Convergence and divergence of neurocognitive patterns in schizophrenia and depression

Neurocognitive impairments are frequently observed in schizophrenia and major depressive disorder (MDD). However, it remains unclear whether reported neurocognitive abnormalities could objectively identify an individual as having schizophrenia or MDD. The current study included 220 first-episode pat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Schizophrenia research Ročník 192; s. 327 - 334
Hlavní autoři: Liang, Sugai, Brown, Matthew R.G., Deng, Wei, Wang, Qiang, Ma, Xiaohong, Li, Mingli, Hu, Xun, Juhas, Michal, Li, Xinmin, Greiner, Russell, Greenshaw, Andrew J., Li, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.02.2018
Témata:
ISSN:0920-9964, 1573-2509, 1573-2509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Neurocognitive impairments are frequently observed in schizophrenia and major depressive disorder (MDD). However, it remains unclear whether reported neurocognitive abnormalities could objectively identify an individual as having schizophrenia or MDD. The current study included 220 first-episode patients with schizophrenia, 110 patients with MDD and 240 demographically matched healthy controls (HC). All participants performed the short version of the Wechsler Adult Intelligence Scale-Revised in China; the immediate and delayed logical memory of the Wechsler Memory Scale-Revised in China; and seven tests from the computerized Cambridge Neurocognitive Test Automated Battery to evaluate neurocognitive performance. The three-class AdaBoost tree-based ensemble algorithm was employed to identify neurocognitive endophenotypes that may distinguish between subjects in the categories of schizophrenia, depression and HC. Hierarchical cluster analysis was applied to further explore the neurocognitive patterns in each group. The AdaBoost algorithm identified individual's diagnostic class with an average accuracy of 77.73% (80.81% for schizophrenia, 53.49% for depression and 86.21% for HC). The average area under ROC curve was 0.92 (0.96 in schizophrenia, 0.86 in depression and 0.92 in HC). Hierarchical cluster analysis revealed for MDD and schizophrenia, convergent altered neurocognition patterns related to shifting, sustained attention, planning, working memory and visual memory. Divergent neurocognition patterns for MDD and schizophrenia related to motor speed, general intelligence, perceptual sensitivity and reversal learning were identified. Neurocognitive abnormalities could predict whether the individual has schizophrenia, depression or neither with relatively high accuracy. Additionally, the neurocognitive features showed promise as endophenotypes for discriminating between schizophrenia and depression.
AbstractList Neurocognitive impairments are frequently observed in schizophrenia and major depressive disorder (MDD). However, it remains unclear whether reported neurocognitive abnormalities could objectively identify an individual as having schizophrenia or MDD.BACKGROUNDNeurocognitive impairments are frequently observed in schizophrenia and major depressive disorder (MDD). However, it remains unclear whether reported neurocognitive abnormalities could objectively identify an individual as having schizophrenia or MDD.The current study included 220 first-episode patients with schizophrenia, 110 patients with MDD and 240 demographically matched healthy controls (HC). All participants performed the short version of the Wechsler Adult Intelligence Scale-Revised in China; the immediate and delayed logical memory of the Wechsler Memory Scale-Revised in China; and seven tests from the computerized Cambridge Neurocognitive Test Automated Battery to evaluate neurocognitive performance. The three-class AdaBoost tree-based ensemble algorithm was employed to identify neurocognitive endophenotypes that may distinguish between subjects in the categories of schizophrenia, depression and HC. Hierarchical cluster analysis was applied to further explore the neurocognitive patterns in each group.METHODSThe current study included 220 first-episode patients with schizophrenia, 110 patients with MDD and 240 demographically matched healthy controls (HC). All participants performed the short version of the Wechsler Adult Intelligence Scale-Revised in China; the immediate and delayed logical memory of the Wechsler Memory Scale-Revised in China; and seven tests from the computerized Cambridge Neurocognitive Test Automated Battery to evaluate neurocognitive performance. The three-class AdaBoost tree-based ensemble algorithm was employed to identify neurocognitive endophenotypes that may distinguish between subjects in the categories of schizophrenia, depression and HC. Hierarchical cluster analysis was applied to further explore the neurocognitive patterns in each group.The AdaBoost algorithm identified individual's diagnostic class with an average accuracy of 77.73% (80.81% for schizophrenia, 53.49% for depression and 86.21% for HC). The average area under ROC curve was 0.92 (0.96 in schizophrenia, 0.86 in depression and 0.92 in HC). Hierarchical cluster analysis revealed for MDD and schizophrenia, convergent altered neurocognition patterns related to shifting, sustained attention, planning, working memory and visual memory. Divergent neurocognition patterns for MDD and schizophrenia related to motor speed, general intelligence, perceptual sensitivity and reversal learning were identified.RESULTSThe AdaBoost algorithm identified individual's diagnostic class with an average accuracy of 77.73% (80.81% for schizophrenia, 53.49% for depression and 86.21% for HC). The average area under ROC curve was 0.92 (0.96 in schizophrenia, 0.86 in depression and 0.92 in HC). Hierarchical cluster analysis revealed for MDD and schizophrenia, convergent altered neurocognition patterns related to shifting, sustained attention, planning, working memory and visual memory. Divergent neurocognition patterns for MDD and schizophrenia related to motor speed, general intelligence, perceptual sensitivity and reversal learning were identified.Neurocognitive abnormalities could predict whether the individual has schizophrenia, depression or neither with relatively high accuracy. Additionally, the neurocognitive features showed promise as endophenotypes for discriminating between schizophrenia and depression.CONCLUSIONSNeurocognitive abnormalities could predict whether the individual has schizophrenia, depression or neither with relatively high accuracy. Additionally, the neurocognitive features showed promise as endophenotypes for discriminating between schizophrenia and depression.
AbstractBackgroundNeurocognitive impairments are frequently observed in schizophrenia and major depressive disorder (MDD). However, it remains unclear whether reported neurocognitive abnormalities could objectively identify an individual as having schizophrenia or MDD. MethodsThe current study included 220 first-episode patients with schizophrenia, 110 patients with MDD and 240 demographically matched healthy controls (HC). All participants performed the short version of the Wechsler Adult Intelligence Scale-Revised in China; the immediate and delayed logical memory of the Wechsler Memory Scale-Revised in China; and seven tests from the computerized Cambridge Neurocognitive Test Automated Battery to evaluate neurocognitive performance. The three-class AdaBoost tree-based ensemble algorithm was employed to identify neurocognitive endophenotypes that may distinguish between subjects in the categories of schizophrenia, depression and HC. Hierarchical cluster analysis was applied to further explore the neurocognitive patterns in each group. ResultsThe AdaBoost algorithm identified individual's diagnostic class with an average accuracy of 77.73% (80.81% for schizophrenia, 53.49% for depression and 86.21% for HC). The average area under ROC curve was 0.92 (0.96 in schizophrenia, 0.86 in depression and 0.92 in HC). Hierarchical cluster analysis revealed for MDD and schizophrenia, convergent altered neurocognition patterns related to shifting, sustained attention, planning, working memory and visual memory. Divergent neurocognition patterns for MDD and schizophrenia related to motor speed, general intelligence, perceptual sensitivity and reversal learning were identified. ConclusionsNeurocognitive abnormalities could predict whether the individual has schizophrenia, depression or neither with relatively high accuracy. Additionally, the neurocognitive features showed promise as endophenotypes for discriminating between schizophrenia and depression.
Neurocognitive impairments are frequently observed in schizophrenia and major depressive disorder (MDD). However, it remains unclear whether reported neurocognitive abnormalities could objectively identify an individual as having schizophrenia or MDD. The current study included 220 first-episode patients with schizophrenia, 110 patients with MDD and 240 demographically matched healthy controls (HC). All participants performed the short version of the Wechsler Adult Intelligence Scale-Revised in China; the immediate and delayed logical memory of the Wechsler Memory Scale-Revised in China; and seven tests from the computerized Cambridge Neurocognitive Test Automated Battery to evaluate neurocognitive performance. The three-class AdaBoost tree-based ensemble algorithm was employed to identify neurocognitive endophenotypes that may distinguish between subjects in the categories of schizophrenia, depression and HC. Hierarchical cluster analysis was applied to further explore the neurocognitive patterns in each group. The AdaBoost algorithm identified individual's diagnostic class with an average accuracy of 77.73% (80.81% for schizophrenia, 53.49% for depression and 86.21% for HC). The average area under ROC curve was 0.92 (0.96 in schizophrenia, 0.86 in depression and 0.92 in HC). Hierarchical cluster analysis revealed for MDD and schizophrenia, convergent altered neurocognition patterns related to shifting, sustained attention, planning, working memory and visual memory. Divergent neurocognition patterns for MDD and schizophrenia related to motor speed, general intelligence, perceptual sensitivity and reversal learning were identified. Neurocognitive abnormalities could predict whether the individual has schizophrenia, depression or neither with relatively high accuracy. Additionally, the neurocognitive features showed promise as endophenotypes for discriminating between schizophrenia and depression.
Author Hu, Xun
Li, Tao
Greenshaw, Andrew J.
Greiner, Russell
Liang, Sugai
Li, Mingli
Li, Xinmin
Wang, Qiang
Ma, Xiaohong
Deng, Wei
Brown, Matthew R.G.
Juhas, Michal
Author_xml – sequence: 1
  givenname: Sugai
  surname: Liang
  fullname: Liang, Sugai
  organization: Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 2
  givenname: Matthew R.G.
  surname: Brown
  fullname: Brown, Matthew R.G.
  organization: Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
– sequence: 3
  givenname: Wei
  surname: Deng
  fullname: Deng, Wei
  organization: Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 4
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
  organization: Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 5
  givenname: Xiaohong
  surname: Ma
  fullname: Ma, Xiaohong
  organization: Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 6
  givenname: Mingli
  surname: Li
  fullname: Li, Mingli
  organization: Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 7
  givenname: Xun
  surname: Hu
  fullname: Hu, Xun
  organization: Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China
– sequence: 8
  givenname: Michal
  surname: Juhas
  fullname: Juhas, Michal
  organization: Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
– sequence: 9
  givenname: Xinmin
  surname: Li
  fullname: Li, Xinmin
  organization: Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
– sequence: 10
  givenname: Russell
  surname: Greiner
  fullname: Greiner, Russell
  organization: Department of Computing Science, University of Alberta, Edmonton, AB, Canada
– sequence: 11
  givenname: Andrew J.
  surname: Greenshaw
  fullname: Greenshaw, Andrew J.
  organization: Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
– sequence: 12
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  email: litaohx@scu.edu.cn
  organization: Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28651909$$D View this record in MEDLINE/PubMed
BookMark eNqVkktr3TAQhUVJaW7S_oNSvOzG7uhh-7qUQrnkUQhkkWYtZGmU6tZXciU7kP76yjjpolBCV0LinDMzn-aEHPngkZC3FCoKtPmwr5L-HjFVDGhbQVMBiBdkQ-uWl6yG7ohsoGNQdl0jjslJSnsAoDW0r8gx2zY17aDbkNtd8PcY79BrLJQ3hXF_rsEWHucYdLjzbsrvxaimCaNPhfNFru5-hTG34J1arTjmfpIL_jV5adWQ8M3jeUpuz8--7S7Lq-uLr7svV6UWLUyl1UY1jEMvGtZT1hnacy04UGAWrKh73nJmG9OrraCtMaLmxiKjKFitGFp-St6vuWMMP2dMkzy4pHEYlMcwJ0k7Kti242ybpe8epXN_QCPH6A4qPsgnFFnwcRXoGFKKaKV2k5ryNFNUbpAU5MJd7uXKXS7cJTQyc89m8Zf5Kf8Z2-fVhhnSvcOYRW5hb1xEPUkT3P8G6MF5p9XwAx8w7cMcff4ASWViEuTNshHLQtCWA1-xfPp3wPP1fwM5s8jo
CitedBy_id crossref_primary_10_1016_j_schres_2020_03_050
crossref_primary_10_1177_0954411920966937
crossref_primary_10_1038_s41380_020_0653_4
crossref_primary_10_3389_fpsyt_2022_907034
crossref_primary_10_1038_s41386_020_00926_y
crossref_primary_10_1080_03007995_2022_2038487
crossref_primary_10_1017_S0033291719000151
crossref_primary_10_3390_ijerph18116099
crossref_primary_10_1186_s12888_025_07221_4
crossref_primary_10_1016_j_jad_2022_02_020
crossref_primary_10_1016_j_jad_2024_08_101
Cites_doi 10.1007/s00406-015-0597-x
10.1613/jair.953
10.1146/annurev.psych.55.090902.141950
10.1176/appi.ajp.157.9.1379
10.1017/S1355617798455073
10.1093/brain/aws084
10.1093/schbul/sbt107
10.1016/j.neuroimage.2013.08.053
10.1016/j.eurpsy.2006.11.004
10.1371/journal.pone.0068250
10.1097/YPG.0b013e328353ae23
10.1080/13825589708256645
10.1016/j.comppsych.2015.09.003
10.3390/molecules15074875
10.1001/archgenpsychiatry.2009.1
10.1038/mp.2009.49
10.1177/0269881114548438
10.1176/ajp.151.1.40
10.1016/j.bbi.2012.04.009
10.1177/1745691611419672
10.1038/nmeth.2832
10.1034/j.1600-0447.2003.00146.x
10.1111/j.1600-0447.1996.tb09830.x
10.1016/j.jad.2015.12.053
10.1038/npp.2014.226
10.1001/archpsyc.62.6.593
10.7763/IJMLC.2013.V3.307
10.1037/a0028727
10.1016/S0006-3223(02)01674-8
10.1076/jcen.25.1.79.13630
10.2147/NDT.S72536
10.1016/0920-9964(90)90014-X
10.1093/schbul/sbn135
10.4310/SII.2009.v2.n3.a8
10.1192/bjp.bp.113.143040
10.1093/schbul/sbt054
10.1007/BF02985802
10.1038/mp.2012.110
10.1017/S0033291716000684
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.schres.2017.06.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1573-2509
EndPage 334
ExternalDocumentID 28651909
10_1016_j_schres_2017_06_004
S0920996417303328
1_s2_0_S0920996417303328
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
4H-
53G
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABOYX
ABWVN
ABXDB
ACDAQ
ACGFS
ACHQT
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEG
HMK
HMO
HMQ
HMW
HVGLF
HZ~
IHE
J1W
KOM
M29
M2V
M39
M3V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SPS
SSB
SSH
SSN
SSY
SSZ
T5K
WUQ
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AFYLN
AJBFU
LCYCR
9DU
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c470t-fcda6230b462b129d1b3c430102f0f45b3732f6dba8417dd453dfe21e425a2ef3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426344800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-9964
1573-2509
IngestDate Sat Sep 27 19:58:36 EDT 2025
Wed Feb 19 02:42:02 EST 2025
Sat Nov 29 07:18:06 EST 2025
Tue Nov 18 22:14:06 EST 2025
Fri Feb 23 02:45:53 EST 2024
Sun Feb 23 10:19:43 EST 2025
Tue Oct 14 19:30:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Schizophrenia
Neurocognition
Major depressive disorder
Machine learning
Endophenotype
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-fcda6230b462b129d1b3c430102f0f45b3732f6dba8417dd453dfe21e425a2ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28651909
PQID 1914289328
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1914289328
pubmed_primary_28651909
crossref_citationtrail_10_1016_j_schres_2017_06_004
crossref_primary_10_1016_j_schres_2017_06_004
elsevier_sciencedirect_doi_10_1016_j_schres_2017_06_004
elsevier_clinicalkeyesjournals_1_s2_0_S0920996417303328
elsevier_clinicalkey_doi_10_1016_j_schres_2017_06_004
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Schizophrenia research
PublicationTitleAlternate Schizophr Res
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bernstein, Ortmann, Dobrowolny, Steiner, Brisch, Gos, Bogerts (bb0025) 2016; 266
Sahakian, Owen (bb0180) 1992; 85
Barch, Sheline, Csernansky, Snyder (bb0015) 2003; 53
Hastie, Tibshirani, Friedman, Franklin (bb0105) 2005; 27
Shen, Popescu, Hahn, Ta, Dettling, Neuhaus (bb0190) 2014; 40
Mani, Zhang (bb0140) 2003
Bentall, Rowse, Shryane, Kinderman, Howard, Blackwood, Moore, Corcoran (bb0020) 2009; 66
Haring, Muursepp, Mottus, Ilves, Koch, Uppin, Tarnovskaja, Maron, Zharkovsky, Vasar, Vasar (bb0100) 2016; 46
Schnack, Nieuwenhuis, van Haren, Abramovic, Scheewe, Brouwer, Hulshoff Pol, Kahn (bb0185) 2014; 84
Green, Grozeva, Jones, Jones, Kirov, Caesar, Gordon-Smith, Fraser, Forty, Russell, Hamshere, Moskvina, Nikolov, Farmer, McGuffin, Holmans, Owen, O'Donovan, Craddock (bb0090) 2010; 15
Freund, Schapire (bb0075) 1995
Blanchard, Neale (bb0030) 1994; 151
Nolen-Hoeksema, Watkins (bb0155) 2011; 6
Walker, Kestler, Bollini, Hochman (bb0205) 2004; 55
Siris (bb0195) 2000; 157
Haybaeck, Postruznik, Miller, Dulay, Llenos, Weis (bb0110) 2015; 11
White, Myerson, Hale (bb0210) 1997; 4
Fillman, Cloonan, Catts, Miller, Wong, McCrossin, Cairns, Weickert (bb0070) 2013; 18
Chawla, Bowyer, Hall, Kegelmeyer (bb0050) 2002
Guilloux, Bassi, Ding, Walsh, Turecki, Tseng, Cyranowski, Sibille (bb0095) 2015; 40
Kessler, Berglund, Demler, Jin, Merikangas, Walters (bb0120) 2005; 62
Mussgay, Hertwig (bb0145) 1990; 3
Rahman, Davis (bb0160) 2013; 3
Bufalino, Hepgul, Aguglia, Pariante (bb0040) 2013; 31
Davis, Goadrich (bb0055) 2006
Mwangi, Ebmeier, Matthews, Steele (bb0150) 2012; 135
Aguiar-Pulido, Seoane, Rabunal, Dorado, Pazos, Munteanu (bb0005) 2010; 15
Gong (bb0080) 1989
Busatto (bb0045) 2013; 39
Levaux, Potvin, Sepehry, Sablier, Mendrek, Stip (bb0125) 2007; 22
Albus, Hubmann, Wahlheim, Sobizack, Franz, Mohr (bb0010) 1996; 94
Egeland, Rund, Sundet, Landro, Asbjornsen, Lund, Roness, Stordal, Hugdahl (bb0060) 2003; 108
Ritchie, Dunham, Zeggini, Flicek (bb0170) 2014; 11
Zhu, Zou, Rosset, Hastie (bb0230) 2009; 2
Yang, Ma, Huang, Sun, Zhao, Lin, Deng, Li (bb0220) 2015; 63
Yu, Shen, Zeng, Ma, Hu (bb0225) 2013; 8
Regenbogen, Kellermann, Seubert, Schneider, Gur, Derntl, Schneider, Habel (bb0165) 2015; 206
Buckley, Miller, Lehrer, Castle (bb0035) 2009; 35
Gong (bb0085) 1992
Johnston, Coghill, Matthews, Steele (bb0115) 2015; 29
Egeland, Sundet, Rund, Asbjornsen, Hugdahl, Landro, Lund, Roness, Stordal (bb0065) 2003; 25
Wu, Passos, Bauer, Lavagnino, Cao, Zunta-Soares, Kapczinski, Mwangi, Soares (bb0215) 2016; 192
Louppe, Wehenkel, Sutera, Geurts (bb0130) 2013
Snyder (bb0200) 2013; 139
Lu, Bakker, Janson, Cichon, Cantor, Ophoff (bb0135) 2012; 22
Robbins, James, Owen, Sahakian, Lawrence, McInnes, Rabbitt (bb0175) 1998; 4
Kessler (10.1016/j.schres.2017.06.004_bb0120) 2005; 62
Levaux (10.1016/j.schres.2017.06.004_bb0125) 2007; 22
Louppe (10.1016/j.schres.2017.06.004_bb0130) 2013
Busatto (10.1016/j.schres.2017.06.004_bb0045) 2013; 39
Green (10.1016/j.schres.2017.06.004_bb0090) 2010; 15
Schnack (10.1016/j.schres.2017.06.004_bb0185) 2014; 84
Hastie (10.1016/j.schres.2017.06.004_bb0105) 2005; 27
Yu (10.1016/j.schres.2017.06.004_bb0225) 2013; 8
Davis (10.1016/j.schres.2017.06.004_bb0055) 2006
Lu (10.1016/j.schres.2017.06.004_bb0135) 2012; 22
Aguiar-Pulido (10.1016/j.schres.2017.06.004_bb0005) 2010; 15
Guilloux (10.1016/j.schres.2017.06.004_bb0095) 2015; 40
Haybaeck (10.1016/j.schres.2017.06.004_bb0110) 2015; 11
Buckley (10.1016/j.schres.2017.06.004_bb0035) 2009; 35
Johnston (10.1016/j.schres.2017.06.004_bb0115) 2015; 29
Bufalino (10.1016/j.schres.2017.06.004_bb0040) 2013; 31
Freund (10.1016/j.schres.2017.06.004_bb0075) 1995
Mussgay (10.1016/j.schres.2017.06.004_bb0145) 1990; 3
Bentall (10.1016/j.schres.2017.06.004_bb0020) 2009; 66
Egeland (10.1016/j.schres.2017.06.004_bb0065) 2003; 25
Mwangi (10.1016/j.schres.2017.06.004_bb0150) 2012; 135
Fillman (10.1016/j.schres.2017.06.004_bb0070) 2013; 18
Mani (10.1016/j.schres.2017.06.004_bb0140) 2003
Rahman (10.1016/j.schres.2017.06.004_bb0160) 2013; 3
Siris (10.1016/j.schres.2017.06.004_bb0195) 2000; 157
Gong (10.1016/j.schres.2017.06.004_bb0085) 1992
Bernstein (10.1016/j.schres.2017.06.004_bb0025) 2016; 266
White (10.1016/j.schres.2017.06.004_bb0210) 1997; 4
Nolen-Hoeksema (10.1016/j.schres.2017.06.004_bb0155) 2011; 6
Walker (10.1016/j.schres.2017.06.004_bb0205) 2004; 55
Blanchard (10.1016/j.schres.2017.06.004_bb0030) 1994; 151
Chawla (10.1016/j.schres.2017.06.004_bb0050) 2002
Ritchie (10.1016/j.schres.2017.06.004_bb0170) 2014; 11
Robbins (10.1016/j.schres.2017.06.004_bb0175) 1998; 4
Snyder (10.1016/j.schres.2017.06.004_bb0200) 2013; 139
Haring (10.1016/j.schres.2017.06.004_bb0100) 2016; 46
Yang (10.1016/j.schres.2017.06.004_bb0220) 2015; 63
Albus (10.1016/j.schres.2017.06.004_bb0010) 1996; 94
Regenbogen (10.1016/j.schres.2017.06.004_bb0165) 2015; 206
Egeland (10.1016/j.schres.2017.06.004_bb0060) 2003; 108
Shen (10.1016/j.schres.2017.06.004_bb0190) 2014; 40
Zhu (10.1016/j.schres.2017.06.004_bb0230) 2009; 2
Gong (10.1016/j.schres.2017.06.004_bb0080) 1989
Barch (10.1016/j.schres.2017.06.004_bb0015) 2003; 53
Sahakian (10.1016/j.schres.2017.06.004_bb0180) 1992; 85
Wu (10.1016/j.schres.2017.06.004_bb0215) 2016; 192
References_xml – volume: 266
  start-page: 25
  year: 2016
  end-page: 33
  ident: bb0025
  article-title: Bilaterally reduced claustral volumes in schizophrenia and major depressive disorder: a morphometric postmortem study
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 108
  start-page: 276
  year: 2003
  end-page: 284
  ident: bb0060
  article-title: Attention profile in schizophrenia compared with depression: differential effects of processing speed, selective attention and vigilance
  publication-title: Acta Psychiatr. Scand.
– volume: 18
  start-page: 206
  year: 2013
  end-page: 214
  ident: bb0070
  article-title: Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia
  publication-title: Mol. Psychiatry
– volume: 206
  start-page: 198
  year: 2015
  end-page: 205
  ident: bb0165
  article-title: Neural responses to dynamic multimodal stimuli and pathology-specific impairments of social cognition in schizophrenia and depression
  publication-title: Br. J. Psychiatry
– start-page: 23
  year: 1995
  end-page: 37
  ident: bb0075
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Computational Learning Theory
– volume: 27
  start-page: 83
  year: 2005
  end-page: 85
  ident: bb0105
  article-title: The elements of statistical learning: data mining, inference and prediction
  publication-title: Math. Intell.
– volume: 151
  start-page: 40
  year: 1994
  end-page: 48
  ident: bb0030
  article-title: The neuropsychological signature of schizophrenia: generalized or differential deficit?
  publication-title: Am. J. Psychiatry
– volume: 4
  start-page: 474
  year: 1998
  end-page: 490
  ident: bb0175
  article-title: A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging
  publication-title: J. Int. Neuropsychol. Soc.
– volume: 157
  start-page: 1379
  year: 2000
  end-page: 1389
  ident: bb0195
  article-title: Depression in schizophrenia: perspective in the era of “atypical” antipsychotic agents
  publication-title: Am. J. Psychiatry
– volume: 8
  year: 2013
  ident: bb0225
  article-title: Convergent and divergent functional connectivity patterns in schizophrenia and depression
  publication-title: PLoS One
– volume: 15
  start-page: 4875
  year: 2010
  end-page: 4889
  ident: bb0005
  article-title: Machine learning techniques for single nucleotide polymorphism—disease classification models in schizophrenia
  publication-title: Molecules
– volume: 84
  start-page: 299
  year: 2014
  end-page: 306
  ident: bb0185
  article-title: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
  publication-title: NeuroImage
– volume: 6
  start-page: 589
  year: 2011
  end-page: 609
  ident: bb0155
  article-title: A heuristic for developing transdiagnostic models of psychopathology: explaining multifinality and divergent trajectories
  publication-title: Perspect. Psychol. Sci.
– start-page: 233
  year: 2006
  end-page: 240
  ident: bb0055
  article-title: The relationship between Precision-Recall and ROC curves
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
– volume: 2
  start-page: 349
  year: 2009
  end-page: 360
  ident: bb0230
  article-title: Multi-class adaboost
  publication-title: Stat. Interface
– volume: 46
  start-page: 2145
  year: 2016
  end-page: 2155
  ident: bb0100
  article-title: Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients
  publication-title: Psychol. Med.
– volume: 11
  start-page: 294
  year: 2014
  end-page: 296
  ident: bb0170
  article-title: Functional annotation of noncoding sequence variants
  publication-title: Nat. Methods
– volume: 35
  start-page: 383
  year: 2009
  end-page: 402
  ident: bb0035
  article-title: Psychiatric comorbidities and schizophrenia
  publication-title: Schizophr. Bull.
– volume: 3
  start-page: 224
  year: 2013
  ident: bb0160
  article-title: Addressing the class imbalance problem in medical datasets
  publication-title: Int. J. Mach. Learn. Comput.
– year: 2003
  ident: bb0140
  article-title: kNN approach to unbalanced data distributions: a case study involving information extraction
  publication-title: Proceedings of Workshop on Learning from Imbalanced Datasets
– start-page: 321
  year: 2002
  end-page: 357
  ident: bb0050
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 29
  start-page: 24
  year: 2015
  end-page: 30
  ident: bb0115
  article-title: Predicting methylphenidate response in attention deficit hyperactivity disorder: a preliminary study
  publication-title: J. Psychopharmacol.
– volume: 39
  start-page: 776
  year: 2013
  end-page: 786
  ident: bb0045
  article-title: Structural and functional neuroimaging studies in major depressive disorder with psychotic features: a critical review
  publication-title: Schizophr. Bull.
– year: 1992
  ident: bb0085
  article-title: Wechsler Adult Intelligence Scale-Revised in China Version
– volume: 66
  start-page: 236
  year: 2009
  end-page: 247
  ident: bb0020
  article-title: The cognitive and affective structure of paranoid delusions: a transdiagnostic investigation of patients with schizophrenia spectrum disorders and depression
  publication-title: Arch. Gen. Psychiatry
– volume: 192
  start-page: 219
  year: 2016
  end-page: 225
  ident: bb0215
  article-title: Individualized identification of euthymic bipolar disorder using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and machine learning
  publication-title: J. Affect. Disord.
– volume: 31
  start-page: 31
  year: 2013
  end-page: 47
  ident: bb0040
  article-title: The role of immune genes in the association between depression and inflammation: a review of recent clinical studies
  publication-title: Brain Behav. Immun.
– volume: 4
  start-page: 166
  year: 1997
  end-page: 174
  ident: bb0210
  article-title: How cognitive is psychomotor slowing in depression? Evidence from a meta-analysis
  publication-title: Aging Neuropsychol. Cogn.
– volume: 53
  start-page: 376
  year: 2003
  end-page: 384
  ident: bb0015
  article-title: Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression
  publication-title: Biol. Psychiatry
– year: 1989
  ident: bb0080
  article-title: Wechsler Memory Scale–Revised in China
– volume: 63
  start-page: 71
  year: 2015
  end-page: 79
  ident: bb0220
  article-title: Gray matter volume abnormalities were associated with sustained attention in unmedicated major depression
  publication-title: Compr. Psychiatry
– volume: 25
  start-page: 79
  year: 2003
  end-page: 93
  ident: bb0065
  article-title: Sensitivity and specificity of memory dysfunction in schizophrenia: a comparison with major depression
  publication-title: J. Clin. Exp. Neuropsychol.
– volume: 40
  start-page: 878
  year: 2014
  end-page: 885
  ident: bb0190
  article-title: Neurocognitive pattern analysis reveals classificatory hierarchy of attention deficits in schizophrenia
  publication-title: Schizophr. Bull.
– volume: 135
  start-page: 1508
  year: 2012
  end-page: 1521
  ident: bb0150
  article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
  publication-title: Brain
– volume: 85
  start-page: 399
  year: 1992
  ident: bb0180
  article-title: Computerized assessment in neuropsychiatry using CANTAB: discussion paper
  publication-title: J. R. Soc. Med.
– volume: 55
  start-page: 401
  year: 2004
  end-page: 430
  ident: bb0205
  article-title: Schizophrenia: etiology and course
  publication-title: Annu. Rev. Psychol.
– volume: 15
  start-page: 1016
  year: 2010
  end-page: 1022
  ident: bb0090
  article-title: The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia
  publication-title: Mol. Psychiatry
– start-page: 431
  year: 2013
  end-page: 439
  ident: bb0130
  article-title: Understanding variable importances in forests of randomized trees
  publication-title: Adv. Neural. Inf.
– volume: 139
  start-page: 81
  year: 2013
  end-page: 132
  ident: bb0200
  article-title: Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review
  publication-title: Psychol. Bull.
– volume: 11
  start-page: 279
  year: 2015
  end-page: 289
  ident: bb0110
  article-title: Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression
  publication-title: Neuropsychiatr. Dis. Treat.
– volume: 40
  start-page: 701
  year: 2015
  end-page: 710
  ident: bb0095
  article-title: Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression
  publication-title: Neuropsychopharmacology
– volume: 62
  start-page: 593
  year: 2005
  end-page: 602
  ident: bb0120
  article-title: Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication
  publication-title: Arch. Gen. Psychiatry
– volume: 3
  start-page: 303
  year: 1990
  end-page: 310
  ident: bb0145
  article-title: Signal detection indices in schizophrenics on a visual, auditory, and bimodal Continuous Performance Test
  publication-title: Schizophr. Res.
– volume: 94
  start-page: 87
  year: 1996
  end-page: 93
  ident: bb0010
  article-title: Contrasts in neuropsychological test profile between patients with first-episode schizophrenia and first-episode affective disorders
  publication-title: Acta Psychiatr. Scand.
– volume: 22
  start-page: 182
  year: 2012
  end-page: 188
  ident: bb0135
  article-title: Prediction of serotonin transporter promoter polymorphism genotypes from single nucleotide polymorphism arrays using machine learning methods
  publication-title: Psychiatr. Genet.
– volume: 22
  start-page: 104
  year: 2007
  end-page: 115
  ident: bb0125
  article-title: Computerized assessment of cognition in schizophrenia: promises and pitfalls of CANTAB
  publication-title: Eur. Psychiatry
– year: 2003
  ident: 10.1016/j.schres.2017.06.004_bb0140
  article-title: kNN approach to unbalanced data distributions: a case study involving information extraction
– volume: 266
  start-page: 25
  issue: 1
  year: 2016
  ident: 10.1016/j.schres.2017.06.004_bb0025
  article-title: Bilaterally reduced claustral volumes in schizophrenia and major depressive disorder: a morphometric postmortem study
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-015-0597-x
– start-page: 321
  year: 2002
  ident: 10.1016/j.schres.2017.06.004_bb0050
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 55
  start-page: 401
  year: 2004
  ident: 10.1016/j.schres.2017.06.004_bb0205
  article-title: Schizophrenia: etiology and course
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.55.090902.141950
– volume: 157
  start-page: 1379
  issue: 9
  year: 2000
  ident: 10.1016/j.schres.2017.06.004_bb0195
  article-title: Depression in schizophrenia: perspective in the era of “atypical” antipsychotic agents
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.157.9.1379
– start-page: 233
  year: 2006
  ident: 10.1016/j.schres.2017.06.004_bb0055
  article-title: The relationship between Precision-Recall and ROC curves
– volume: 4
  start-page: 474
  issue: 5
  year: 1998
  ident: 10.1016/j.schres.2017.06.004_bb0175
  article-title: A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/S1355617798455073
– volume: 135
  start-page: 1508
  issue: Pt. 5
  year: 2012
  ident: 10.1016/j.schres.2017.06.004_bb0150
  article-title: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder
  publication-title: Brain
  doi: 10.1093/brain/aws084
– start-page: 23
  year: 1995
  ident: 10.1016/j.schres.2017.06.004_bb0075
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
– year: 1992
  ident: 10.1016/j.schres.2017.06.004_bb0085
– volume: 40
  start-page: 878
  issue: 4
  year: 2014
  ident: 10.1016/j.schres.2017.06.004_bb0190
  article-title: Neurocognitive pattern analysis reveals classificatory hierarchy of attention deficits in schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbt107
– volume: 84
  start-page: 299
  year: 2014
  ident: 10.1016/j.schres.2017.06.004_bb0185
  article-title: Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.053
– volume: 22
  start-page: 104
  issue: 2
  year: 2007
  ident: 10.1016/j.schres.2017.06.004_bb0125
  article-title: Computerized assessment of cognition in schizophrenia: promises and pitfalls of CANTAB
  publication-title: Eur. Psychiatry
  doi: 10.1016/j.eurpsy.2006.11.004
– volume: 8
  issue: 7
  year: 2013
  ident: 10.1016/j.schres.2017.06.004_bb0225
  article-title: Convergent and divergent functional connectivity patterns in schizophrenia and depression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068250
– volume: 22
  start-page: 182
  issue: 4
  year: 2012
  ident: 10.1016/j.schres.2017.06.004_bb0135
  article-title: Prediction of serotonin transporter promoter polymorphism genotypes from single nucleotide polymorphism arrays using machine learning methods
  publication-title: Psychiatr. Genet.
  doi: 10.1097/YPG.0b013e328353ae23
– volume: 4
  start-page: 166
  issue: 3
  year: 1997
  ident: 10.1016/j.schres.2017.06.004_bb0210
  article-title: How cognitive is psychomotor slowing in depression? Evidence from a meta-analysis
  publication-title: Aging Neuropsychol. Cogn.
  doi: 10.1080/13825589708256645
– volume: 63
  start-page: 71
  year: 2015
  ident: 10.1016/j.schres.2017.06.004_bb0220
  article-title: Gray matter volume abnormalities were associated with sustained attention in unmedicated major depression
  publication-title: Compr. Psychiatry
  doi: 10.1016/j.comppsych.2015.09.003
– volume: 15
  start-page: 4875
  issue: 7
  year: 2010
  ident: 10.1016/j.schres.2017.06.004_bb0005
  article-title: Machine learning techniques for single nucleotide polymorphism—disease classification models in schizophrenia
  publication-title: Molecules
  doi: 10.3390/molecules15074875
– volume: 66
  start-page: 236
  issue: 3
  year: 2009
  ident: 10.1016/j.schres.2017.06.004_bb0020
  article-title: The cognitive and affective structure of paranoid delusions: a transdiagnostic investigation of patients with schizophrenia spectrum disorders and depression
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2009.1
– volume: 15
  start-page: 1016
  issue: 10
  year: 2010
  ident: 10.1016/j.schres.2017.06.004_bb0090
  article-title: The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2009.49
– volume: 29
  start-page: 24
  issue: 1
  year: 2015
  ident: 10.1016/j.schres.2017.06.004_bb0115
  article-title: Predicting methylphenidate response in attention deficit hyperactivity disorder: a preliminary study
  publication-title: J. Psychopharmacol.
  doi: 10.1177/0269881114548438
– volume: 151
  start-page: 40
  issue: 1
  year: 1994
  ident: 10.1016/j.schres.2017.06.004_bb0030
  article-title: The neuropsychological signature of schizophrenia: generalized or differential deficit?
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.151.1.40
– volume: 31
  start-page: 31
  year: 2013
  ident: 10.1016/j.schres.2017.06.004_bb0040
  article-title: The role of immune genes in the association between depression and inflammation: a review of recent clinical studies
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2012.04.009
– volume: 6
  start-page: 589
  issue: 6
  year: 2011
  ident: 10.1016/j.schres.2017.06.004_bb0155
  article-title: A heuristic for developing transdiagnostic models of psychopathology: explaining multifinality and divergent trajectories
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691611419672
– volume: 11
  start-page: 294
  issue: 3
  year: 2014
  ident: 10.1016/j.schres.2017.06.004_bb0170
  article-title: Functional annotation of noncoding sequence variants
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2832
– volume: 108
  start-page: 276
  issue: 4
  year: 2003
  ident: 10.1016/j.schres.2017.06.004_bb0060
  article-title: Attention profile in schizophrenia compared with depression: differential effects of processing speed, selective attention and vigilance
  publication-title: Acta Psychiatr. Scand.
  doi: 10.1034/j.1600-0447.2003.00146.x
– volume: 94
  start-page: 87
  issue: 2
  year: 1996
  ident: 10.1016/j.schres.2017.06.004_bb0010
  article-title: Contrasts in neuropsychological test profile between patients with first-episode schizophrenia and first-episode affective disorders
  publication-title: Acta Psychiatr. Scand.
  doi: 10.1111/j.1600-0447.1996.tb09830.x
– year: 1989
  ident: 10.1016/j.schres.2017.06.004_bb0080
– volume: 192
  start-page: 219
  year: 2016
  ident: 10.1016/j.schres.2017.06.004_bb0215
  article-title: Individualized identification of euthymic bipolar disorder using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and machine learning
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2015.12.053
– volume: 40
  start-page: 701
  issue: 3
  year: 2015
  ident: 10.1016/j.schres.2017.06.004_bb0095
  article-title: Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2014.226
– volume: 62
  start-page: 593
  issue: 6
  year: 2005
  ident: 10.1016/j.schres.2017.06.004_bb0120
  article-title: Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.62.6.593
– volume: 3
  start-page: 224
  issue: 2
  year: 2013
  ident: 10.1016/j.schres.2017.06.004_bb0160
  article-title: Addressing the class imbalance problem in medical datasets
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/IJMLC.2013.V3.307
– volume: 139
  start-page: 81
  issue: 1
  year: 2013
  ident: 10.1016/j.schres.2017.06.004_bb0200
  article-title: Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review
  publication-title: Psychol. Bull.
  doi: 10.1037/a0028727
– volume: 53
  start-page: 376
  issue: 5
  year: 2003
  ident: 10.1016/j.schres.2017.06.004_bb0015
  article-title: Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(02)01674-8
– volume: 25
  start-page: 79
  issue: 1
  year: 2003
  ident: 10.1016/j.schres.2017.06.004_bb0065
  article-title: Sensitivity and specificity of memory dysfunction in schizophrenia: a comparison with major depression
  publication-title: J. Clin. Exp. Neuropsychol.
  doi: 10.1076/jcen.25.1.79.13630
– volume: 11
  start-page: 279
  year: 2015
  ident: 10.1016/j.schres.2017.06.004_bb0110
  article-title: Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S72536
– volume: 85
  start-page: 399
  issue: 7
  year: 1992
  ident: 10.1016/j.schres.2017.06.004_bb0180
  article-title: Computerized assessment in neuropsychiatry using CANTAB: discussion paper
  publication-title: J. R. Soc. Med.
– volume: 3
  start-page: 303
  issue: 5–6
  year: 1990
  ident: 10.1016/j.schres.2017.06.004_bb0145
  article-title: Signal detection indices in schizophrenics on a visual, auditory, and bimodal Continuous Performance Test
  publication-title: Schizophr. Res.
  doi: 10.1016/0920-9964(90)90014-X
– volume: 35
  start-page: 383
  issue: 2
  year: 2009
  ident: 10.1016/j.schres.2017.06.004_bb0035
  article-title: Psychiatric comorbidities and schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbn135
– volume: 2
  start-page: 349
  issue: 3
  year: 2009
  ident: 10.1016/j.schres.2017.06.004_bb0230
  article-title: Multi-class adaboost
  publication-title: Stat. Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– volume: 206
  start-page: 198
  issue: 3
  year: 2015
  ident: 10.1016/j.schres.2017.06.004_bb0165
  article-title: Neural responses to dynamic multimodal stimuli and pathology-specific impairments of social cognition in schizophrenia and depression
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.113.143040
– volume: 39
  start-page: 776
  issue: 4
  year: 2013
  ident: 10.1016/j.schres.2017.06.004_bb0045
  article-title: Structural and functional neuroimaging studies in major depressive disorder with psychotic features: a critical review
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbt054
– volume: 27
  start-page: 83
  issue: 2
  year: 2005
  ident: 10.1016/j.schres.2017.06.004_bb0105
  article-title: The elements of statistical learning: data mining, inference and prediction
  publication-title: Math. Intell.
  doi: 10.1007/BF02985802
– volume: 18
  start-page: 206
  issue: 2
  year: 2013
  ident: 10.1016/j.schres.2017.06.004_bb0070
  article-title: Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2012.110
– volume: 46
  start-page: 2145
  issue: 10
  year: 2016
  ident: 10.1016/j.schres.2017.06.004_bb0100
  article-title: Cortical thickness and surface area correlates with cognitive dysfunction among first-episode psychosis patients
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291716000684
– start-page: 431
  year: 2013
  ident: 10.1016/j.schres.2017.06.004_bb0130
  article-title: Understanding variable importances in forests of randomized trees
  publication-title: Adv. Neural. Inf.
SSID ssj0001507
Score 2.308047
Snippet Neurocognitive impairments are frequently observed in schizophrenia and major depressive disorder (MDD). However, it remains unclear whether reported...
AbstractBackgroundNeurocognitive impairments are frequently observed in schizophrenia and major depressive disorder (MDD). However, it remains unclear whether...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 327
SubjectTerms Endophenotype
Machine learning
Major depressive disorder
Neurocognition
Psychiatric/Mental Health
Schizophrenia
Title Convergence and divergence of neurocognitive patterns in schizophrenia and depression
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0920996417303328
https://www.clinicalkey.es/playcontent/1-s2.0-S0920996417303328
https://dx.doi.org/10.1016/j.schres.2017.06.004
https://www.ncbi.nlm.nih.gov/pubmed/28651909
https://www.proquest.com/docview/1914289328
Volume 192
WOSCitedRecordID wos000426344800050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1573-2509
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0001507
  issn: 0920-9964
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdYx4HLBOJrDKYgIS4oUhI7cXKcRidAVflYq-VmxR9BmVBamhbtz-c5tpNU3bRy4BK1lp-d-L28_Gw__x5C7yIJsECm0sc8FD6hnPgpwHpfJFlZCpJyzkmbbIJOp2meZ9_sVkzTphOgdZ3e3GTL_6pqKANl66Oz_6DurlEogN-gdLiC2uG6l-LPdRz5ynBs6lVxWXV_ddCGJuPoY4aWLb2mCSZvhvF3RtSFydZDDHu5Vc-yBXWrypPKrUBvfhbVzmzf5hf_8KNP6vVRGYEr1VW_sm18140NFybC1MUy976UYh8QlvGI6pYy54BNNjzrQrHhCthx7WaV4VpP-uHJdFAebZlXTfbibSbt6Vd2MZ9M2Gycz94vf_s6yZjejLcZVw7QYUTjLB2hw7PP4_xL9-nW6Lgl2LV36c5atgGBux3fhWXumqu0mGX2GB3ZyYZ3ZozkCXqg6qdoPjAQD7Ts9QbiLUpv20A8ZyBeVXtbBmJEOwN5huYX49n5J98m1_AFocHaL4UsAPoGnCQRB9AnQ44FwZpisAxKEnNMcVQmkhcpCamUJMayVFGowMkXkSrxczSqF7V6iTxaJEERR1zBXJUUgmZlpAAZYi6CgEssjxF2w8SEZZ7XCVB-MRdieM3M4DI9uKyNtCTHyO-kloZ55Z76sdMAc6eK4TvIwH7ukaO3yanGvtMNC1kTsYBdBpk-Z57AcADuw1E6lLR41eDQPfp860yEgTvXe3RFrRYb6CvTFIhZ2_oLYzvd0-tD5IDfs1d7SJ-gR_07-RqN1quNeoMeij_rqlmdogOap6fW-v8CvYPOUQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+and+divergence+of+neurocognitive+patterns+in+schizophrenia+and+depression&rft.jtitle=Schizophrenia+research&rft.au=Liang%2C+Sugai&rft.au=Brown%2C+Matthew+R+G&rft.au=Deng%2C+Wei&rft.au=Wang%2C+Qiang&rft.date=2018-02-01&rft.issn=1573-2509&rft.eissn=1573-2509&rft.volume=192&rft.spage=327&rft_id=info:doi/10.1016%2Fj.schres.2017.06.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09209964%2FS0920996418X00024%2Fcov150h.gif