A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons
The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics)...
Uloženo v:
| Vydáno v: | Frontiers in neurorobotics Ročník 15; s. 704226 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Frontiers Research Foundation
10.08.2021
Frontiers Media S.A |
| Témata: | |
| ISSN: | 1662-5218, 1662-5218 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the exoskeleton assistance. The experiments on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human–machine interaction methods. |
|---|---|
| AbstractList | The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the exoskeleton assistance. The experiments on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human–machine interaction methods. The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the exoskeleton assistance. The experiments on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human-machine interaction methods.The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the exoskeleton assistance. The experiments on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human-machine interaction methods. The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the assistance. The experiments on ten subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human-machine interaction methods. |
| Author | Wei, Baichun Ding, Zhen Yi, Chunzhi Jiang, Feng Guo, Hao Wang, Zhipeng Zhu, Jianfei |
| AuthorAffiliation | 2 Pengcheng Laboratory , Shenzhen , China 3 School of Mechatronics Engineering, Harbin Institute of Technology , Harbin , China 1 School of Computer Science and Technology, Harbin Institute of Technology , Harbin , China |
| AuthorAffiliation_xml | – name: 1 School of Computer Science and Technology, Harbin Institute of Technology , Harbin , China – name: 3 School of Mechatronics Engineering, Harbin Institute of Technology , Harbin , China – name: 2 Pengcheng Laboratory , Shenzhen , China |
| Author_xml | – sequence: 1 givenname: Baichun surname: Wei fullname: Wei, Baichun – sequence: 2 givenname: Zhen surname: Ding fullname: Ding, Zhen – sequence: 3 givenname: Chunzhi surname: Yi fullname: Yi, Chunzhi – sequence: 4 givenname: Hao surname: Guo fullname: Guo, Hao – sequence: 5 givenname: Zhipeng surname: Wang fullname: Wang, Zhipeng – sequence: 6 givenname: Jianfei surname: Zhu fullname: Zhu, Jianfei – sequence: 7 givenname: Feng surname: Jiang fullname: Jiang, Feng |
| BookMark | eNp9UstuEzEUtVARfcAHsBuJDZsJfo-zQSpRCBEFugCxNLbnTuMwsVPbqejf12kqRLtg5Sufh861zyk6CjEAQq8JnjCmpu-GYGOZUEzJpMOcUvkMnRApaSsoUUf_zMfoNOc1xpJKoV6gY8Y57ximJ-jXefM13sDY5PmXRfvBZOibhfGluVzVuf3sA2xM8S63s7jbjhW9TNB7V2JqTOibZcnNMhRIxhUfQ_PTl1Uz_xPzbxihxJBfoueDGTO8ejjP0I-P8--zT-3Ft8Vydn7ROt7h0g6GWCsGLpmVnDOlnFTgzEANVtLxHk-nTMlBCOGMUdbwXrChB9lz7Kys4BlaHnz7aNZ6m_zGpFsdjdf3FzFdaZPqIiNoEIpYwTtrGeVWCKUs4UNHOcFkShWvXu8PXtud3UDvIJRkxkemj5HgV_oq3mjFFMdMVIO3DwYpXu8gF73x2cE4mgBxlzUVUmImCd_nfvOEuo67FOpTVZaoizEqVWWRA8ulmHOC4W8YgvW-C_q-C3rfBX3oQtV0TzTOF7P_pZrZj_9R3gF6PLpl |
| CitedBy_id | crossref_primary_10_3390_s24134106 crossref_primary_10_1109_JSEN_2023_3267490 crossref_primary_10_1109_JIOT_2023_3314150 crossref_primary_10_1088_1741_2552_accd22 crossref_primary_10_1016_j_bspc_2022_104272 crossref_primary_10_1109_TNSRE_2025_3543743 crossref_primary_10_3390_s24206666 crossref_primary_10_3390_electronics13091791 crossref_primary_10_1109_ACCESS_2024_3414175 crossref_primary_10_1155_2024_9426782 |
| Cites_doi | 10.1186/s12984-020-00711-4 10.1111/aor.13004 10.1007/978-3-642-14743-2_3 10.1109/TBME.2011.2161671 10.1109/TCSVT.2021.3071461 10.1109/10.204774 10.3390/s140406891 10.3390/s18072389 10.1109/MEMB.2010.936554 10.1126/science.aav7536 10.1109/TNSRE.2019.2950309 10.1109/ICSMC.2011.6084104 10.1142/S0219843607001138 10.1016/j.robot.2014.08.012 10.3390/s18113765 10.1016/S0021-9290(03)00010-1 10.3389/fnhum.2014.00423 10.1080/10400435.1990.10132142 10.1109/TMECH.2007.897262 10.1109/TBME.2003.813539 10.1109/PHT.2013.6461326 10.1109/TNSRE.2020.2966749 10.1038/nature14539 10.5402/2012/604314 10.1126/scitranslmed.aai9084 10.1186/1743-0003-11-122 10.1109/TIM.2018.2816799 10.1016/j.jbiomech.2017.05.010 10.1109/TNSRE.2018.2796070 10.1016/j.bbe.2013.03.005 10.1016/j.robot.2014.09.032 10.1186/1743-0003-10-79 10.1186/s12984-018-0361-3 10.1109/TNSRE.2014.2323576 10.3390/s16010066 10.1007/978-3-540-30301-5_34 10.1109/ICNC.2008.754 10.1109/10.914793 10.1682/JRRD.2010.09.0177 10.1152/jn.00549.2010 10.3389/fnins.2018.01050 10.1109/BSN.2014.22 10.1109/THMS.2018.2860598 10.1109/ROBIO.2009.5420488 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang. Copyright © 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang. 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang. – notice: Copyright © 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang. 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fnbot.2021.704226 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Biological Science Collection Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1662-5218 |
| ExternalDocumentID | oai_doaj_org_article_e581b547bb324b5588b14f7241019284 PMC8384035 10_3389_fnbot_2021_704226 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFS ADBBV ADDVE ADMLS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 3V. 7XB 8FK ACXDI PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c470t-fa1bb5f463b644388c68ecaf2a086c4d099386f555caa8ba4d53fde6d40cb6993 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687902400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5218 |
| IngestDate | Tue Oct 14 19:07:47 EDT 2025 Tue Nov 04 02:02:55 EST 2025 Fri Sep 05 12:24:33 EDT 2025 Fri Jul 25 11:37:58 EDT 2025 Sat Nov 29 03:48:46 EST 2025 Tue Nov 18 22:30:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-fa1bb5f463b644388c68ecaf2a086c4d099386f555caa8ba4d53fde6d40cb6993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Yuan Zong, Southeast University, China Reviewed by: Deepak Joshi, Indian Institutes of Technology (IIT), India; Ye Ma, Ningbo University, China |
| OpenAccessLink | https://doaj.org/article/e581b547bb324b5588b14f7241019284 |
| PMID | 34447302 |
| PQID | 2559933268 |
| PQPubID | 4424403 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e581b547bb324b5588b14f7241019284 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8384035 proquest_miscellaneous_2566036149 proquest_journals_2559933268 crossref_primary_10_3389_fnbot_2021_704226 crossref_citationtrail_10_3389_fnbot_2021_704226 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-10 |
| PublicationDateYYYYMMDD | 2021-08-10 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Frontiers in neurorobotics |
| PublicationYear | 2021 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Ngeo (B26) 2014; 11 Chadwell (B4) 2020; 17 Hudgins (B17) 1993; 40 LeCun (B21) 2015; 521 Viteckova (B37) 2013; 33 Awad (B2) 2017; 9 Yang (B42) 2008 Joshi (B18) 2013 Scheme (B31) 2011; 48 Taborri (B35) 2016; 16 Williams (B39) 1990; 2 Vu (B38) 2018; 18 Bonato (B3) 2010; 29 Ferris (B12) 2007; 4 Seel (B32) 2014; 14 Kim (B20) 2019; 365 Novak (B27) 2015; 73 Steele (B33) 2017; 59 Chu (B5) 2007; 12 Yi (B43) 2021 Tanghe (B36) 2020; 28 Resnik (B28) 2018; 15 Englehart (B8) 2001; 48 Evans (B10) 2014 Kazerooni (B19) 2008 Ding (B7) 2011 Ryu (B29) 2014 Zhang (B45) 2020; 28 Godiyal (B13); 48 Xia (B40) 2018; 42 Ameri (B1) 2014; 22 Naik (B25) 2018; 26 Li (B22) 2019; 12 Sylos-Labini (B34) 2014; 8 Godiyal (B14); 67 He Huang (B15) 2011; 58 Fan (B11) 2009 Chvatal (B6) 2011; 106 Moreno (B24) 2013; 10 Yan (B41) 2015; 64 Sankai (B30) 2010 Lloyd (B23) 2003; 36 Englehart (B9) 2003; 50 Hioki (B16) 2012; 2012 Yi (B44) 2018; 18 |
| References_xml | – volume: 17 start-page: 93 year: 2020 ident: B4 article-title: Technology for monitoring everyday prosthesis use: a systematic review publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-020-00711-4 – volume: 42 start-page: E67 year: 2018 ident: B40 article-title: EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks: EMG-based estimation of limb movement publication-title: Artif. Organs doi: 10.1111/aor.13004 – start-page: 25 volume-title: Robotics Research year: 2010 ident: B30 article-title: HAL: Hybrid Assistive Limb Based on Cybernics doi: 10.1007/978-3-642-14743-2_3 – volume: 58 start-page: 2867 year: 2011 ident: B15 article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2161671 – start-page: 1 year: 2021 ident: B43 article-title: Continuous prediction of lower-limb kinematics from multi-modal biomedical signals publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3071461 – volume: 40 start-page: 82 year: 1993 ident: B17 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.204774 – volume: 14 start-page: 6891 year: 2014 ident: B32 article-title: IMU-based joint angle measurement for gait analysis publication-title: Sensors doi: 10.3390/s140406891 – volume: 18 start-page: 2389 year: 2018 ident: B38 article-title: ED-FNN: a new deep learning algorithm to detect percentage of the gait cycle for powered prostheses publication-title: Sensors doi: 10.3390/s18072389 – volume: 29 start-page: 25 year: 2010 ident: B3 article-title: Wearable sensors and systems publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2010.936554 – volume: 365 start-page: 668 year: 2019 ident: B20 article-title: Reducing the metabolic rate of walking and running with a versatile, portable exosuit publication-title: Science doi: 10.1126/science.aav7536 – volume: 28 start-page: 211 year: 2020 ident: B36 article-title: Gait trajectory and event prediction from state estimation for exoskeletons during gait publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2950309 – start-page: 2891 year: 2011 ident: B7 article-title: A novel EMG-driven state space model for the estimation of continuous joint movements publication-title: IEEE doi: 10.1109/ICSMC.2011.6084104 – volume: 4 start-page: 507 year: 2007 ident: B12 article-title: A physiologist's perspective on robotic exoskeletons for human locomotion publication-title: Int. J. Human. Robot. doi: 10.1142/S0219843607001138 – volume: 73 start-page: 155 year: 2015 ident: B27 article-title: A survey of sensor fusion methods in wearable robotics publication-title: Rob. Auton. Syst. doi: 10.1016/j.robot.2014.08.012 – volume: 18 start-page: 3765 year: 2018 ident: B44 article-title: Estimating three-dimensional body orientation based on an improved complementary filter for human motion tracking publication-title: Sensors doi: 10.3390/s18113765 – volume: 36 start-page: 765 year: 2003 ident: B23 article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00010-1 – volume: 8 start-page: 1 year: 2014 ident: B34 article-title: EMG patterns during assisted walking in the exoskeleton publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00423 – volume: 2 start-page: 3 year: 1990 ident: B39 article-title: Practical methods for controlling powered upper-extremity prostheses publication-title: Assis. Technol. doi: 10.1080/10400435.1990.10132142 – volume: 12 start-page: 282 year: 2007 ident: B5 article-title: A supervised feature-projection-based real-time emg pattern recognition for multifunction myoelectric hand control publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2007.897262 – volume: 50 start-page: 848 year: 2003 ident: B9 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2003.813539 – start-page: 228 volume-title: 2013 IEEE Point-of-Care Healthcare Technologies (PHT) year: 2013 ident: B18 article-title: Classification of gait phases from lower limb EMG: application to exoskeleton orthosis doi: 10.1109/PHT.2013.6461326 – volume: 28 start-page: 646 year: 2020 ident: B45 article-title: Unsupervised Cross-Subject Adaptation for Predicting Human Locomotion Intent publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2966749 – volume: 521 start-page: 436 year: 2015 ident: B21 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 2012 start-page: 1 year: 2012 ident: B16 article-title: Estimation of finger joint angles from sEMG using a neural network including time delay factor and recurrent structure publication-title: ISRN Rehabi. doi: 10.5402/2012/604314 – volume: 9 start-page: eaai9084 year: 2017 ident: B2 article-title: A soft robotic exosuit improves walking in patients after stroke publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aai9084 – volume: 11 start-page: 122 year: 2014 ident: B26 article-title: Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-122 – start-page: 1 year: 2014 ident: B29 article-title: Multiple gait phase recognition using boosted classifiers based on sEMG signal and classification matrix publication-title: International Conference on Ubiquitous Information Management and Communication – volume: 67 start-page: 2314 ident: B14 article-title: A force myography-based system for gait event detection in overground and ramp walking publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2816799 – volume: 59 start-page: 50 year: 2017 ident: B33 article-title: Muscle recruitment and coordination with an ankle exoskeleton publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.05.010 – volume: 26 start-page: 675 year: 2018 ident: B25 article-title: An ICA-EBM-based sEMG classifier for recognizing lower limb movements in individuals with and without knee pathology publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2796070 – volume: 33 start-page: 96 year: 2013 ident: B37 article-title: Wearable lower limb robotics: A review publication-title: Biocybern. Biomedi. Eng. doi: 10.1016/j.bbe.2013.03.005 – volume: 64 start-page: 120 year: 2015 ident: B41 article-title: Review of assistive strategies in powered lower-limb orthoses and exoskeletons publication-title: Rob. Auton. Syst. doi: 10.1016/j.robot.2014.09.032 – volume: 10 start-page: 79 year: 2013 ident: B24 article-title: Effects of robotic guidance on the coordination of locomotion publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-10-79 – volume: 15 start-page: 23 year: 2018 ident: B28 article-title: Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control publication-title: J. NeuroEng. Rehabil. doi: 10.1186/s12984-018-0361-3 – volume: 22 start-page: 1198 year: 2014 ident: B1 article-title: Support vector regression for improved real-time, simultaneous myoelectric control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2323576 – volume: 16 start-page: 66 year: 2016 ident: B35 article-title: Gait partitioning methods: a systematic review publication-title: Sensors doi: 10.3390/s16010066 – start-page: 773 volume-title: Springer Handbook of Robotics year: 2008 ident: B19 article-title: Exoskeletons for human performance augmentation doi: 10.1007/978-3-540-30301-5_34 – start-page: 399 year: 2008 ident: B42 article-title: Lower extreme carrying exoskeleton robot adative control using wavelet neural networks publication-title: IEEE doi: 10.1109/ICNC.2008.754 – volume: 48 start-page: 302 year: 2001 ident: B8 article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.914793 – volume: 48 start-page: 643 year: 2011 ident: B31 article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use publication-title: JRRD doi: 10.1682/JRRD.2010.09.0177 – volume: 106 start-page: 999 year: 2011 ident: B6 article-title: Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors publication-title: J. Neurophysiol. doi: 10.1152/jn.00549.2010 – volume: 12 start-page: 1050 year: 2019 ident: B22 article-title: Muscle synergy alteration of human during walking with lower limb exoskeleton publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.01050 – start-page: 149 volume-title: 2014 11th International Conference on Wearable and Implantable Body Sensor Networks year: 2014 ident: B10 article-title: Detection of gait phases using orient specks for mobile clinical gait analysis doi: 10.1109/BSN.2014.22 – volume: 48 start-page: 648 ident: B13 article-title: Force myography based novel strategy for locomotion classification publication-title: IEEE Trans. Human-Mach. Syst. doi: 10.1109/THMS.2018.2860598 – start-page: 2527 volume-title: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO) year: 2009 ident: B11 article-title: Mechanism design and motion control of a parallel ankle joint for rehabilitation robotic exoskeleton doi: 10.1109/ROBIO.2009.5420488 |
| SSID | ssj0062658 |
| Score | 2.279209 |
| Snippet | The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 704226 |
| SubjectTerms | Algorithms Deep learning Discriminant analysis Electromyography Exoskeleton Gait gait recognition Human mechanics Kinematics kinematics prediction long short-term memory Machine learning Methods motion decoding algorithm Neuroscience Pattern recognition Periodicity Principal components analysis Prostheses User training |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADb0RKi4zECck0WT_inKq22hYkutoDj96C7TjdFatku8lW_PzOONltc-mFWxTbSqLxeL555BtCPmmw2spjxJ0bwQR4tcx6WzJny8ym2vo4BNx-fU8nE31xkU37gFvTl1VuzsRwUBe1wxj5QaDG4gA29OHyimHXKMyu9i00HpJHgGwSLOk6H003JzFgdam7TCY4YtlBWdkayydHyZcUqa_UwBYFyv4BzhxWSd4xO6fP__eFX5BnPeCkR90OeUke-OoVeXqHhvA1-XNEJ_W1X9BmfH7GjsGuFfTMzFs6ncE1NhjuiF0bdlKvlwsYna4wvwPuOjVVQb-1DQ2Rxe4nCfp73s7o-F_d_AWbBtiyeUN-no5_nHxlfecF5kQat6w0ibWyFIpbwEtca6e0d6YcGfCAnCgAVnKtSimlM0ZbIwrJy8KrQsTOKhh8S3aquvLvCI0zyxOuC2mx47jJdAIOpYZFPlMuU0lE4o0MctfTkmN3jEUO7gmKLQ9iy1FseSe2iHzeLll2nBz3TT5GwW4nIp12uFGvLvNeO3MvAb1LkVoL-NJKqbVNRJkCukEErEVE9jYyznsdb_JbAUfk43YYtBNTLqby9RrnKAUYAdzQiKSD7TR4oeFINZ8Fnm_Nwfvmcvf-h78nT_BzWaDp3SM77Wrt98ljd93Om9WHoBA342oWNg priority: 102 providerName: ProQuest |
| Title | A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons |
| URI | https://www.proquest.com/docview/2559933268 https://www.proquest.com/docview/2566036149 https://pubmed.ncbi.nlm.nih.gov/PMC8384035 https://doaj.org/article/e581b547bb324b5588b14f7241019284 |
| Volume | 15 |
| WOSCitedRecordID | wos000687902400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5218 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M7P dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5218 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5218 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: PIMPY dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5218 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M2P dateStart: 20071102 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOK57asktlJE5IYZM6fuS4XWWXlWgVIR7lFGzHUSuqZNWkK078dsZOWjUXuHCxoowtJWM783228w3AW4lRm1u34k5VHMTIagNtdRkYXSZaSG1Dv-D29aOYz-VikWQHqb7cmbBOHrhz3LllCKxYLLTG0K8Zk1JHcSkw8DhwIr0SaCiSHZnqvsGI0pns9jCRgiXnZaVrd3ByEr0XTvSKD6KQF-sfIMzh-ciDgHP1BI57pEguuid8Cvds9QweH-gHPocfF2Re39k1adLZdTDFgFSQa7VqSbbEa5cZuFNkbYLLenu7Rmu2cRszyLOJqgpy0zbELwl2fzeQb6t2SdJfdfMTgxGCwuYFfLlKP19-CPqUCYGJRdgGpYq0ZmXMqUagQ6U0XFqjyolC6mLiAvEglbxkjBmlpFZxwWhZWF7EodEcjS_hqKorewIkTDSNqCyYdqnCVSIjZIISG9mEm4RHIwh3LsxNryfu0lqsc-QVzuu593ruvJ53Xh_Bu32T205M42-Vp65f9hWdDra_gaMj70dH_q_RMYKzXa_m_eRscq-yRhG3yhG82ZtxWrm9ElXZeuvqcI7BHfnjCMRgNAweaGipVksv0C0p0mbKXv2PNziFR84pgVfhPYOjdrO1r-GhuWtXzWYM98VCjuHBNJ1nn8Z-DmA5m2SuFL78naI9u5ll3_8AX_0NjQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQceCNSChgJLkihediOc0CoLdt21e1qDwV6S23HYVddJUuSLfCn-I3MJJulufTWA7cotpU4_jLzjR_fEPJWgtcWFmfcQ8VcBlGtq63OXKOzWEdSW6-ZcPs6isZjeXYWTzbIn-4sDG6r7GxiY6jTwuAc-U4jjRUC2ZCfFj9czBqFq6tdCo0WFsf2908I2aqPw88wvu-C4GBwun_krrIKuIZFXu1myteaZ0yEGrhAKKUR0hqVBQrYvWEpUKZQioxzbpSSWrGUh1lqRco8o0WM4ktg8m8xVBbDrYLBpLP8EBtw2a6cQuAX72S5LnC7ZuB_iFBqS_R8X5MioMdr-7syr7i5gwf_2wd6SO6vCDXdbf-AR2TD5o_JvSsyi0_I-S4dF5d2TqvByaG7B347pYdqVtPJFK4xgXIrXFu5-8VyMYfSSYnrV3VRUpWndFhXtJk5bQ-B0G-zekoHv4rqAnw2cOfqKflyI118RjbzIrfPCfViHfqhTLnGjOoqlj4EzBIa2ViYWPgO8boxT8xKdh2zf8wTCL8QJkkDkwRhkrQwccj7dZNFqzlyXeU9BNK6IsqFNzeK8nuysj6J5RCdcBZpDfxZcy6l9lkWAXtDhi-ZQ7Y7TCUrG1Yl_wDlkDfrYrA-uKSkclsssY4QwIEgzHZI1INv74X6Jfls2uiYy1AyL-Rb1z_8NblzdHoySkbD8fELche77jaSxNtksy6X9iW5bS7rWVW-an5GSs5vGtx_AVDndK0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tugjBgTeisICR4IIUmjS24xwQ2ke7VLtb5cBj95S1HYdWVElp0gX-Gr-OcR5lc9nbHrhFsa3E8ZeZb_z4BuC1QK_NjZ1x9yV1KEa1jjIqdbRKQxUIZdxqwu3LcTCditPTMNqCP-1ZGLutsrWJlaFOcm3nyAeVNJaPZEMM0mZbRHQw_rD84dgMUnaltU2nUUPkyPz-ieFb8X5ygGP9Zjgcjz7tf3SaDAOOpoFbOqn0lGIp5b5CXuALobkwWqZDiUxf0wTpky94yhjTUgolacL8NDE8oa5WPLRCTGj-t5GS02EPtqPJSXTW-gGMFJio11ExDAwHaaZyu3lz6L0LrPAW73jCKmFAh-V292hecnrju__z57oHdxqqTXbrf-M-bJnsAdy-JMD4EM53yTS_MAtSjE4OnT306Ak5lPOSRDO8tqmVa0nbwtnP18sFlkYru7JV5isis4RMyoJUc6r18RDydV7OyOhXXnxHb46sungEn6-li4-hl-WZeQLEDZXv-SJhyuZal6HwMJQW2MiEXIfc64Pbjn-sG0F2mxdkEWNgZiETV5CJLWTiGjJ9eLtpsqzVSK6qvGdBtalohcSrG_nqW9zYpdgwjFsYDZRCZq0YE0J5NA2Q11nuL2gfdlp8xY11K-J_4OrDq00x2iW72CQzk69tHc6RHWEA3oegA-XOC3VLsvmsUjgXvqCuz55e_fCXcBMxHR9PpkfP4JbtuVNpFe9Ar1ytzXO4oS_KebF60fyZBM6vG91_AU9QfvY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+sEMG-Based+Gait+Phase-Kinematics-Coupled+Predictor+and+Its+Interaction+With+Exoskeletons&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Wei%2C+Baichun&rft.au=Ding%2C+Zhen&rft.au=Yi%2C+Chunzhi&rft.au=Guo%2C+Hao&rft.date=2021-08-10&rft.issn=1662-5218&rft.eissn=1662-5218&rft.volume=15&rft_id=info:doi/10.3389%2Ffnbot.2021.704226&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnbot_2021_704226 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon |