter values, and (3) validation of the statistical significance and physical meaning of the parameter estimates. This methodology is successfully applied to n-hexane hydroisomerization on a bifunctional catalyst.
Author Toch, Kenneth
Thybaut, Joris W.
Marin, Guy B.
Author_xml – sequence: 1
  givenname: Kenneth
  surname: Toch
  fullname: Toch, Kenneth
  organization: Laboratory for Chemical Technology, Ghent University, B-9052, Ghent, Belgium
– sequence: 2
  givenname: Joris W.
  surname: Thybaut
  fullname: Thybaut, Joris W.
  email: Joris.Thybaut@UGent.be
  organization: Laboratory for Chemical Technology, Ghent University, B-9052, Ghent, Belgium
– sequence: 3
  givenname: Guy B.
  surname: Marin
  fullname: Marin, Guy B.
  organization: Laboratory for Chemical Technology, Ghent University, B-9052, Ghent, Belgium
BookMark eNp1kU1vEzEQhi1UJNLCgX9giQsctvXnevcYolIqRaBKQKVeLMeebZx618HeiC6_HjcpHCp6Gs3oeUbj18foaIgDIPSWklNKCDsz3p5SUTfkBZpRKVQlWyKP0IwQQqsyoK_Qcc6b0jHVsBnazHGe8gi9Gb3FPYzr6GKItxPuYsJ3foD9PDoIfrjFscN2Db23JuAExo4-Dhmb7TZ4cHiMeKjWcG8GwOvJpehz7CH53-aBe41ediZkePNYT9D3T-ffFp-r5deLy8V8WVmhKKl4Z1zjeC3tiqy4E53kBiywunWtEgBSdSuuGts4Rl1TE-G6Feta1oqGSWVafoLeH_ZuU_y5gzzq3mcLIZSz4i5rWtdtIynhdUHfPUE3cZeGcl2hpBKMcEELdXagbIo5J-i09eP-SWMyPmhK9EP2umSv99kX48MTY5t8b9L0X_Zx-y8fYHoe1PPLxV-jOhi-fNz9P8OkO10rrqS-_nKhl3J5dfPxx0Jz_gevq6XI
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_apcatb_2020_119408
crossref_primary_10_1016_j_enconman_2024_118697
crossref_primary_10_1016_j_fuel_2024_132777
crossref_primary_10_1002_cite_201600043
crossref_primary_10_1007_s42247_024_00648_7
crossref_primary_10_1016_j_fuel_2023_128792
crossref_primary_10_1016_j_fuproc_2018_09_024
crossref_primary_10_1016_j_cej_2023_142914
crossref_primary_10_1016_j_cherd_2024_03_040
crossref_primary_10_1039_D2RE00288D
crossref_primary_10_1016_j_fuel_2022_123341
crossref_primary_10_1016_j_mcat_2025_114914
crossref_primary_10_1002_kin_21746
crossref_primary_10_1039_D4RE00403E
crossref_primary_10_1016_j_ccr_2019_213064
crossref_primary_10_1016_j_cej_2016_11_104
crossref_primary_10_1016_j_asoc_2021_108286
crossref_primary_10_1016_j_ces_2022_117928
crossref_primary_10_1002_aic_18151
crossref_primary_10_1016_j_cej_2017_08_106
crossref_primary_10_1016_j_ces_2017_10_028
crossref_primary_10_1016_j_apsusc_2023_157298
crossref_primary_10_1039_D1RE00275A
crossref_primary_10_1016_j_cej_2022_138541
crossref_primary_10_1016_j_fuel_2021_122055
crossref_primary_10_1016_j_apcata_2016_06_028
crossref_primary_10_1002_cite_201700155
crossref_primary_10_1016_j_cej_2017_09_063
crossref_primary_10_1039_D1RA03452A
crossref_primary_10_1016_j_ces_2017_07_025
crossref_primary_10_1016_j_jiec_2017_05_040
crossref_primary_10_3390_catal13020274
crossref_primary_10_1016_j_fuel_2017_03_078
crossref_primary_10_1016_j_ijhydene_2018_05_032
crossref_primary_10_1016_j_cej_2019_123195
crossref_primary_10_1039_D1RE00073J
crossref_primary_10_1016_j_cherd_2017_11_038
crossref_primary_10_1002_aic_18058
crossref_primary_10_1002_aic_16512
crossref_primary_10_1002_ceat_201600216
crossref_primary_10_1016_j_fuproc_2020_106434
crossref_primary_10_1016_j_cej_2016_05_096
crossref_primary_10_1002_jctb_6685
crossref_primary_10_1016_j_apcatb_2018_03_062
crossref_primary_10_1039_C9RE00222G
crossref_primary_10_1016_j_cej_2023_141759
crossref_primary_10_1039_D1CY01180D
crossref_primary_10_1039_D3RE00500C
crossref_primary_10_1016_j_ces_2019_115414
crossref_primary_10_1002_cite_202200052
crossref_primary_10_1016_j_jiec_2021_09_017
crossref_primary_10_3390_catal8120626
crossref_primary_10_1016_j_cej_2016_07_075
crossref_primary_10_1039_D5CY00529A
crossref_primary_10_1016_j_apcatb_2018_01_025
Cites_doi 10.1016/j.micromeso.2012.11.020
10.1002/aic.12471
10.1093/biomet/52.3-4.355
10.1023/A:1011928218694
10.1016/S0926-860X(96)00346-8
10.1021/i300012a004
10.1016/0021-9517(89)90363-1
10.1016/S0920-5861(99)00073-5
10.1016/0098-1354(85)87005-8
10.1021/ie000799n
10.1021/ie049375
10.1021/i300004a013
10.1006/jcat.2001.3292
10.1021/i300004a014
10.1021/ja980157f
10.1021/i300012a003
10.1093/comjnl/3.3.175
10.1016/j.cattod.2005.10.001
10.1016/S0065-2377(08)60184-2
10.1002/0471227617.eoc128.pub2
10.1016/B978-0-444-59520-1.50121-4
10.1021/ie960661y
10.1016/j.fuel.2014.02.017
10.1016/j.ces.2008.10.062
10.1016/S0920-5861(99)00070-X
10.1137/0111030
10.1080/01614940701803960
10.1016/j.compchemeng.2010.06.007
10.1002/aic.690130235
10.1021/ie980169
10.1016/j.apsusc.2005.02.052
10.1021/ie501533j
10.1002/9780470282038
10.1080/00401706.1970.10488700
10.1016/j.ces.2014.05.044
10.1016/j.apcata.2012.06.054
10.1515/revce-2013-0019
ContentType Journal Article
Copyright 2014 American Institute of Chemical Engineers
Copyright American Institute of Chemical Engineers Mar 2015
Copyright_xml – notice: 2014 American Institute of Chemical Engineers
– notice: Copyright American Institute of Chemical Engineers Mar 2015
DBID BSCLL
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.14680
DatabaseName Istex
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Technology Research Database
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 892
ExternalDocumentID 3601917531
10_1002_aic_14680
AIC14680
ark_67375_WNG_L5LQZBVC_3
Genre article
Feature
GrantInformation_xml – fundername: Flemish Government
– fundername: European Commission in the 7th Framework Programme
  funderid: GA n°228953
– fundername: Long Term Structural Methusalem Funding
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PUEGO
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AFFHD
CITATION
O8X
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c4710-3fad8d365cb0b3d4f53aece269d974ee57fb378c8d21d8604dfb2f92948257a93
IEDL.DBID DRFUL
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349915000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Wed Oct 01 14:25:40 EDT 2025
Mon Nov 10 02:51:58 EST 2025
Sat Nov 29 07:22:00 EST 2025
Tue Nov 18 21:58:50 EST 2025
Sun Sep 21 06:20:17 EDT 2025
Sun Sep 21 06:17:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4710-3fad8d365cb0b3d4f53aece269d974ee57fb378c8d21d8604dfb2f92948257a93
Notes istex:96AA5D1E75E6CB63E40294AF9E484D86B2249D4F
European Commission in the 7th Framework Programme - No. GA n°228953
Long Term Structural Methusalem Funding
ark:/67375/WNG-L5LQZBVC-3
ArticleID:AIC14680
Flemish Government
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1657420341
PQPubID 7879
PageCount 13
ParticipantIDs proquest_miscellaneous_1669851036
proquest_journals_1657420341
crossref_citationtrail_10_1002_aic_14680
crossref_primary_10_1002_aic_14680
wiley_primary_10_1002_aic_14680_AIC14680
istex_primary_ark_67375_WNG_L5LQZBVC_3
PublicationCentury 2000
PublicationDate March 2015
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: March 2015
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2015
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Kittrell JR. Mathematical modeling of chemical reactions. Adv Chem Eng. 1970;8:97-183.
Berty JM. Reactor for vapor-phase catalytic studies. Chem Eng Prog. 1974;70:78-85.
Choudhary VR, Akolekar DB. Shuttlecock-shuttlebox model for shape selectivity of medium-pore zeolites in sorption and diffusion. J Catal. 1989;117:542-548.
Marin GB, Yablonsky GS. Kinetics of Chemical Reactions: Decoding Complexity. New York: Wiley, 2011.
Thybaut JW, Narasimhan CSL, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB. Acid-metal balance of a hydrocracking catalyst: ideal versus nonideal behavior. Ind Eng Chem Res. 2005;44:5159-5169.
Baltanas MA, Vansina H, Froment GF. Hydroisomerization and hydrocracking. 5. Kinetic-analysis of rate data for n-octane. Ind Eng Chem Prod Res Dev. 1983;22:531-539.
Box MJ, Draper NR, Hunter WG. Missing values in multiresponse nonlinear model fitting. Technometrics. 1970;12:613-620.
Boudart M. Physical limitations to values of parameters used in rate equations for reactions catalyzed by solids. Industrie Chimique Belge-Belgische Chemische Industrie. 1966;31:74.
Stewart WE, Caracotsios M. Computer-Aided Modeling of Reactive Systems. New York: Wiley, 2008.
Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431-441.
Raghuveer CS, Thybaut JW, De Bruycker R, Metaxas K, Bera T, Marin GB. Pyridine hydrodenitrogenation over industrial NiMo/Î3-Al2O3 catalyst: application of gas phase kinetic models to liquid phase reactions. Fuel. 2014;125:206-218.
Froment GF. Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev Sci Eng. 2008;50:1-18.
Rosenbrock HH. An automatic method for finding the greatest or least value of a function. Comput J. 1960;3:175-184.
Vansina H, Baltanas MA, Froment GF. Hydroisomerization and hydrocracking. 4. Product distribution from n-octane and 2,2,4-trimethylpentane. Ind Eng Chem Prod Res Dev. 1983;22:526-531.
Baltanas MA, Froment GF. Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts. Comput Chem Eng. 1985;9:71-81.
Vandegehuchte BD, Thybaut JW, Martinez A, Arribas MA, Marin GB. n-Hexadecane hydrocracking single-event microkinetics on Pt/H-beta. Appl Catal A. 2012;441-442:10-20.
Savitz S, Myers AL, Gorte RJ, White D. Does the cal-ad method distinguish differences in the acid sites of H-MFI? J Am Chem Soc. 1998;120:5701-5703.
van de Runstraat A, van Grondelle J, van Santen RA. Microkinetics modeling of the hydroisomerization of n-hexane. Ind Eng Chem Res. 1997;36:3116-3125.
Froment GF, Bischoff KB, De Wilde J. Chemical Reactor Analysis and Design, 3rd ed. New York: Wiley, 2010.
Froment GF. Fundamental kinetic modeling of catalytic hydrocarbon conversion processes. Rev Chem Eng. 2013;29:385-412.
Thybaut JW, Narasimhan CSL, Marin GB. Bridging the gap between liquid and vapor phase hydrocracking. Catal Today. 2006;111:94-102.
Ferreira AFP, Mittelmeijer-Hazeleger MC, Bergh JVD, Aguado S, Jansen JC, Rothenberg G, Rodrigues AE, Kapteijn F. Adsorption of hexane isomers on MFI type zeolites at ambient temperature: understanding the aluminium content effect. Microporous Mesoporous Mater. 2013;170:26-35.
Box GEP, Draper NR. Bayesian estimation of common parameters from several responses. Biometrika. 1965;52:355-365.
Steijns M, Froment G, Jacobs P, Uytterhoeven J, Weitkamp J. Hydroisomerization and hydrocracking. 2. Product distributions from normal-decane and normal-dodecane. Ind Eng Chem Prod Res Dev. 1981;20:654-660.
Epelde E, Aguayo AT, Olazar M, Bilbao J, Gayubo AG. Kinetic model for the transformation of 1-butene on a K-modified HZSM-5 catalyst. Ind Eng Chem Res. 2014;53:10599-10607.
Devoldere KR, Froment GF. Coke formation and gasification in the catalytic dehydrogenation of ethylbenzene. Ind Eng Chem Res. 1999;38:2626-2633.
Robson H. Verified Synthesis of Zeolitic Materials. Amsterdam: Elsevier, 2001.
Kittrell JR, Mezaki R. Discrimination among rival Hougen-Watson models through intrinsic parameters. AIchE J. 1967;13:389-392.
Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA. Eurokin-chemical reaction kinetics in practice. Cattech. 2001;5:30-60.
Weitkamp J. Hydrocracking, cracking and isomerization of hydrocarbons. Erdol Kohle Erdgas Petrochemie. 1978;31:13-22.
Makowski W, Majda D. Equilibrated thermodesorption studies of adsorption of n-hexane and n-heptane on zeolites Y, ZSM-5 and ZSM-11. Appl Surf Sci. 2005;252:707-715.
Mier D, Gayubo AG, Aguayo AT, Olazar M, Bilbao J. Olefin production by cofeeding methanol and n-butane: kinetic modeling considering the deactivation of HZSM-5 zeolite. AIchE J. 2011;57:2841-2853.
Allain JF, Magnoux P, Schulz P, Guisnet M. Hydroisomerization of n-hexane over platinum mazzite and platinum mordenite catalysts-kinetics and mechanism. Appl Catal A. 1997;152:221-235.
Edgar TF, Himmelblau DM, Lasdon L. Optimization of Chemical Processes. Ontario: McGraw-Hill Higher Education, 2001.
Box MJ, Draper NR. Estimation and design for multiresponse nonlinear models, nonhomogenous variance structure. Ann Math Stat. 1970;41:1391.
Buzzi-Ferraris G, Manenti F. Kinetic models analysis. Chem Eng Sci. 2009;64:1061-1074.
Steijns M, Froment GF. Hydroisomerization and hydrocracking. 3. Kinetic-analysis of rate data for normal-decane and normal-dodecane. Ind Eng Chem Prod Res Dev. 1981;20:660-668.
Buzzi-Ferraris G. Planning of experiments and kinetic analysis. Catal Today. 1999;52:125-132.
Buzzi-Ferraris G, Manenti F. Better reformulation of kinetic models. Comput Chem Eng. 2010;34:1904-1906.
Froment GF. Kinetic modeling of acid-catalyzed oil refining processes. Catal Today. 1999;52:153-163.
Artetxe M, Lopez G, Amutio M, Bilbao J, Olazar M. Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM-5 zeolite based catalyst. Chem Eng Sci. 2014;116:635-644.
Bard Y. Nonlinear Parameter Estimation. Waltham: Academic Press, 1974.
Martens GG, Thybaut JW, Marin GB. Single-event rate parameters for the hydrocracking of cycloalkanes on Pt/US-Y zeolites. Ind Eng Chem Res. 2001;40:1832-1844.
Thybaut JW, Marin GB, Baron GV, Jacobs PA, Martens JA. Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H-(US)Y-zeolite. J Catal. 2001;202:324-339.
Dumesic JA, Rudd DF, Aparicio LM, Rekiske JE, Trevine AA. The Microkinetics of Heterogeneous Catalysis. Washington, DC: American Chemical Society, 1993.
2010; 34
1970; 8
2013; 29
1965; 52
2014; 116
1989; 117
2009; 64
2005; 252
2011
1960; 3
2010
1997; 152
1978; 31
1985; 9
1974; 70
2009
1970; 12
2008
1974
2011; 57
1993
2008; 50
2001; 40
2005; 44
1981; 20
2006; 111
1966; 31
2001; 202
1963; 11
2001
2001; 5
1999; 38
1997; 36
1970; 41
1967; 13
1999; 52
1981
2013; 170
2012; 441–442
2014; 125
1983; 22
1998; 120
2014; 53
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
Robson H (e_1_2_10_27_1) 2001
e_1_2_10_42_1
e_1_2_10_40_1
Weitkamp J (e_1_2_10_25_1) 1978; 31
Froment GF (e_1_2_10_33_1) 1981
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_13_1
Dumesic JA (e_1_2_10_5_1) 1993
e_1_2_10_11_1
Thybaut JW (e_1_2_10_6_1) 2009
e_1_2_10_30_1
e_1_2_10_51_1
Box MJ (e_1_2_10_37_1) 1970; 12
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
Marin GB (e_1_2_10_3_1) 2011
Edgar TF (e_1_2_10_34_1) 2001
Boudart M (e_1_2_10_43_1) 1966; 31
Bard Y (e_1_2_10_32_1) 1974
Box MJ (e_1_2_10_36_1) 1970; 41
e_1_2_10_52_1
e_1_2_10_19_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_31_1
e_1_2_10_50_1
Berty JM (e_1_2_10_29_1) 1974; 70
Froment GF (e_1_2_10_2_1) 2010
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – reference: Steijns M, Froment G, Jacobs P, Uytterhoeven J, Weitkamp J. Hydroisomerization and hydrocracking. 2. Product distributions from normal-decane and normal-dodecane. Ind Eng Chem Prod Res Dev. 1981;20:654-660.
– reference: Berty JM. Reactor for vapor-phase catalytic studies. Chem Eng Prog. 1974;70:78-85.
– reference: Froment GF. Fundamental kinetic modeling of catalytic hydrocarbon conversion processes. Rev Chem Eng. 2013;29:385-412.
– reference: Bard Y. Nonlinear Parameter Estimation. Waltham: Academic Press, 1974.
– reference: Steijns M, Froment GF. Hydroisomerization and hydrocracking. 3. Kinetic-analysis of rate data for normal-decane and normal-dodecane. Ind Eng Chem Prod Res Dev. 1981;20:660-668.
– reference: Devoldere KR, Froment GF. Coke formation and gasification in the catalytic dehydrogenation of ethylbenzene. Ind Eng Chem Res. 1999;38:2626-2633.
– reference: Boudart M. Physical limitations to values of parameters used in rate equations for reactions catalyzed by solids. Industrie Chimique Belge-Belgische Chemische Industrie. 1966;31:74.
– reference: Weitkamp J. Hydrocracking, cracking and isomerization of hydrocarbons. Erdol Kohle Erdgas Petrochemie. 1978;31:13-22.
– reference: Thybaut JW, Narasimhan CSL, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB. Acid-metal balance of a hydrocracking catalyst: ideal versus nonideal behavior. Ind Eng Chem Res. 2005;44:5159-5169.
– reference: Froment GF. Kinetic modeling of acid-catalyzed oil refining processes. Catal Today. 1999;52:153-163.
– reference: Buzzi-Ferraris G, Manenti F. Better reformulation of kinetic models. Comput Chem Eng. 2010;34:1904-1906.
– reference: Thybaut JW, Marin GB, Baron GV, Jacobs PA, Martens JA. Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H-(US)Y-zeolite. J Catal. 2001;202:324-339.
– reference: Marin GB, Yablonsky GS. Kinetics of Chemical Reactions: Decoding Complexity. New York: Wiley, 2011.
– reference: Baltanas MA, Froment GF. Computer-generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts. Comput Chem Eng. 1985;9:71-81.
– reference: Mier D, Gayubo AG, Aguayo AT, Olazar M, Bilbao J. Olefin production by cofeeding methanol and n-butane: kinetic modeling considering the deactivation of HZSM-5 zeolite. AIchE J. 2011;57:2841-2853.
– reference: Edgar TF, Himmelblau DM, Lasdon L. Optimization of Chemical Processes. Ontario: McGraw-Hill Higher Education, 2001.
– reference: Ferreira AFP, Mittelmeijer-Hazeleger MC, Bergh JVD, Aguado S, Jansen JC, Rothenberg G, Rodrigues AE, Kapteijn F. Adsorption of hexane isomers on MFI type zeolites at ambient temperature: understanding the aluminium content effect. Microporous Mesoporous Mater. 2013;170:26-35.
– reference: Rosenbrock HH. An automatic method for finding the greatest or least value of a function. Comput J. 1960;3:175-184.
– reference: Artetxe M, Lopez G, Amutio M, Bilbao J, Olazar M. Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM-5 zeolite based catalyst. Chem Eng Sci. 2014;116:635-644.
– reference: Epelde E, Aguayo AT, Olazar M, Bilbao J, Gayubo AG. Kinetic model for the transformation of 1-butene on a K-modified HZSM-5 catalyst. Ind Eng Chem Res. 2014;53:10599-10607.
– reference: Choudhary VR, Akolekar DB. Shuttlecock-shuttlebox model for shape selectivity of medium-pore zeolites in sorption and diffusion. J Catal. 1989;117:542-548.
– reference: Buzzi-Ferraris G. Planning of experiments and kinetic analysis. Catal Today. 1999;52:125-132.
– reference: Buzzi-Ferraris G, Manenti F. Kinetic models analysis. Chem Eng Sci. 2009;64:1061-1074.
– reference: Raghuveer CS, Thybaut JW, De Bruycker R, Metaxas K, Bera T, Marin GB. Pyridine hydrodenitrogenation over industrial NiMo/Î3-Al2O3 catalyst: application of gas phase kinetic models to liquid phase reactions. Fuel. 2014;125:206-218.
– reference: Box MJ, Draper NR, Hunter WG. Missing values in multiresponse nonlinear model fitting. Technometrics. 1970;12:613-620.
– reference: Thybaut JW, Narasimhan CSL, Marin GB. Bridging the gap between liquid and vapor phase hydrocracking. Catal Today. 2006;111:94-102.
– reference: Vandegehuchte BD, Thybaut JW, Martinez A, Arribas MA, Marin GB. n-Hexadecane hydrocracking single-event microkinetics on Pt/H-beta. Appl Catal A. 2012;441-442:10-20.
– reference: Robson H. Verified Synthesis of Zeolitic Materials. Amsterdam: Elsevier, 2001.
– reference: Baltanas MA, Vansina H, Froment GF. Hydroisomerization and hydrocracking. 5. Kinetic-analysis of rate data for n-octane. Ind Eng Chem Prod Res Dev. 1983;22:531-539.
– reference: Martens GG, Thybaut JW, Marin GB. Single-event rate parameters for the hydrocracking of cycloalkanes on Pt/US-Y zeolites. Ind Eng Chem Res. 2001;40:1832-1844.
– reference: Box MJ, Draper NR. Estimation and design for multiresponse nonlinear models, nonhomogenous variance structure. Ann Math Stat. 1970;41:1391.
– reference: Dumesic JA, Rudd DF, Aparicio LM, Rekiske JE, Trevine AA. The Microkinetics of Heterogeneous Catalysis. Washington, DC: American Chemical Society, 1993.
– reference: Savitz S, Myers AL, Gorte RJ, White D. Does the cal-ad method distinguish differences in the acid sites of H-MFI? J Am Chem Soc. 1998;120:5701-5703.
– reference: Froment GF. Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev Sci Eng. 2008;50:1-18.
– reference: Kittrell JR. Mathematical modeling of chemical reactions. Adv Chem Eng. 1970;8:97-183.
– reference: van de Runstraat A, van Grondelle J, van Santen RA. Microkinetics modeling of the hydroisomerization of n-hexane. Ind Eng Chem Res. 1997;36:3116-3125.
– reference: Vansina H, Baltanas MA, Froment GF. Hydroisomerization and hydrocracking. 4. Product distribution from n-octane and 2,2,4-trimethylpentane. Ind Eng Chem Prod Res Dev. 1983;22:526-531.
– reference: Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431-441.
– reference: Box GEP, Draper NR. Bayesian estimation of common parameters from several responses. Biometrika. 1965;52:355-365.
– reference: Froment GF, Bischoff KB, De Wilde J. Chemical Reactor Analysis and Design, 3rd ed. New York: Wiley, 2010.
– reference: Makowski W, Majda D. Equilibrated thermodesorption studies of adsorption of n-hexane and n-heptane on zeolites Y, ZSM-5 and ZSM-11. Appl Surf Sci. 2005;252:707-715.
– reference: Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA. Eurokin-chemical reaction kinetics in practice. Cattech. 2001;5:30-60.
– reference: Stewart WE, Caracotsios M. Computer-Aided Modeling of Reactive Systems. New York: Wiley, 2008.
– reference: Allain JF, Magnoux P, Schulz P, Guisnet M. Hydroisomerization of n-hexane over platinum mazzite and platinum mordenite catalysts-kinetics and mechanism. Appl Catal A. 1997;152:221-235.
– reference: Kittrell JR, Mezaki R. Discrimination among rival Hougen-Watson models through intrinsic parameters. AIchE J. 1967;13:389-392.
– year: 2011
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  article-title: An algorithm for least‐squares estimation of nonlinear parameters
  publication-title: J Soc Ind Appl Math.
– volume: 34
  start-page: 1904
  year: 2010
  end-page: 1906
  article-title: Better reformulation of kinetic models
  publication-title: Comput Chem Eng.
– year: 2009
– volume: 64
  start-page: 1061
  year: 2009
  end-page: 1074
  article-title: Kinetic models analysis
  publication-title: Chem Eng Sci.
– volume: 22
  start-page: 526
  year: 1983
  end-page: 531
  article-title: Hydroisomerization and hydrocracking. 4. Product distribution from ‐octane and 2,2,4‐trimethylpentane
  publication-title: Ind Eng Chem Prod Res Dev.
– year: 1981
– volume: 52
  start-page: 125
  year: 1999
  end-page: 132
  article-title: Planning of experiments and kinetic analysis
  publication-title: Catal Today.
– volume: 40
  start-page: 1832
  year: 2001
  end-page: 1844
  article-title: Single‐event rate parameters for the hydrocracking of cycloalkanes on Pt/US‐Y zeolites
  publication-title: Ind Eng Chem Res.
– volume: 117
  start-page: 542
  year: 1989
  end-page: 548
  article-title: Shuttlecock‐shuttlebox model for shape selectivity of medium‐pore zeolites in sorption and diffusion
  publication-title: J Catal.
– volume: 13
  start-page: 389
  year: 1967
  end-page: 392
  article-title: Discrimination among rival Hougen‐Watson models through intrinsic parameters
  publication-title: AIchE J.
– volume: 252
  start-page: 707
  year: 2005
  end-page: 715
  article-title: Equilibrated thermodesorption studies of adsorption of ‐hexane and ‐heptane on zeolites Y, ZSM‐5 and ZSM‐11
  publication-title: Appl Surf Sci.
– volume: 120
  start-page: 5701
  year: 1998
  end-page: 5703
  article-title: Does the cal‐ad method distinguish differences in the acid sites of H‐MFI?
  publication-title: J Am Chem Soc
– year: 2001
– volume: 12
  start-page: 613
  year: 1970
  end-page: 620
  article-title: Missing values in multiresponse nonlinear model fitting
  publication-title: Technometrics.
– volume: 152
  start-page: 221
  year: 1997
  end-page: 235
  article-title: Hydroisomerization of ‐hexane over platinum mazzite and platinum mordenite catalysts—kinetics and mechanism
  publication-title: Appl Catal A.
– volume: 36
  start-page: 3116
  year: 1997
  end-page: 3125
  article-title: Microkinetics modeling of the hydroisomerization of ‐hexane
  publication-title: Ind Eng Chem Res.
– volume: 9
  start-page: 71
  year: 1985
  end-page: 81
  article-title: Computer‐generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt‐containing bifunctional catalysts
  publication-title: Comput Chem Eng.
– volume: 125
  start-page: 206
  year: 2014
  end-page: 218
  article-title: Pyridine hydrodenitrogenation over industrial NiMo/Î ‐Al2O3 catalyst: application of gas phase kinetic models to liquid phase reactions
  publication-title: Fuel.
– volume: 5
  start-page: 30
  year: 2001
  end-page: 60
  article-title: Eurokin—chemical reaction kinetics in practice
  publication-title: Cattech.
– volume: 22
  start-page: 531
  year: 1983
  end-page: 539
  article-title: Hydroisomerization and hydrocracking. 5. Kinetic‐analysis of rate data for ‐octane
  publication-title: Ind Eng Chem Prod Res Dev.
– volume: 52
  start-page: 153
  year: 1999
  end-page: 163
  article-title: Kinetic modeling of acid‐catalyzed oil refining processes
  publication-title: Catal Today.
– volume: 70
  start-page: 78
  year: 1974
  end-page: 85
  article-title: Reactor for vapor‐phase catalytic studies
  publication-title: Chem Eng Prog.
– volume: 8
  start-page: 97
  year: 1970
  end-page: 183
  article-title: Mathematical modeling of chemical reactions
  publication-title: Adv Chem Eng.
– volume: 41
  start-page: 1391
  year: 1970
  article-title: Estimation and design for multiresponse nonlinear models, nonhomogenous variance structure
  publication-title: Ann Math Stat.
– year: 2010
– volume: 50
  start-page: 1
  year: 2008
  end-page: 18
  article-title: Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation
  publication-title: Catal Rev Sci Eng.
– volume: 31
  start-page: 74
  year: 1966
  article-title: Physical limitations to values of parameters used in rate equations for reactions catalyzed by solids
  publication-title: Industrie Chimique Belge‐Belgische Chemische Industrie.
– volume: 20
  start-page: 660
  year: 1981
  end-page: 668
  article-title: Hydroisomerization and hydrocracking. 3. Kinetic‐analysis of rate data for normal‐decane and normal‐dodecane
  publication-title: Ind Eng Chem Prod Res Dev.
– volume: 3
  start-page: 175
  year: 1960
  end-page: 184
  article-title: An automatic method for finding the greatest or least value of a function
  publication-title: Comput J.
– volume: 29
  start-page: 385
  year: 2013
  end-page: 412
  article-title: Fundamental kinetic modeling of catalytic hydrocarbon conversion processes
  publication-title: Rev Chem Eng.
– volume: 111
  start-page: 94
  year: 2006
  end-page: 102
  article-title: Bridging the gap between liquid and vapor phase hydrocracking
  publication-title: Catal Today.
– volume: 202
  start-page: 324
  year: 2001
  end-page: 339
  article-title: Alkene protonation enthalpy determination from fundamental kinetic modeling of alkane hydroconversion on Pt/H‐(US)Y‐zeolite
  publication-title: J Catal.
– year: 2008
– volume: 53
  start-page: 10599
  year: 2014
  end-page: 10607
  article-title: Kinetic model for the transformation of 1‐butene on a K‐modified HZSM‐5 catalyst
  publication-title: Ind Eng Chem Res.
– volume: 38
  start-page: 2626
  year: 1999
  end-page: 2633
  article-title: Coke formation and gasification in the catalytic dehydrogenation of ethylbenzene
  publication-title: Ind Eng Chem Res.
– volume: 441–442
  start-page: 10
  year: 2012
  end-page: 20
  article-title: ‐Hexadecane hydrocracking single‐event microkinetics on Pt/H‐beta
  publication-title: Appl Catal A.
– year: 1974
– volume: 31
  start-page: 13
  year: 1978
  end-page: 22
  article-title: Hydrocracking, cracking and isomerization of hydrocarbons
  publication-title: Erdol Kohle Erdgas Petrochemie.
– volume: 52
  start-page: 355
  year: 1965
  end-page: 365
  article-title: Bayesian estimation of common parameters from several responses
  publication-title: Biometrika.
– volume: 20
  start-page: 654
  year: 1981
  end-page: 660
  article-title: Hydroisomerization and hydrocracking. 2. Product distributions from normal‐decane and normal‐dodecane
  publication-title: Ind Eng Chem Prod Res Dev.
– volume: 44
  start-page: 5159
  year: 2005
  end-page: 5169
  article-title: Acid‐metal balance of a hydrocracking catalyst: ideal versus nonideal behavior
  publication-title: Ind Eng Chem Res.
– volume: 116
  start-page: 635
  year: 2014
  end-page: 644
  article-title: Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM‐5 zeolite based catalyst
  publication-title: Chem Eng Sci.
– year: 1993
– year: 2001
  publication-title: Verified Synthesis of Zeolitic Materials
– volume: 170
  start-page: 26
  year: 2013
  end-page: 35
  article-title: Adsorption of hexane isomers on MFI type zeolites at ambient temperature: understanding the aluminium content effect
  publication-title: Microporous Mesoporous Mater.
– volume: 57
  start-page: 2841
  year: 2011
  end-page: 2853
  article-title: Olefin production by cofeeding methanol and ‐butane: kinetic modeling considering the deactivation of HZSM‐5 zeolite
  publication-title: AIchE J.
– ident: e_1_2_10_50_1
  doi: 10.1016/j.micromeso.2012.11.020
– ident: e_1_2_10_13_1
  doi: 10.1002/aic.12471
– ident: e_1_2_10_30_1
– volume: 70
  start-page: 78
  year: 1974
  ident: e_1_2_10_29_1
  article-title: Reactor for vapor‐phase catalytic studies
  publication-title: Chem Eng Prog.
– volume: 31
  start-page: 74
  year: 1966
  ident: e_1_2_10_43_1
  article-title: Physical limitations to values of parameters used in rate equations for reactions catalyzed by solids
  publication-title: Industrie Chimique Belge‐Belgische Chemische Industrie.
– ident: e_1_2_10_28_1
– ident: e_1_2_10_35_1
  doi: 10.1093/biomet/52.3-4.355
– volume: 31
  start-page: 13
  year: 1978
  ident: e_1_2_10_25_1
  article-title: Hydrocracking, cracking and isomerization of hydrocarbons
  publication-title: Erdol Kohle Erdgas Petrochemie.
– ident: e_1_2_10_8_1
  doi: 10.1023/A:1011928218694
– volume-title: Nonlinear Parameter Estimation
  year: 1974
  ident: e_1_2_10_32_1
– ident: e_1_2_10_14_1
  doi: 10.1016/S0926-860X(96)00346-8
– volume-title: Catalysis Science and Technology
  year: 1981
  ident: e_1_2_10_33_1
– volume: 41
  start-page: 1391
  year: 1970
  ident: e_1_2_10_36_1
  article-title: Estimation and design for multiresponse nonlinear models, nonhomogenous variance structure
  publication-title: Ann Math Stat.
– ident: e_1_2_10_16_1
  doi: 10.1021/i300012a004
– ident: e_1_2_10_49_1
  doi: 10.1016/0021-9517(89)90363-1
– ident: e_1_2_10_46_1
  doi: 10.1016/S0920-5861(99)00073-5
– ident: e_1_2_10_15_1
  doi: 10.1016/0098-1354(85)87005-8
– ident: e_1_2_10_17_1
  doi: 10.1021/ie000799n
– ident: e_1_2_10_22_1
  doi: 10.1021/ie049375
– ident: e_1_2_10_18_1
  doi: 10.1021/i300004a013
– year: 2001
  ident: e_1_2_10_27_1
  publication-title: Verified Synthesis of Zeolitic Materials
– ident: e_1_2_10_51_1
  doi: 10.1006/jcat.2001.3292
– ident: e_1_2_10_19_1
  doi: 10.1021/i300004a014
– ident: e_1_2_10_53_1
  doi: 10.1021/ja980157f
– ident: e_1_2_10_24_1
  doi: 10.1021/i300012a003
– ident: e_1_2_10_47_1
  doi: 10.1093/comjnl/3.3.175
– ident: e_1_2_10_23_1
  doi: 10.1016/j.cattod.2005.10.001
– ident: e_1_2_10_4_1
  doi: 10.1016/S0065-2377(08)60184-2
– ident: e_1_2_10_7_1
  doi: 10.1002/0471227617.eoc128.pub2
– ident: e_1_2_10_42_1
  doi: 10.1016/B978-0-444-59520-1.50121-4
– ident: e_1_2_10_20_1
  doi: 10.1021/ie960661y
– volume-title: The Microkinetics of Heterogeneous Catalysis
  year: 1993
  ident: e_1_2_10_5_1
– ident: e_1_2_10_21_1
  doi: 10.1016/j.fuel.2014.02.017
– ident: e_1_2_10_41_1
– ident: e_1_2_10_39_1
  doi: 10.1016/j.ces.2008.10.062
– ident: e_1_2_10_38_1
  doi: 10.1016/S0920-5861(99)00070-X
– ident: e_1_2_10_48_1
  doi: 10.1137/0111030
– ident: e_1_2_10_11_1
  doi: 10.1080/01614940701803960
– ident: e_1_2_10_40_1
  doi: 10.1016/j.compchemeng.2010.06.007
– ident: e_1_2_10_44_1
  doi: 10.1002/aic.690130235
– ident: e_1_2_10_10_1
  doi: 10.1021/ie980169
– volume-title: Catalysis, Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO
  year: 2009
  ident: e_1_2_10_6_1
– volume-title: Optimization of Chemical Processes
  year: 2001
  ident: e_1_2_10_34_1
– ident: e_1_2_10_52_1
  doi: 10.1016/j.apsusc.2005.02.052
– ident: e_1_2_10_45_1
  doi: 10.1021/ie501533j
– ident: e_1_2_10_31_1
  doi: 10.1002/9780470282038
– volume-title: Kinetics of Chemical Reactions: Decoding Complexity
  year: 2011
  ident: e_1_2_10_3_1
– volume: 12
  start-page: 613
  year: 1970
  ident: e_1_2_10_37_1
  article-title: Missing values in multiresponse nonlinear model fitting
  publication-title: Technometrics.
  doi: 10.1080/00401706.1970.10488700
– ident: e_1_2_10_9_1
  doi: 10.1016/j.ces.2014.05.044
– volume-title: Chemical Reactor Analysis and Design
  year: 2010
  ident: e_1_2_10_2_1
– ident: e_1_2_10_26_1
  doi: 10.1016/j.apcata.2012.06.054
– ident: e_1_2_10_12_1
  doi: 10.1515/revce-2013-0019
SSID ssj0012782
Score 2.4126544
Snippet Kinetic modeling provides chemical engineers with a unique opportunity to better understand reaction kinetics in general and the underlying chemistry in...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 880
SubjectTerms bifunctional zeolite
Catalysts
Chemical engineering
Chemical engineers
Chemical reactions
Data analysis
hydroisomerization
kinetic modeling
Kinetics
Mathematical analysis
Mathematical models
Methodology
n-hexane
Optimization
Reaction kinetics
Regression
systematic approach
Title A systematic methodology for kinetic modeling of chemical reactions applied to n-hexane hydroisomerization
URI https://api.istex.fr/ark:/67375/WNG-L5LQZBVC-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14680
https://www.proquest.com/docview/1657420341
https://www.proquest.com/docview/1669851036
Volume 61
WOSCitedRecordID wos000349915000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA_lzgd9sH7S0ypRRHxZupuPTRafztNT4ThUrBZfQjYf9Gi5ldtrad_8E_wb_UucJHvbFhQE35bdWQgzmcxvksxvEHpGLXGmkiZjluuMMeYzWYZLjtQzUwghcxN5ZmdiPpcHB9WHLfRyUwuT-CH6DbfgGXG9Dg6u63bvgjRUL0xwcwn5-pDAvOUDNHz9abo_6w8RiJCJLBwyZkAKxYZYKCd7_c9XwtEwaPbsCta8jFhjyJlu_9dgb6GbHdLE4zQ1bqMtt7yDblziH7yLjsf4gskZp2bScZsdA5TFRyAY34dmOSCPG49Nxy-AAWvGiogW64Rj8brBy18_fh6GghmHD8_tqlm0TTgQSpWe99D-9M3nybusa7-QGYhYsDp7baWlJTd1XlPLPKfaGUfKykIS4hwXvqZCGmlJYWWZM-tr4gFuMcg6ha7ofTRYNku3g7CXVVFbTXVZeAbpuDa8oHVZhcrt3EgzQi82VlCm4yYPLTKOVWJVJgoUqKICR-hpL_o9EXL8Seh5NGUvoVdH4Qab4Orr_K2a8dnHb6--TBQdod2NrVXnvK0qSi4YySG-j9CT_jO4XThLARU2J0GmrGRgIyxh7NHyfx-NGr-fxIcH_y76EF0HaMbTbbddNFivTtwjdM2crhft6nE3038DMQkCog
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA-lJ6gPfounVaOI-LJ0d_O54Mt5era4HiqtFl9CNh_0aLmVu6vom3-Cf6N_iZNkb9uCguDbsjsLITOT-U2S-Q1CT4gtnamkyahlOqOU-kzycMmReGoKIWRuIs9sLaZTeXBQvdtAz9e1MIkfot9wC54R1-vg4GFDevuUNVTPTPBzCQn7gIIZgX0PXn6Y7Nf9KUIpZGILh5QZoEKxZhbKy-3-53PxaBCm9ts5sHkWssaYM7n6f6O9hq50WBOPknFcRxtufgNdPsNAeBMdj_AplzNO7aTjRjsGMIuPQDC-D-1yQB63HpuOYQAD2ow1EUusE5LFqxbPf_34eRhKZhw-_G4X7WzZhiOhVOt5C-1PXu2Nd7KuAUNmIGbB-uy1lZZwZpq8IZZ6RrQzruSVhTTEOSZ8Q4Q00paFlTyn1jelB8BFIe8UuiK30ea8nbs7CHtZFY3VRPPCU0jItWEFaXgVardzI80QPVurQZmOnTw0yThWiVe5VDCBKk7gED3uRb8kSo4_CT2Nuuwl9OIo3GETTH2avlY1q99_fvFxrMgQba2VrTr3XaqCM0HLHCL8ED3qP4PjhdMUmML2JMjwSgY-Qg5jj6r_-2jUaHccH-7-u-hDdHFn722t6t3pm3voEgA1lu6-baHN1eLE3UcXzNfVbLl40Jn9b6MvBpI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB_KnYg-tP7Fq1VXEfElNMluNhvoy3n1tBiOKlaLL8tm_9Cj5VLurqJvfgQ_Yz9JZze5tAUFwbeQTGCZ2dn5ze7ObwBeUpNaXQgdMZOpiDHmIsH9JUfqmE7yXMQ68MyW-WQiDg-L_TXYWdXCNPwQ3Yab94ywXnsHt6fGbV-yhqqp9n4uMGHvM99Epgf93U_jg7I7RUhz0bCFY8qMUCFZMQvF6Xb387V41Peq_XENbF6FrCHmjDf-b7R3YL3FmmTYTI67sGZn9-D2FQbC-3AyJJdczqRpJx022gmCWXKMguG9b5eD8qR2RLcMAwTRZqiJWBDVIFmyrMns_NfvI18yY8nRTzOvp4vaHwk1tZ4P4GD89vPofdQ2YIg0xixcn50ywlCe6SquqGEuo8pqm_LCYBpibZa7iuZCC5MmRvCYGVelDgEXw7wzVwV9CL1ZPbOPgDhRJJVRVPHEMUzIlc4SWvHC127HWugBvF6ZQeqWndw3yTiRDa9yKlGBMihwAC860dOGkuNPQq-CLTsJNT_2d9jyTH6dvJNlVn789ubLSNIBbK2MLVv3XciEZzlLY4zwA3jefUbH86cpqML6zMvwQng-Qo5jD6b_-2jkcG8UHjb_XfQZ3NzfHctyb_LhMdxCnJY1V9-2oLecn9kncEN_X04X86ftrL8AJYYGDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+methodology+for+kinetic+modeling+of+chemical+reactions+applied+to+n-hexane+hydroisomerization&rft.jtitle=AIChE+journal&rft.au=Toch%2C+Kenneth&rft.au=Thybaut%2C+Joris+W.&rft.au=Marin%2C+Guy+B.&rft.date=2015-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=61&rft.issue=3&rft.spage=880&rft.epage=892&rft_id=info:doi/10.1002%2Faic.14680&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_L5LQZBVC_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon