A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons

The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neurorobotics Ročník 15; s. 704226
Hlavní autoři: Wei, Baichun, Ding, Zhen, Yi, Chunzhi, Guo, Hao, Wang, Zhipeng, Zhu, Jianfei, Jiang, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Frontiers Research Foundation 10.08.2021
Frontiers Media S.A
Témata:
ISSN:1662-5218, 1662-5218
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the exoskeleton assistance. The experiments on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human–machine interaction methods.
AbstractList The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the exoskeleton assistance. The experiments on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human–machine interaction methods.
The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the exoskeleton assistance. The experiments on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human-machine interaction methods.The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the exoskeleton assistance. The experiments on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human-machine interaction methods.
The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding algorithms is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and continuous motion parameters (e.g., kinematics). In this paper, we propose a novel algorithm that uses the surface electromyography (sEMG) signals that are generated prior to their corresponding motions to perform both gait phase recognition and lower-limb kinematics prediction. Particularly, we first propose an end-to-end architecture that uses the gait phase and EMG signals as the priori of the kinematics predictor. In so doing, the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle set and reduce the number of sensors according to the muscle effects in a gait cycle. Finally, we experimentally investigate how the assistance of exoskeletons can affect the motion intent predictor, and we propose a novel paradigm to make the predictor adapt to the change of data distribution caused by the assistance. The experiments on ten subjects demonstrate the effectiveness of our algorithm and reveal the interaction between assistance and the kinematics predictor. This study would aid the design of exoskeleton-oriented motion-decoding and human-machine interaction methods.
Author Wei, Baichun
Ding, Zhen
Yi, Chunzhi
Jiang, Feng
Guo, Hao
Wang, Zhipeng
Zhu, Jianfei
AuthorAffiliation 2 Pengcheng Laboratory , Shenzhen , China
3 School of Mechatronics Engineering, Harbin Institute of Technology , Harbin , China
1 School of Computer Science and Technology, Harbin Institute of Technology , Harbin , China
AuthorAffiliation_xml – name: 1 School of Computer Science and Technology, Harbin Institute of Technology , Harbin , China
– name: 3 School of Mechatronics Engineering, Harbin Institute of Technology , Harbin , China
– name: 2 Pengcheng Laboratory , Shenzhen , China
Author_xml – sequence: 1
  givenname: Baichun
  surname: Wei
  fullname: Wei, Baichun
– sequence: 2
  givenname: Zhen
  surname: Ding
  fullname: Ding, Zhen
– sequence: 3
  givenname: Chunzhi
  surname: Yi
  fullname: Yi, Chunzhi
– sequence: 4
  givenname: Hao
  surname: Guo
  fullname: Guo, Hao
– sequence: 5
  givenname: Zhipeng
  surname: Wang
  fullname: Wang, Zhipeng
– sequence: 6
  givenname: Jianfei
  surname: Zhu
  fullname: Zhu, Jianfei
– sequence: 7
  givenname: Feng
  surname: Jiang
  fullname: Jiang, Feng
BookMark eNp9UstuEzEUtVARfcAHsBuJDZsJfo-zQSpRCBEFugCxNLbnTuMwsVPbqejf12kqRLtg5Sufh861zyk6CjEAQq8JnjCmpu-GYGOZUEzJpMOcUvkMnRApaSsoUUf_zMfoNOc1xpJKoV6gY8Y57ximJ-jXefM13sDY5PmXRfvBZOibhfGluVzVuf3sA2xM8S63s7jbjhW9TNB7V2JqTOibZcnNMhRIxhUfQ_PTl1Uz_xPzbxihxJBfoueDGTO8ejjP0I-P8--zT-3Ft8Vydn7ROt7h0g6GWCsGLpmVnDOlnFTgzEANVtLxHk-nTMlBCOGMUdbwXrChB9lz7Kys4BlaHnz7aNZ6m_zGpFsdjdf3FzFdaZPqIiNoEIpYwTtrGeVWCKUs4UNHOcFkShWvXu8PXtud3UDvIJRkxkemj5HgV_oq3mjFFMdMVIO3DwYpXu8gF73x2cE4mgBxlzUVUmImCd_nfvOEuo67FOpTVZaoizEqVWWRA8ulmHOC4W8YgvW-C_q-C3rfBX3oQtV0TzTOF7P_pZrZj_9R3gF6PLpl
CitedBy_id crossref_primary_10_3390_s24134106
crossref_primary_10_1109_JSEN_2023_3267490
crossref_primary_10_1109_JIOT_2023_3314150
crossref_primary_10_1088_1741_2552_accd22
crossref_primary_10_1016_j_bspc_2022_104272
crossref_primary_10_1109_TNSRE_2025_3543743
crossref_primary_10_3390_s24206666
crossref_primary_10_3390_electronics13091791
crossref_primary_10_1109_ACCESS_2024_3414175
crossref_primary_10_1155_2024_9426782
Cites_doi 10.1186/s12984-020-00711-4
10.1111/aor.13004
10.1007/978-3-642-14743-2_3
10.1109/TBME.2011.2161671
10.1109/TCSVT.2021.3071461
10.1109/10.204774
10.3390/s140406891
10.3390/s18072389
10.1109/MEMB.2010.936554
10.1126/science.aav7536
10.1109/TNSRE.2019.2950309
10.1109/ICSMC.2011.6084104
10.1142/S0219843607001138
10.1016/j.robot.2014.08.012
10.3390/s18113765
10.1016/S0021-9290(03)00010-1
10.3389/fnhum.2014.00423
10.1080/10400435.1990.10132142
10.1109/TMECH.2007.897262
10.1109/TBME.2003.813539
10.1109/PHT.2013.6461326
10.1109/TNSRE.2020.2966749
10.1038/nature14539
10.5402/2012/604314
10.1126/scitranslmed.aai9084
10.1186/1743-0003-11-122
10.1109/TIM.2018.2816799
10.1016/j.jbiomech.2017.05.010
10.1109/TNSRE.2018.2796070
10.1016/j.bbe.2013.03.005
10.1016/j.robot.2014.09.032
10.1186/1743-0003-10-79
10.1186/s12984-018-0361-3
10.1109/TNSRE.2014.2323576
10.3390/s16010066
10.1007/978-3-540-30301-5_34
10.1109/ICNC.2008.754
10.1109/10.914793
10.1682/JRRD.2010.09.0177
10.1152/jn.00549.2010
10.3389/fnins.2018.01050
10.1109/BSN.2014.22
10.1109/THMS.2018.2860598
10.1109/ROBIO.2009.5420488
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang.
Copyright © 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang. 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang.
– notice: Copyright © 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang. 2021 Wei, Ding, Yi, Guo, Wang, Zhu and Jiang
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnbot.2021.704226
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Biological Science Collection
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1662-5218
ExternalDocumentID oai_doaj_org_article_e581b547bb324b5588b14f7241019284
PMC8384035
10_3389_fnbot_2021_704226
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFS
ADBBV
ADDVE
ADMLS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
3V.
7XB
8FK
ACXDI
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c470t-fa1bb5f463b644388c68ecaf2a086c4d099386f555caa8ba4d53fde6d40cb6993
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687902400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5218
IngestDate Tue Oct 14 19:07:47 EDT 2025
Tue Nov 04 02:02:55 EST 2025
Fri Sep 05 12:24:33 EDT 2025
Fri Jul 25 11:37:58 EDT 2025
Sat Nov 29 03:48:46 EST 2025
Tue Nov 18 22:30:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-fa1bb5f463b644388c68ecaf2a086c4d099386f555caa8ba4d53fde6d40cb6993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Yuan Zong, Southeast University, China
Reviewed by: Deepak Joshi, Indian Institutes of Technology (IIT), India; Ye Ma, Ningbo University, China
OpenAccessLink https://doaj.org/article/e581b547bb324b5588b14f7241019284
PMID 34447302
PQID 2559933268
PQPubID 4424403
ParticipantIDs doaj_primary_oai_doaj_org_article_e581b547bb324b5588b14f7241019284
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8384035
proquest_miscellaneous_2566036149
proquest_journals_2559933268
crossref_primary_10_3389_fnbot_2021_704226
crossref_citationtrail_10_3389_fnbot_2021_704226
PublicationCentury 2000
PublicationDate 2021-08-10
PublicationDateYYYYMMDD 2021-08-10
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-10
  day: 10
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neurorobotics
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Ngeo (B26) 2014; 11
Chadwell (B4) 2020; 17
Hudgins (B17) 1993; 40
LeCun (B21) 2015; 521
Viteckova (B37) 2013; 33
Awad (B2) 2017; 9
Yang (B42) 2008
Joshi (B18) 2013
Scheme (B31) 2011; 48
Taborri (B35) 2016; 16
Williams (B39) 1990; 2
Vu (B38) 2018; 18
Bonato (B3) 2010; 29
Ferris (B12) 2007; 4
Seel (B32) 2014; 14
Kim (B20) 2019; 365
Novak (B27) 2015; 73
Steele (B33) 2017; 59
Chu (B5) 2007; 12
Yi (B43) 2021
Tanghe (B36) 2020; 28
Resnik (B28) 2018; 15
Englehart (B8) 2001; 48
Evans (B10) 2014
Kazerooni (B19) 2008
Ding (B7) 2011
Ryu (B29) 2014
Zhang (B45) 2020; 28
Godiyal (B13); 48
Xia (B40) 2018; 42
Ameri (B1) 2014; 22
Naik (B25) 2018; 26
Li (B22) 2019; 12
Sylos-Labini (B34) 2014; 8
Godiyal (B14); 67
He Huang (B15) 2011; 58
Fan (B11) 2009
Chvatal (B6) 2011; 106
Moreno (B24) 2013; 10
Yan (B41) 2015; 64
Sankai (B30) 2010
Lloyd (B23) 2003; 36
Englehart (B9) 2003; 50
Hioki (B16) 2012; 2012
Yi (B44) 2018; 18
References_xml – volume: 17
  start-page: 93
  year: 2020
  ident: B4
  article-title: Technology for monitoring everyday prosthesis use: a systematic review
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-020-00711-4
– volume: 42
  start-page: E67
  year: 2018
  ident: B40
  article-title: EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks: EMG-based estimation of limb movement
  publication-title: Artif. Organs
  doi: 10.1111/aor.13004
– start-page: 25
  volume-title: Robotics Research
  year: 2010
  ident: B30
  article-title: HAL: Hybrid Assistive Limb Based on Cybernics
  doi: 10.1007/978-3-642-14743-2_3
– volume: 58
  start-page: 2867
  year: 2011
  ident: B15
  article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161671
– start-page: 1
  year: 2021
  ident: B43
  article-title: Continuous prediction of lower-limb kinematics from multi-modal biomedical signals
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3071461
– volume: 40
  start-page: 82
  year: 1993
  ident: B17
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 14
  start-page: 6891
  year: 2014
  ident: B32
  article-title: IMU-based joint angle measurement for gait analysis
  publication-title: Sensors
  doi: 10.3390/s140406891
– volume: 18
  start-page: 2389
  year: 2018
  ident: B38
  article-title: ED-FNN: a new deep learning algorithm to detect percentage of the gait cycle for powered prostheses
  publication-title: Sensors
  doi: 10.3390/s18072389
– volume: 29
  start-page: 25
  year: 2010
  ident: B3
  article-title: Wearable sensors and systems
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2010.936554
– volume: 365
  start-page: 668
  year: 2019
  ident: B20
  article-title: Reducing the metabolic rate of walking and running with a versatile, portable exosuit
  publication-title: Science
  doi: 10.1126/science.aav7536
– volume: 28
  start-page: 211
  year: 2020
  ident: B36
  article-title: Gait trajectory and event prediction from state estimation for exoskeletons during gait
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2950309
– start-page: 2891
  year: 2011
  ident: B7
  article-title: A novel EMG-driven state space model for the estimation of continuous joint movements
  publication-title: IEEE
  doi: 10.1109/ICSMC.2011.6084104
– volume: 4
  start-page: 507
  year: 2007
  ident: B12
  article-title: A physiologist's perspective on robotic exoskeletons for human locomotion
  publication-title: Int. J. Human. Robot.
  doi: 10.1142/S0219843607001138
– volume: 73
  start-page: 155
  year: 2015
  ident: B27
  article-title: A survey of sensor fusion methods in wearable robotics
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2014.08.012
– volume: 18
  start-page: 3765
  year: 2018
  ident: B44
  article-title: Estimating three-dimensional body orientation based on an improved complementary filter for human motion tracking
  publication-title: Sensors
  doi: 10.3390/s18113765
– volume: 36
  start-page: 765
  year: 2003
  ident: B23
  article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00010-1
– volume: 8
  start-page: 1
  year: 2014
  ident: B34
  article-title: EMG patterns during assisted walking in the exoskeleton
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00423
– volume: 2
  start-page: 3
  year: 1990
  ident: B39
  article-title: Practical methods for controlling powered upper-extremity prostheses
  publication-title: Assis. Technol.
  doi: 10.1080/10400435.1990.10132142
– volume: 12
  start-page: 282
  year: 2007
  ident: B5
  article-title: A supervised feature-projection-based real-time emg pattern recognition for multifunction myoelectric hand control
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2007.897262
– volume: 50
  start-page: 848
  year: 2003
  ident: B9
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2003.813539
– start-page: 228
  volume-title: 2013 IEEE Point-of-Care Healthcare Technologies (PHT)
  year: 2013
  ident: B18
  article-title: Classification of gait phases from lower limb EMG: application to exoskeleton orthosis
  doi: 10.1109/PHT.2013.6461326
– volume: 28
  start-page: 646
  year: 2020
  ident: B45
  article-title: Unsupervised Cross-Subject Adaptation for Predicting Human Locomotion Intent
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2966749
– volume: 521
  start-page: 436
  year: 2015
  ident: B21
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2012
  start-page: 1
  year: 2012
  ident: B16
  article-title: Estimation of finger joint angles from sEMG using a neural network including time delay factor and recurrent structure
  publication-title: ISRN Rehabi.
  doi: 10.5402/2012/604314
– volume: 9
  start-page: eaai9084
  year: 2017
  ident: B2
  article-title: A soft robotic exosuit improves walking in patients after stroke
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aai9084
– volume: 11
  start-page: 122
  year: 2014
  ident: B26
  article-title: Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-122
– start-page: 1
  year: 2014
  ident: B29
  article-title: Multiple gait phase recognition using boosted classifiers based on sEMG signal and classification matrix
  publication-title: International Conference on Ubiquitous Information Management and Communication
– volume: 67
  start-page: 2314
  ident: B14
  article-title: A force myography-based system for gait event detection in overground and ramp walking
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2816799
– volume: 59
  start-page: 50
  year: 2017
  ident: B33
  article-title: Muscle recruitment and coordination with an ankle exoskeleton
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.05.010
– volume: 26
  start-page: 675
  year: 2018
  ident: B25
  article-title: An ICA-EBM-based sEMG classifier for recognizing lower limb movements in individuals with and without knee pathology
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2796070
– volume: 33
  start-page: 96
  year: 2013
  ident: B37
  article-title: Wearable lower limb robotics: A review
  publication-title: Biocybern. Biomedi. Eng.
  doi: 10.1016/j.bbe.2013.03.005
– volume: 64
  start-page: 120
  year: 2015
  ident: B41
  article-title: Review of assistive strategies in powered lower-limb orthoses and exoskeletons
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2014.09.032
– volume: 10
  start-page: 79
  year: 2013
  ident: B24
  article-title: Effects of robotic guidance on the coordination of locomotion
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-10-79
– volume: 15
  start-page: 23
  year: 2018
  ident: B28
  article-title: Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-018-0361-3
– volume: 22
  start-page: 1198
  year: 2014
  ident: B1
  article-title: Support vector regression for improved real-time, simultaneous myoelectric control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2323576
– volume: 16
  start-page: 66
  year: 2016
  ident: B35
  article-title: Gait partitioning methods: a systematic review
  publication-title: Sensors
  doi: 10.3390/s16010066
– start-page: 773
  volume-title: Springer Handbook of Robotics
  year: 2008
  ident: B19
  article-title: Exoskeletons for human performance augmentation
  doi: 10.1007/978-3-540-30301-5_34
– start-page: 399
  year: 2008
  ident: B42
  article-title: Lower extreme carrying exoskeleton robot adative control using wavelet neural networks
  publication-title: IEEE
  doi: 10.1109/ICNC.2008.754
– volume: 48
  start-page: 302
  year: 2001
  ident: B8
  article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.914793
– volume: 48
  start-page: 643
  year: 2011
  ident: B31
  article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use
  publication-title: JRRD
  doi: 10.1682/JRRD.2010.09.0177
– volume: 106
  start-page: 999
  year: 2011
  ident: B6
  article-title: Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00549.2010
– volume: 12
  start-page: 1050
  year: 2019
  ident: B22
  article-title: Muscle synergy alteration of human during walking with lower limb exoskeleton
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.01050
– start-page: 149
  volume-title: 2014 11th International Conference on Wearable and Implantable Body Sensor Networks
  year: 2014
  ident: B10
  article-title: Detection of gait phases using orient specks for mobile clinical gait analysis
  doi: 10.1109/BSN.2014.22
– volume: 48
  start-page: 648
  ident: B13
  article-title: Force myography based novel strategy for locomotion classification
  publication-title: IEEE Trans. Human-Mach. Syst.
  doi: 10.1109/THMS.2018.2860598
– start-page: 2527
  volume-title: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO)
  year: 2009
  ident: B11
  article-title: Mechanism design and motion control of a parallel ankle joint for rehabilitation robotic exoskeleton
  doi: 10.1109/ROBIO.2009.5420488
SSID ssj0062658
Score 2.279209
Snippet The interaction between human and exoskeletons increasingly relies on the precise decoding of human motion. One main issue of the current motion decoding...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 704226
SubjectTerms Algorithms
Deep learning
Discriminant analysis
Electromyography
Exoskeleton
Gait
gait recognition
Human mechanics
Kinematics
kinematics prediction
long short-term memory
Machine learning
Methods
motion decoding algorithm
Neuroscience
Pattern recognition
Periodicity
Principal components analysis
Prostheses
User training
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIADb0RKi4zECck0WT_inKq22hYkutoDj96C7TjdFatku8lW_PzOONltc-mFWxTbSqLxeL555BtCPmmw2spjxJ0bwQR4tcx6WzJny8ym2vo4BNx-fU8nE31xkU37gFvTl1VuzsRwUBe1wxj5QaDG4gA29OHyimHXKMyu9i00HpJHgGwSLOk6H003JzFgdam7TCY4YtlBWdkayydHyZcUqa_UwBYFyv4BzhxWSd4xO6fP__eFX5BnPeCkR90OeUke-OoVeXqHhvA1-XNEJ_W1X9BmfH7GjsGuFfTMzFs6ncE1NhjuiF0bdlKvlwsYna4wvwPuOjVVQb-1DQ2Rxe4nCfp73s7o-F_d_AWbBtiyeUN-no5_nHxlfecF5kQat6w0ibWyFIpbwEtca6e0d6YcGfCAnCgAVnKtSimlM0ZbIwrJy8KrQsTOKhh8S3aquvLvCI0zyxOuC2mx47jJdAIOpYZFPlMuU0lE4o0MctfTkmN3jEUO7gmKLQ9iy1FseSe2iHzeLll2nBz3TT5GwW4nIp12uFGvLvNeO3MvAb1LkVoL-NJKqbVNRJkCukEErEVE9jYyznsdb_JbAUfk43YYtBNTLqby9RrnKAUYAdzQiKSD7TR4oeFINZ8Fnm_Nwfvmcvf-h78nT_BzWaDp3SM77Wrt98ljd93Om9WHoBA342oWNg
  priority: 102
  providerName: ProQuest
Title A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons
URI https://www.proquest.com/docview/2559933268
https://www.proquest.com/docview/2566036149
https://pubmed.ncbi.nlm.nih.gov/PMC8384035
https://doaj.org/article/e581b547bb324b5588b14f7241019284
Volume 15
WOSCitedRecordID wos000687902400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOK57asktlJE5IYZM6fuS4XWWXlWgVIR7lFGzHUSuqZNWkK078dsZOWjUXuHCxoowtJWM783228w3AW4lRm1u34k5VHMTIagNtdRkYXSZaSG1Dv-D29aOYz-VikWQHqb7cmbBOHrhz3LllCKxYLLTG0K8Zk1JHcSkw8DhwIr0SaCiSHZnqvsGI0pns9jCRgiXnZaVrd3ByEr0XTvSKD6KQF-sfIMzh-ciDgHP1BI57pEguuid8Cvds9QweH-gHPocfF2Re39k1adLZdTDFgFSQa7VqSbbEa5cZuFNkbYLLenu7Rmu2cRszyLOJqgpy0zbELwl2fzeQb6t2SdJfdfMTgxGCwuYFfLlKP19-CPqUCYGJRdgGpYq0ZmXMqUagQ6U0XFqjyolC6mLiAvEglbxkjBmlpFZxwWhZWF7EodEcjS_hqKorewIkTDSNqCyYdqnCVSIjZIISG9mEm4RHIwh3LsxNryfu0lqsc-QVzuu593ruvJ53Xh_Bu32T205M42-Vp65f9hWdDra_gaMj70dH_q_RMYKzXa_m_eRscq-yRhG3yhG82ZtxWrm9ElXZeuvqcI7BHfnjCMRgNAweaGipVksv0C0p0mbKXv2PNziFR84pgVfhPYOjdrO1r-GhuWtXzWYM98VCjuHBNJ1nn8Z-DmA5m2SuFL78naI9u5ll3_8AX_0NjQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQceCNSChgJLkihediOc0CoLdt21e1qDwV6S23HYVddJUuSLfCn-I3MJJulufTWA7cotpU4_jLzjR_fEPJWgtcWFmfcQ8VcBlGtq63OXKOzWEdSW6-ZcPs6isZjeXYWTzbIn-4sDG6r7GxiY6jTwuAc-U4jjRUC2ZCfFj9czBqFq6tdCo0WFsf2908I2aqPw88wvu-C4GBwun_krrIKuIZFXu1myteaZ0yEGrhAKKUR0hqVBQrYvWEpUKZQioxzbpSSWrGUh1lqRco8o0WM4ktg8m8xVBbDrYLBpLP8EBtw2a6cQuAX72S5LnC7ZuB_iFBqS_R8X5MioMdr-7syr7i5gwf_2wd6SO6vCDXdbf-AR2TD5o_JvSsyi0_I-S4dF5d2TqvByaG7B347pYdqVtPJFK4xgXIrXFu5-8VyMYfSSYnrV3VRUpWndFhXtJk5bQ-B0G-zekoHv4rqAnw2cOfqKflyI118RjbzIrfPCfViHfqhTLnGjOoqlj4EzBIa2ViYWPgO8boxT8xKdh2zf8wTCL8QJkkDkwRhkrQwccj7dZNFqzlyXeU9BNK6IsqFNzeK8nuysj6J5RCdcBZpDfxZcy6l9lkWAXtDhi-ZQ7Y7TCUrG1Yl_wDlkDfrYrA-uKSkclsssY4QwIEgzHZI1INv74X6Jfls2uiYy1AyL-Rb1z_8NblzdHoySkbD8fELche77jaSxNtksy6X9iW5bS7rWVW-an5GSs5vGtx_AVDndK0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tugjBgTeisICR4IIUmjS24xwQ2ke7VLtb5cBj95S1HYdWVElp0gX-Gr-OcR5lc9nbHrhFsa3E8ZeZb_z4BuC1QK_NjZ1x9yV1KEa1jjIqdbRKQxUIZdxqwu3LcTCditPTMNqCP-1ZGLutsrWJlaFOcm3nyAeVNJaPZEMM0mZbRHQw_rD84dgMUnaltU2nUUPkyPz-ieFb8X5ygGP9Zjgcjz7tf3SaDAOOpoFbOqn0lGIp5b5CXuALobkwWqZDiUxf0wTpky94yhjTUgolacL8NDE8oa5WPLRCTGj-t5GS02EPtqPJSXTW-gGMFJio11ExDAwHaaZyu3lz6L0LrPAW73jCKmFAh-V292hecnrju__z57oHdxqqTXbrf-M-bJnsAdy-JMD4EM53yTS_MAtSjE4OnT306Ak5lPOSRDO8tqmVa0nbwtnP18sFlkYru7JV5isis4RMyoJUc6r18RDydV7OyOhXXnxHb46sungEn6-li4-hl-WZeQLEDZXv-SJhyuZal6HwMJQW2MiEXIfc64Pbjn-sG0F2mxdkEWNgZiETV5CJLWTiGjJ9eLtpsqzVSK6qvGdBtalohcSrG_nqW9zYpdgwjFsYDZRCZq0YE0J5NA2Q11nuL2gfdlp8xY11K-J_4OrDq00x2iW72CQzk69tHc6RHWEA3oegA-XOC3VLsvmsUjgXvqCuz55e_fCXcBMxHR9PpkfP4JbtuVNpFe9Ar1ytzXO4oS_KebF60fyZBM6vG91_AU9QfvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+sEMG-Based+Gait+Phase-Kinematics-Coupled+Predictor+and+Its+Interaction+With+Exoskeletons&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Wei%2C+Baichun&rft.au=Ding%2C+Zhen&rft.au=Yi%2C+Chunzhi&rft.au=Guo%2C+Hao&rft.date=2021-08-10&rft.issn=1662-5218&rft.eissn=1662-5218&rft.volume=15&rft_id=info:doi/10.3389%2Ffnbot.2021.704226&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnbot_2021_704226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon