Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles

For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology Vol. 81; no. 13; p. 7111
Main Authors: Chen, Benjamin J, Leser, George P, Morita, Eiji, Lamb, Robert A
Format: Journal Article
Language:English
Published: United States 01.07.2007
Subjects:
ISSN:0022-538X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.
AbstractList For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.
For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.
Author Morita, Eiji
Chen, Benjamin J
Leser, George P
Lamb, Robert A
Author_xml – sequence: 1
  givenname: Benjamin J
  surname: Chen
  fullname: Chen, Benjamin J
  organization: Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
– sequence: 2
  givenname: George P
  surname: Leser
  fullname: Leser, George P
– sequence: 3
  givenname: Eiji
  surname: Morita
  fullname: Morita, Eiji
– sequence: 4
  givenname: Robert A
  surname: Lamb
  fullname: Lamb, Robert A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17475660$$D View this record in MEDLINE/PubMed
BookMark eNo1kD1PwzAYhD2AoAU2ZuSJqSl24sTJiCo-iiqxAGKr3sRvWoPjtP6ogJ_CryWCMp1OenSnuzE5sL1FQs45m3KellcPL_MpY1nBEyYPyIixNE3yrHw9JmPv3xjjQhTiiBxzKWReFGxEvue2NRHtF9CddtHTNXawWpkYtNWWglXUYnTQDVaBxwmtY6C2DzSskXYQnP6gG9cH1HZCwSF1uI3aoaJt7yh4j11tPn-D6qiUtivat3RjwHdaJQqd3g3sb3di9DvSDbigG4P-lBy2YDye7fWEPN_ePM3uk8Xj3Xx2vUgaIVlI2pRxpirRNpI3VSnzUmSywiJLBeSMtxUvGLYVQKOAV7yskcsmLXOeQV5nUqQn5PIvd5ixjejDstO-QWPAYh_9UrKCZ6ziA3ixB2PdoVpunO7AfS7_30x_AGUJeSc
CitedBy_id crossref_primary_10_1128_JVI_05681_11
crossref_primary_10_1016_j_virol_2008_08_010
crossref_primary_10_1586_erv_09_8
crossref_primary_10_1038_s41467_024_50162_x
crossref_primary_10_1111_j_1467_7652_2009_00496_x
crossref_primary_10_1016_j_vetmic_2012_11_035
crossref_primary_10_1111_j_1467_7652_2008_00384_x
crossref_primary_10_1007_s12250_012_3241_1
crossref_primary_10_1002_bit_25159
crossref_primary_10_1016_j_jaerosci_2025_106673
crossref_primary_10_3389_fmicb_2024_1355599
crossref_primary_10_1038_ncomms3763
crossref_primary_10_1186_s13567_020_00879_6
crossref_primary_10_1099_vir_0_038778_0
crossref_primary_10_1016_j_vaccine_2010_08_040
crossref_primary_10_3390_v12070780
crossref_primary_10_1111_j_1462_5822_2009_01286_x
crossref_primary_10_1186_1743_422X_10_141
crossref_primary_10_1016_j_bpj_2021_11_023
crossref_primary_10_1139_w2012_006
crossref_primary_10_1111_irv_12274
crossref_primary_10_1371_journal_pone_0018780
crossref_primary_10_1186_s12896_025_01016_x
crossref_primary_10_1007_BF03256169
crossref_primary_10_1128_JVI_01885_10
crossref_primary_10_1128_JVI_00307_10
crossref_primary_10_1016_j_chom_2017_10_003
crossref_primary_10_1042_BST20200854
crossref_primary_10_1371_journal_pone_0082431
crossref_primary_10_3390_v3010026
crossref_primary_10_1016_j_vaccine_2012_10_083
crossref_primary_10_1128_JVI_00759_21
crossref_primary_10_1080_14760584_2018_1516552
crossref_primary_10_1016_j_jbiotec_2020_03_013
crossref_primary_10_1128_JVI_00514_08
crossref_primary_10_1080_03079450802357001
crossref_primary_10_1128_JVI_02104_16
crossref_primary_10_1016_j_vaccine_2017_06_024
crossref_primary_10_1128_jvi_01398_23
crossref_primary_10_1146_annurev_cellbio_101011_155838
crossref_primary_10_1128_JVI_01479_12
crossref_primary_10_1002_rmv_1872
crossref_primary_10_1073_pnas_1012199108
crossref_primary_10_1007_s10858_016_0025_1
crossref_primary_10_1111_cmi_12045
crossref_primary_10_1128_CVI_00153_12
crossref_primary_10_1128_JVI_01667_08
crossref_primary_10_1016_j_vaccine_2008_11_011
crossref_primary_10_1017_S1466252310000137
crossref_primary_10_1042_BC20090161
crossref_primary_10_1128_JVI_01491_08
crossref_primary_10_1074_jbc_M112_412726
crossref_primary_10_1371_journal_pone_0021123
crossref_primary_10_1016_j_vaccine_2012_10_065
crossref_primary_10_1063_5_0071515
crossref_primary_10_1016_j_jviromet_2009_10_020
crossref_primary_10_1042_BST20120166
crossref_primary_10_1016_j_abb_2015_04_011
crossref_primary_10_1186_s12896_015_0152_x
crossref_primary_10_1002_1873_3468_12118
crossref_primary_10_1016_j_virol_2013_01_001
crossref_primary_10_1186_s12985_024_02295_0
crossref_primary_10_1080_08830185_2018_1500570
crossref_primary_10_1016_j_ijbiomac_2022_01_108
crossref_primary_10_1016_j_jbc_2022_101727
crossref_primary_10_1128_jvi_01563_23
crossref_primary_10_1371_journal_pone_0037786
crossref_primary_10_1128_JVI_07158_11
crossref_primary_10_1371_journal_pone_0242452
crossref_primary_10_1016_j_bpj_2010_12_3701
crossref_primary_10_1016_j_virol_2019_03_004
crossref_primary_10_1371_journal_pone_0288970
crossref_primary_10_1128_JVI_00421_09
crossref_primary_10_1002_mabi_202400088
crossref_primary_10_1038_nmicrobiol_2016_50
crossref_primary_10_1074_jbc_M111_312959
crossref_primary_10_1038_srep40801
crossref_primary_10_1016_j_virol_2009_05_016
crossref_primary_10_1007_s00705_008_0214_7
crossref_primary_10_1128_JVI_02407_07
crossref_primary_10_1016_j_virol_2007_11_008
crossref_primary_10_1042_BST20140136
crossref_primary_10_1111_boc_201200006
crossref_primary_10_1073_pnas_1509745112
crossref_primary_10_3389_fmicb_2024_1422651
crossref_primary_10_1016_j_cell_2010_11_030
crossref_primary_10_1128_JVI_02606_10
crossref_primary_10_1128_JVI_00700_11
crossref_primary_10_3390_v13020233
crossref_primary_10_1016_j_biocel_2022_106185
crossref_primary_10_1371_journal_pone_0078074
crossref_primary_10_1073_pnas_1701747114
crossref_primary_10_1111_j_1462_5822_2010_01557_x
crossref_primary_10_3390_v16020316
crossref_primary_10_1099_vir_0_046219_0
crossref_primary_10_1016_j_ejphar_2017_05_038
crossref_primary_10_12688_f1000research_8010_1
crossref_primary_10_1016_j_virusres_2015_01_010
crossref_primary_10_1080_22221751_2025_2558881
crossref_primary_10_1128_JVI_02215_16
crossref_primary_10_1016_j_virusres_2009_05_010
crossref_primary_10_1038_ncomms1647
crossref_primary_10_1016_j_virol_2010_06_030
crossref_primary_10_1128_JVI_00592_15
crossref_primary_10_1128_JVI_02150_16
crossref_primary_10_1099_jgv_0_000562
crossref_primary_10_1038_s41467_021_24724_2
crossref_primary_10_1038_ncomms14234
crossref_primary_10_1016_j_bpj_2013_03_054
crossref_primary_10_3390_ijms18010020
crossref_primary_10_1155_2011_245090
crossref_primary_10_1016_j_virusres_2011_02_006
crossref_primary_10_1128_JVI_01184_08
crossref_primary_10_1111_j_1462_5822_2012_01759_x
crossref_primary_10_1007_s40588_016_0041_7
crossref_primary_10_1371_journal_ppat_1003413
crossref_primary_10_1016_j_antiviral_2008_04_006
crossref_primary_10_1128_JVI_01424_08
crossref_primary_10_1128_JVI_00534_09
crossref_primary_10_1128_JVI_01688_07
crossref_primary_10_1371_journal_pone_0165421
crossref_primary_10_3389_fimmu_2018_01581
crossref_primary_10_3390_pathogens8040168
crossref_primary_10_4049_jimmunol_1101823
crossref_primary_10_1128_JVI_06230_11
crossref_primary_10_1128_jvi_00716_22
crossref_primary_10_1016_j_bpj_2014_06_042
crossref_primary_10_1016_j_virol_2010_12_003
crossref_primary_10_1016_j_virol_2016_12_001
crossref_primary_10_1099_jgv_0_000535
crossref_primary_10_1016_j_vaccine_2009_12_079
crossref_primary_10_1080_14760584_2019_1704262
crossref_primary_10_1128_JVI_02188_10
crossref_primary_10_1128_JVI_00941_17
crossref_primary_10_1111_irv_12669
crossref_primary_10_1016_j_bbamem_2011_03_005
crossref_primary_10_1017_S1431927620000069
crossref_primary_10_4161_cib_16716
crossref_primary_10_1128_JVI_02240_09
crossref_primary_10_1016_j_virusres_2009_04_005
crossref_primary_10_1042_BCJ20160861
crossref_primary_10_1371_journal_pone_0094257
crossref_primary_10_1128_JVI_05970_11
crossref_primary_10_1016_j_vaccine_2016_04_089
crossref_primary_10_1016_j_bpj_2014_02_018
crossref_primary_10_1128_JVI_03123_12
crossref_primary_10_3390_v8090249
crossref_primary_10_1016_j_virusres_2010_07_006
crossref_primary_10_1128_JVI_06704_11
crossref_primary_10_1016_j_vaccine_2012_03_033
crossref_primary_10_1016_j_virusres_2009_12_010
crossref_primary_10_3390_v7122950
crossref_primary_10_1128_JVI_03306_14
crossref_primary_10_1128_jvi_00373_22
crossref_primary_10_1016_j_virol_2008_10_001
crossref_primary_10_1042_BST20120210
crossref_primary_10_1016_j_antiviral_2009_09_005
crossref_primary_10_1016_j_virusres_2012_08_014
crossref_primary_10_1080_07391102_2018_1436089
crossref_primary_10_1186_1743_422X_8_411
crossref_primary_10_1128_JVI_00947_17
crossref_primary_10_1016_j_cell_2010_08_029
crossref_primary_10_1016_j_jviromet_2010_02_009
crossref_primary_10_1128_JVI_00837_09
crossref_primary_10_1186_1743_422X_7_108
crossref_primary_10_1371_journal_ppat_1003067
crossref_primary_10_1128_JVI_01752_07
crossref_primary_10_1016_j_jviromet_2017_11_008
crossref_primary_10_1128_CMR_00097_12
crossref_primary_10_1128_JVI_00119_10
crossref_primary_10_1128_JVI_01322_10
crossref_primary_10_1111_irv_12472
crossref_primary_10_1016_j_virol_2010_09_022
crossref_primary_10_1074_jbc_M111_319996
crossref_primary_10_1016_j_vaccine_2018_02_106
crossref_primary_10_1016_j_vaccine_2015_07_023
crossref_primary_10_3390_vaccines10091520
crossref_primary_10_1073_pnas_1002123107
crossref_primary_10_1093_nar_gkz1094
crossref_primary_10_1016_j_chom_2014_03_002
crossref_primary_10_1016_j_jviromet_2008_07_015
crossref_primary_10_1016_j_jviromet_2008_10_020
crossref_primary_10_1128_JVI_01363_13
crossref_primary_10_1016_j_vaccine_2011_06_068
crossref_primary_10_1016_j_jbiotec_2016_06_029
crossref_primary_10_1038_nature07231
crossref_primary_10_1159_000346773
crossref_primary_10_1016_j_vaccine_2011_12_083
crossref_primary_10_1111_jfb_14571
crossref_primary_10_3390_s16070950
crossref_primary_10_1038_s41598_023_39096_4
crossref_primary_10_1371_journal_pcbi_1003034
crossref_primary_10_3390_v11010046
crossref_primary_10_1073_pnas_1114728109
crossref_primary_10_3390_v15091786
crossref_primary_10_1155_2011_370606
crossref_primary_10_1111_pbi_12963
crossref_primary_10_1186_1753_6561_5_S1_P66
crossref_primary_10_1016_j_virol_2011_05_006
crossref_primary_10_1016_j_procbio_2011_02_019
crossref_primary_10_3390_vetsci11020093
crossref_primary_10_1016_j_vaccine_2015_03_052
crossref_primary_10_1128_JVI_02306_09
crossref_primary_10_1042_BST0381397
crossref_primary_10_1128_JVI_02340_09
crossref_primary_10_1371_journal_ppat_1003701
crossref_primary_10_1128_JVI_00858_17
crossref_primary_10_1007_s11262_022_01904_w
crossref_primary_10_3390_vaccines8010139
crossref_primary_10_1134_S0026893324700043
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/JVI.00361-07
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 17475660
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM008061
– fundername: NIAID NIH HHS
  grantid: R37 AI20201
– fundername: NIGMS NIH HHS
  grantid: T32 GM008152
– fundername: NIAID NIH HHS
  grantid: R37 AI020201
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
NPM
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
7X8
AFPKN
ID FETCH-LOGICAL-c470t-f2010d94fc71c987584379e6324a501f9160ef9aacda1918be17c28513a5b3742
IEDL.DBID 7X8
ISICitedReferencesCount 240
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000247404900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-538X
IngestDate Sun Nov 09 10:15:31 EST 2025
Mon Jul 21 06:04:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-f2010d94fc71c987584379e6324a501f9160ef9aacda1918be17c28513a5b3742
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1128/JVI.00361-07
PMID 17475660
PQID 70613091
PQPubID 23479
ParticipantIDs proquest_miscellaneous_70613091
pubmed_primary_17475660
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2007
References 10423131 - J Gen Virol. 1999 Jul;80 ( Pt 7):1635-45
11831692 - Virology. 1995 Apr 1;208(1):121-31
15723524 - Biochemistry. 2005 Mar 1;44(8):2800-10
11451488 - Virus Res. 2001 Sep;77(1):61-9
10430945 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50
7707543 - J Virol. 1995 May;69(5):3156-60
8764008 - J Virol. 1996 Aug;70(8):5016-24
10590147 - J Virol. 2000 Jan;74(1):547-51
11967285 - J Virol. 2002 May;76(10):4679-87
8551626 - J Virol. 1996 Feb;70(2):873-9
9427762 - EMBO J. 1998 Jan 2;17(1):288-96
16873274 - J Virol. 2006 Aug;80(16):8178-89
2455818 - J Virol. 1988 Aug;62(8):2762-72
7508993 - J Virol. 1994 Mar;68(3):1316-23
11773413 - J Virol. 2002 Feb;76(3):1391-9
10400805 - J Virol. 1999 Aug;73(8):7035-8
14990685 - J Virol. 2004 Mar;78(6):2657-65
15731254 - J Virol. 2005 Mar;79(6):3595-605
15709019 - J Virol. 2005 Mar;79(5):2988-97
15231380 - Virology. 2004 Jul 20;325(1):1-10
14505570 - Cell. 2003 Sep 19;114(6):701-13
10954572 - J Virol. 2000 Sep;74(18):8709-19
11312656 - Virology. 2001 Apr 25;283(1):1-6
11907235 - J Virol. 2002 Apr;76(8):3952-64
17005661 - J Virol. 2006 Dec;80(24):12070-8
11095724 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13871-6
15473846 - Annu Rev Cell Dev Biol. 2004;20:395-425
17005709 - J Virol. 2006 Oct;80(20):10289
12574509 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2002-7
16699003 - J Virol. 2006 Jun;80(11):5233-40
9670007 - EMBO J. 1998 Jul 15;17(14):3899-908
15298170 - Curr Top Microbiol Immunol. 2004;283:145-96
12490406 - Virology. 2002 Dec 5;304(1):89-96
9847327 - J Virol. 1999 Jan;73(1):242-50
1629953 - J Virol. 1992 Aug;66(8):4737-47
10559331 - J Virol. 1999 Dec;73(12):10158-63
11090151 - J Virol. 2000 Dec;74(24):11538-47
17146053 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19123-7
3095828 - Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6
9135140 - EMBO J. 1997 Mar 17;16(6):1236-47
16227287 - J Virol. 2005 Nov;79(21):13673-84
9890962 - J Biol Chem. 1999 Jan 22;274(4):2038-44
16364736 - Virology. 2006 Jan 5;344(1):55-63
15113907 - J Virol. 2004 May;78(10):5258-69
16474138 - J Virol. 2006 Mar;80(5):2318-25
10753711 - Virology. 2000 Apr 10;269(2):325-34
10074141 - J Virol. 1999 Apr;73(4):2921-9
7957116 - EMBO J. 1994 Nov 15;13(22):5504-15
9780049 - J Gen Virol. 1998 Oct;79 ( Pt 10):2435-46
8411379 - J Virol. 1993 Nov;67(11):6762-7
11390617 - J Virol. 2001 Jul;75(13):6154-65
14561897 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14610-7
11013211 - EMBO J. 2000 Oct 2;19(19):5081-91
1660837 - Gene. 1991 Dec 15;108(2):193-9
16437116 - Nature. 2006 Jan 26;439(7075):490-2
10775599 - J Virol. 2000 May;74(10):4634-44
11595185 - Cell. 2001 Oct 5;107(1):55-65
9813197 - Virology. 1998 Nov 10;251(1):1-15
9576955 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5746-51
16139601 - Adv Virus Res. 2005;64:383-416
7483820 - Virus Res. 1995 Jun;37(1):37-47
10662624 - Virology. 2000 Feb 15;267(2):289-98
16249012 - Virology. 2005 Nov 25;342(2):215-27
16051827 - J Virol. 2005 Aug;79(16):10348-55
8794300 - J Virol. 1996 Oct;70(10):6653-7
10211954 - J Gen Virol. 1999 Apr;80 ( Pt 4):863-9
References_xml – reference: 16249012 - Virology. 2005 Nov 25;342(2):215-27
– reference: 11773413 - J Virol. 2002 Feb;76(3):1391-9
– reference: 14505570 - Cell. 2003 Sep 19;114(6):701-13
– reference: 8551626 - J Virol. 1996 Feb;70(2):873-9
– reference: 10775599 - J Virol. 2000 May;74(10):4634-44
– reference: 9135140 - EMBO J. 1997 Mar 17;16(6):1236-47
– reference: 7483820 - Virus Res. 1995 Jun;37(1):37-47
– reference: 10753711 - Virology. 2000 Apr 10;269(2):325-34
– reference: 17146053 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19123-7
– reference: 15298170 - Curr Top Microbiol Immunol. 2004;283:145-96
– reference: 12574509 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2002-7
– reference: 9427762 - EMBO J. 1998 Jan 2;17(1):288-96
– reference: 9576955 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5746-51
– reference: 8764008 - J Virol. 1996 Aug;70(8):5016-24
– reference: 9847327 - J Virol. 1999 Jan;73(1):242-50
– reference: 9813197 - Virology. 1998 Nov 10;251(1):1-15
– reference: 1629953 - J Virol. 1992 Aug;66(8):4737-47
– reference: 11907235 - J Virol. 2002 Apr;76(8):3952-64
– reference: 1660837 - Gene. 1991 Dec 15;108(2):193-9
– reference: 8794300 - J Virol. 1996 Oct;70(10):6653-7
– reference: 15473846 - Annu Rev Cell Dev Biol. 2004;20:395-425
– reference: 14561897 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14610-7
– reference: 9780049 - J Gen Virol. 1998 Oct;79 ( Pt 10):2435-46
– reference: 7957116 - EMBO J. 1994 Nov 15;13(22):5504-15
– reference: 8411379 - J Virol. 1993 Nov;67(11):6762-7
– reference: 11013211 - EMBO J. 2000 Oct 2;19(19):5081-91
– reference: 3095828 - Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6
– reference: 16873274 - J Virol. 2006 Aug;80(16):8178-89
– reference: 16437116 - Nature. 2006 Jan 26;439(7075):490-2
– reference: 16699003 - J Virol. 2006 Jun;80(11):5233-40
– reference: 17005709 - J Virol. 2006 Oct;80(20):10289
– reference: 10954572 - J Virol. 2000 Sep;74(18):8709-19
– reference: 11595185 - Cell. 2001 Oct 5;107(1):55-65
– reference: 7707543 - J Virol. 1995 May;69(5):3156-60
– reference: 10430945 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9345-50
– reference: 16474138 - J Virol. 2006 Mar;80(5):2318-25
– reference: 12490406 - Virology. 2002 Dec 5;304(1):89-96
– reference: 10400805 - J Virol. 1999 Aug;73(8):7035-8
– reference: 9670007 - EMBO J. 1998 Jul 15;17(14):3899-908
– reference: 11312656 - Virology. 2001 Apr 25;283(1):1-6
– reference: 11090151 - J Virol. 2000 Dec;74(24):11538-47
– reference: 11967285 - J Virol. 2002 May;76(10):4679-87
– reference: 15113907 - J Virol. 2004 May;78(10):5258-69
– reference: 15723524 - Biochemistry. 2005 Mar 1;44(8):2800-10
– reference: 16227287 - J Virol. 2005 Nov;79(21):13673-84
– reference: 15709019 - J Virol. 2005 Mar;79(5):2988-97
– reference: 15731254 - J Virol. 2005 Mar;79(6):3595-605
– reference: 10662624 - Virology. 2000 Feb 15;267(2):289-98
– reference: 9890962 - J Biol Chem. 1999 Jan 22;274(4):2038-44
– reference: 10559331 - J Virol. 1999 Dec;73(12):10158-63
– reference: 14990685 - J Virol. 2004 Mar;78(6):2657-65
– reference: 16364736 - Virology. 2006 Jan 5;344(1):55-63
– reference: 11095724 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13871-6
– reference: 10211954 - J Gen Virol. 1999 Apr;80 ( Pt 4):863-9
– reference: 10423131 - J Gen Virol. 1999 Jul;80 ( Pt 7):1635-45
– reference: 17005661 - J Virol. 2006 Dec;80(24):12070-8
– reference: 11390617 - J Virol. 2001 Jul;75(13):6154-65
– reference: 7508993 - J Virol. 1994 Mar;68(3):1316-23
– reference: 11831692 - Virology. 1995 Apr 1;208(1):121-31
– reference: 10074141 - J Virol. 1999 Apr;73(4):2921-9
– reference: 16139601 - Adv Virus Res. 2005;64:383-416
– reference: 10590147 - J Virol. 2000 Jan;74(1):547-51
– reference: 11451488 - Virus Res. 2001 Sep;77(1):61-9
– reference: 2455818 - J Virol. 1988 Aug;62(8):2762-72
– reference: 16051827 - J Virol. 2005 Aug;79(16):10348-55
– reference: 15231380 - Virology. 2004 Jul 20;325(1):1-10
SSID ssj0014464
Score 2.3837419
Snippet For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 7111
SubjectTerms Animals
Cercopithecus aethiops
COS Cells
DNA-Directed RNA Polymerases
Gene Expression
HeLa Cells
Hemagglutinin Glycoproteins, Influenza Virus - genetics
Hemagglutinin Glycoproteins, Influenza Virus - metabolism
Humans
Influenza A Virus, H3N2 Subtype - physiology
Influenza A Virus, H3N2 Subtype - ultrastructure
Models, Biological
Neuraminidase - genetics
Neuraminidase - metabolism
Plasmids - genetics
Plasmids - metabolism
Vaccinia virus
Vero Cells
Viral Matrix Proteins - genetics
Viral Matrix Proteins - metabolism
Viral Proteins
Virus Assembly - physiology
Title Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles
URI https://www.ncbi.nlm.nih.gov/pubmed/17475660
https://www.proquest.com/docview/70613091
Volume 81
WOSCitedRecordID wos000247404900034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELUYYCQubDPsSx044iHpTtqJhIQQAsFoaHEA1LeWY5dRBO00vQn4FL6WqqQjTiMOXHLKJqfs956r8kqIg2YjdKgdSpskKKPUKamDLJMGVQvRtEyYle76_1S7nXQ66c2MOK7_heGyynpNLBdqWxjeIz9SDDwEbif9Z8k9ozi3Om2g8UPMNYnIcEGX6nzmEEjoRLVXOE3rTl323kiO_t5f_WEnFlLS6v_UsoSYi6XvvdyyWJxSSzitYmFFzKBfFT-rZpOvv8T7VdWP5E3DJB-Mh8B2rQ8PHHk-96C9BTa31Gw2YgnbDiEbj8AXIyCOCD228n-B0tYh94egBwgD5DJitEDEF4iEYy97ei1vlI0tYyIUDvpEz3u5lZZCfULnls-WT_kjQr-uyvst7i7Ob88u5bQzgzSRCkbScQ7dppEzKjQpSZ6EbQ2Rrd91HISOOGeALtXaWE2CMMkwVKZB5K6p46xJanxNzPrC44aAVhLxqoCBjdIoTpH4UuwsIYh2ISqMN8V-PeRdinxOZ2iPxXjYrQd9U6xXX63brww6uqSyFNHUYOvLa7fFQr1ZG4Q7Ys7RnMddMW8mo3w42CsDio7tm-sP4BjZhw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influenza+virus+hemagglutinin+and+neuraminidase%2C+but+not+the+matrix+protein%2C+are+required+for+assembly+and+budding+of+plasmid-derived+virus-like+particles&rft.jtitle=Journal+of+virology&rft.au=Chen%2C+Benjamin+J&rft.au=Leser%2C+George+P&rft.au=Morita%2C+Eiji&rft.au=Lamb%2C+Robert+A&rft.date=2007-07-01&rft.issn=0022-538X&rft.volume=81&rft.issue=13&rft.spage=7111&rft_id=info:doi/10.1128%2FJVI.00361-07&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon