A Method for Predicting Inertial Navigation System Positioning Errors Using a Back Propagation Neural Network Based on a Particle Swarm Optimization Algorithm
In order to reduce the position errors of the Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) integrated navigation system during GPS denial, this paper proposes a method based on the Particle Swarm Optimization–Back Propagation Neural Network (PSO-BPNN) to replace the GPS...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 24; no. 12; p. 3722 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
07.06.2024
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to reduce the position errors of the Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) integrated navigation system during GPS denial, this paper proposes a method based on the Particle Swarm Optimization–Back Propagation Neural Network (PSO-BPNN) to replace the GPS for positioning. The model relates the position information, velocity information, attitude information output by the SINS, and the navigation time to the position errors between the position information output by the SINS and the actual position information. The performance of the model is compared with the BPNN through an actual ship experiment. The results show that the PSO-BPNN can obviously reduce the position errors in the case of GPS signal denial. |
|---|---|
| AbstractList | In order to reduce the position errors of the Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) integrated navigation system during GPS denial, this paper proposes a method based on the Particle Swarm Optimization–Back Propagation Neural Network (PSO-BPNN) to replace the GPS for positioning. The model relates the position information, velocity information, attitude information output by the SINS, and the navigation time to the position errors between the position information output by the SINS and the actual position information. The performance of the model is compared with the BPNN through an actual ship experiment. The results show that the PSO-BPNN can obviously reduce the position errors in the case of GPS signal denial. In order to reduce the position errors of the Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) integrated navigation system during GPS denial, this paper proposes a method based on the Particle Swarm Optimization-Back Propagation Neural Network (PSO-BPNN) to replace the GPS for positioning. The model relates the position information, velocity information, attitude information output by the SINS, and the navigation time to the position errors between the position information output by the SINS and the actual position information. The performance of the model is compared with the BPNN through an actual ship experiment. The results show that the PSO-BPNN can obviously reduce the position errors in the case of GPS signal denial.In order to reduce the position errors of the Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) integrated navigation system during GPS denial, this paper proposes a method based on the Particle Swarm Optimization-Back Propagation Neural Network (PSO-BPNN) to replace the GPS for positioning. The model relates the position information, velocity information, attitude information output by the SINS, and the navigation time to the position errors between the position information output by the SINS and the actual position information. The performance of the model is compared with the BPNN through an actual ship experiment. The results show that the PSO-BPNN can obviously reduce the position errors in the case of GPS signal denial. |
| Author | Jiao, Ruihan Guo, Zhaoxing Wang, Yabo Ben, Yueyang Wei, Tingxiao |
| AuthorAffiliation | 2 School of Intelligent Science and Engineer, Harbin Engineering University, Harbin 150001, China; wtx15776482665@163.com (T.W.); gzx13946003678@outloook.com (Z.G.); byy@hrbeu.edu.cn (Y.B.) 1 Wuhan Second Ship Research and Design Institute, Wuhan 430205, China; 18007195551m@sina.cn |
| AuthorAffiliation_xml | – name: 2 School of Intelligent Science and Engineer, Harbin Engineering University, Harbin 150001, China; wtx15776482665@163.com (T.W.); gzx13946003678@outloook.com (Z.G.); byy@hrbeu.edu.cn (Y.B.) – name: 1 Wuhan Second Ship Research and Design Institute, Wuhan 430205, China; 18007195551m@sina.cn |
| Author_xml | – sequence: 1 givenname: Yabo surname: Wang fullname: Wang, Yabo – sequence: 2 givenname: Ruihan surname: Jiao fullname: Jiao, Ruihan – sequence: 3 givenname: Tingxiao surname: Wei fullname: Wei, Tingxiao – sequence: 4 givenname: Zhaoxing surname: Guo fullname: Guo, Zhaoxing – sequence: 5 givenname: Yueyang surname: Ben fullname: Ben, Yueyang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38931505$$D View this record in MEDLINE/PubMed |
| BookMark | eNplks1u1DAUhSNURH9gwQsgS2xgMdSxnTheoaEqMFJpRypdWx77JuNpEk9tp1V5GJ4VZ2ZatWVl-95zPx0d38Nsr3c9ZNn7HH-hVODjQFhOKCfkVXaQM8ImFSF478l9PzsMYYUxoZRWb7J9WgmaF7g4yP5O0S-IS2dQ7TyaezBWR9s3aNaDj1a16Fzd2kZF63p0eR8idGjugh3fo-zUe-cDugrjQ6FvSl8nilur3cg5DH6EQLxz_jr1AxiU6grNVeLrFtDlnfIdulhH29k_26lp2zhv47J7m72uVRvg3e48yq6-n_4--Tk5u_gxO5meTTTjOE7AGEp5URvAtFYagDGhTcFrIByqktdYCFUKvCgLA4bpgtS45FpwBVCCKuhRNttyjVMrufa2U_5eOmXlpuB8I3d2ZWEEJ8wwkiJkC1aLslQsBY3rAkMOIrG-blnrYdGB0dDHFMEz6PNOb5eycbcyzwnmVcUT4dOO4N3NACHKzgYNbat6cEOQFHNS5bTMqyT9-EK6coPvU1YbFadYlCPww1NLj14e9iAJjrcC7V0IHmqpbdz8RXJoW5ljOW6afNy0NPH5xcQD9H_tP6BB1L0 |
| CitedBy_id | crossref_primary_10_3390_s25165214 crossref_primary_10_3390_jmse13061007 crossref_primary_10_3389_fbioe_2025_1619411 crossref_primary_10_1109_ACCESS_2025_3596116 crossref_primary_10_3390_electronics14051035 crossref_primary_10_3390_app14135849 crossref_primary_10_3390_e27060591 |
| Cites_doi | 10.1109/BigCom51056.2020.00036 10.1017/S0373463318000760 10.1016/S0925-2312(01)00702-0 10.1109/TVT.2015.2497713 10.1109/ITNEC48623.2020.9085154 10.3390/s18103470 10.1109/JSEN.2016.2642040 10.5081/jgps.4.1.192 10.3390/s21041149 10.3390/aerospace7080115 10.1088/1742-6596/1732/1/012189 10.1109/ACCESS.2019.2922212 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24123722 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_5d9724d429314b4f966a44240f50e1e9 PMC11207887 38931505 10_3390_s24123722 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Heilongjiang Province of China grantid: YQ2021E011 – fundername: Natural Science Foundation of Hubei Province of China grantid: 2022CFB865 – fundername: National Natural Science Foundation of China grantid: 51979047 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c470t-edd3375fde03facee449cd57fe27e867f099a690b65ded4c52f067c97aee6ea53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001256667900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:23 EDT 2025 Tue Nov 04 02:05:23 EST 2025 Sun Nov 09 13:41:50 EST 2025 Tue Oct 07 07:32:05 EDT 2025 Wed Feb 19 02:06:45 EST 2025 Sat Nov 29 07:10:22 EST 2025 Tue Nov 18 22:30:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | GPS/SINS integrated navigation system backpropagation neural network particle swarm optimization GPS denial |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-edd3375fde03facee449cd57fe27e867f099a690b65ded4c52f067c97aee6ea53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/5d9724d429314b4f966a44240f50e1e9 |
| PMID | 38931505 |
| PQID | 3072730967 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5d9724d429314b4f966a44240f50e1e9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11207887 proquest_miscellaneous_3072813618 proquest_journals_3072730967 pubmed_primary_38931505 crossref_citationtrail_10_3390_s24123722 crossref_primary_10_3390_s24123722 |
| PublicationCentury | 2000 |
| PublicationDate | 20240607 |
| PublicationDateYYYYMMDD | 2024-06-07 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240607 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Jaradat (ref_6) 2017; 17 Yan (ref_14) 2021; 1732 Badu (ref_3) 2005; 4 Li (ref_1) 2016; 65 Milad (ref_19) 2020; 7 Zhang (ref_9) 2019; 72 ref_10 ref_21 ref_20 Wang (ref_12) 2008; 5 Yang (ref_7) 2014; 4 Zhang (ref_11) 2003; 50 ref_2 ref_18 Chen (ref_4) 2020; 3 ref_16 ref_15 Liu (ref_17) 2021; 126 ref_5 Cao (ref_8) 2009; 30 Wang (ref_13) 2019; 7 |
| References_xml | – ident: ref_16 doi: 10.1109/BigCom51056.2020.00036 – volume: 72 start-page: 375 year: 2019 ident: ref_9 article-title: A hybrid intelligent algorithm DGP-MLP for GNSS/INS integration during GNSS outages publication-title: Navigation doi: 10.1017/S0373463318000760 – volume: 50 start-page: 159 year: 2003 ident: ref_11 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 65 start-page: 7791 year: 2016 ident: ref_1 article-title: Transversal strapdown INS based on reference ellipsoid for vehicle in the polar region publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2497713 – ident: ref_10 – ident: ref_15 doi: 10.1109/ITNEC48623.2020.9085154 – ident: ref_2 doi: 10.3390/s18103470 – volume: 17 start-page: 1105 year: 2017 ident: ref_6 article-title: Non-linear autoregressive delay-dependent INS/GPS navigation system using neural networks publication-title: IEEE Sens. doi: 10.1109/JSEN.2016.2642040 – volume: 4 start-page: 192 year: 2005 ident: ref_3 article-title: Comparative study of interpolation techniques for ultra-tight integration of GPS/INS/PL sensors publication-title: J. Glob. Position. Syst. doi: 10.5081/jgps.4.1.192 – volume: 5 start-page: 489 year: 2008 ident: ref_12 article-title: Application of BP Neural Network in the Transfer Alignment of Inertial Navigation System publication-title: J. Nav. Aeronaut. Eng. Coll. – ident: ref_5 doi: 10.3390/s21041149 – volume: 7 start-page: 115 year: 2020 ident: ref_19 article-title: Unsupervised anomaly detection in flight data using convolutional variational auto-encoder publication-title: Aerospace doi: 10.3390/aerospace7080115 – ident: ref_18 – volume: 126 start-page: 1 year: 2021 ident: ref_17 article-title: Integrated navigation on vehicle based on low-cost SINS/GNSS using Deep Learning publication-title: Wirel. Pers. Commun. – volume: 1732 start-page: 012189 year: 2021 ident: ref_14 article-title: Research on master-slave filtering of Celestial Navigation System/Inertial Navigation System publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1732/1/012189 – ident: ref_21 – ident: ref_20 – volume: 4 start-page: 222 year: 2014 ident: ref_7 article-title: Model Predictive Forward Neural Network Algorithm and Its Application in Integrated Navigation publication-title: J. Inert. Technol. China – volume: 3 start-page: 110 year: 2020 ident: ref_4 article-title: Design of Strapdown Inertial Navigation System Based on MEMS publication-title: Acad. J. Comput. Inf. Sci. – volume: 30 start-page: 2231 year: 2009 ident: ref_8 article-title: Research on the Error Feedback Correction Method of MEMS-SINS Based on Neural Network Prediction During GPS Signal Loss publication-title: J. Astronaut. – volume: 7 start-page: 82134 year: 2019 ident: ref_13 article-title: A Novel BPNN-Based Method to Overcome the GPS Outages for INS/GPS System publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922212 |
| SSID | ssj0023338 |
| Score | 2.495987 |
| Snippet | In order to reduce the position errors of the Global Positioning System/Strapdown Inertial Navigation System (GPS/SINS) integrated navigation system during GPS... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3722 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence backpropagation neural network Fuzzy logic GPS denial GPS/SINS integrated navigation system Kalman filters Navigation systems Neural networks Optimization particle swarm optimization Propagation Velocity |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD5d3QggziwCVq4kccn9C2agUSLCsB0t4ix4-2opu0ybb8G34rY8ebdquKC9d4YjnxZ8838eQbhN5borgBNwDrW8jU_yuZSqvr1JS51hA-EGdC1ZIvYjot53M5ix_c-phWudoTw0ZtWu2_ke8CFsHTAuEWH8_OU181yp-uxhIad9E9Xzbb41zMrwIuCvHXoCZEIbTf7cFbESoIWfNBQar_Nn55M03ymt853PzfET9GjyLjxJMBIk_QHds8RQ-v6RA-Q38m-GuoJI2BwuJZ5w9vfDo0_tz4tGu4e6ougxZH2-BB4xzPYraXNzvourbrcUg_wArvKf0LeoFwPN7iFUB8J0PKObT31mC4rvAsIhd__626Bf4GG9gi_hmKJ6dH8DjL48Vz9PPw4Mf-pzQWbkg1E9kytcZQKrgzNqNOgRtmTGrDhbNE2LIQDmipgrC8LrixhmlOHDhNLYWytrCK0xdoo2kbu4UwLbmuoQNJXc0KKkrFCi4NMVaSUmcuQR9WU1npqGrui2ucVhDd-FmvxllP0LvR9GyQ8rjNaM_jYTTw6tvhQtsdVfGVVNxIQZgBV05zVjMHIaNiDLiR45nNrUzQzgoRVdwS-uoKDgl6OzbDYvYnNKqx7cVgU-a0yMsEvRzAN47EM0tg7zxB5Ros14a63tKcHAfBcODUmc8affXvcW2jBwQoW0iEEztoY9ld2Nfovr5cnvTdm7C0_gK7OzHX priority: 102 providerName: ProQuest |
| Title | A Method for Predicting Inertial Navigation System Positioning Errors Using a Back Propagation Neural Network Based on a Particle Swarm Optimization Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38931505 https://www.proquest.com/docview/3072730967 https://www.proquest.com/docview/3072813618 https://pubmed.ncbi.nlm.nih.gov/PMC11207887 https://doaj.org/article/5d9724d429314b4f966a44240f50e1e9 |
| Volume | 24 |
| WOSCitedRecordID | wos001256667900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxJssS2UQBy7RJn7EzrFFXbESLREPqZwi14_dim2ySrrLjZ_Cb2XspFGLVuLCJQd7bDn22PONPP4GobeWKG7ADMD-Fnns30rGudXL2MhUa3AfiDMha8lHMZ_LxSIvdlJ9-Ziwjh64m7hjbnJBmIFjk6ZsyRzAc8UY2CHHE5va8HQvEfnWmepdLQqeV8cjRMGpP27BThEqCNmzPoGk_yZk-XeA5I7FOXmIHvRQEY-7IT5Ct2z1GN3fIRB8gn6P8SykgMaAPXHR-FsXH8eMTysfLw2t5-o6kGjUFe7IyXHRh2l5sWnT1E2LQ9wAVnii9A_oBfzovomn7vCddLHiUN9ag6Fc4aKfOfzlp2rW-BOcPOv-SSceX5zVzWpzvn6Kvp1Mv77_EPcZF2LNRLKJrTGUCu6MTahTYD8Zy7XhwlkirMyEAzypwJ9eZtxYwzQnDqydzoWyNrOK02fooKor-wJhKrleQgc5dUuWUSEVy3huiLE5kTpxEXq3XYlS93TkPivGRQluiV-0cli0CL0ZRC87Do6bhCZ-OQcBT5sdCkCZyn5Kyn8pU4SOtspQ9nu5LeEUBIwHrp6I0OuhGnahv1pRla2vOhmZ0iyVEXre6c4wEg8JAXbzCMk9rdob6n5NtToPTN8AhhMf7nn4P37uJbpHAJGFODdxhA42zZV9he7q682qbUbotliI8JUjdGcynRefR2FPwXf2awplxems-P4HyLwoxg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQk48H4EChgEEpeoie3E8QGhLbTqqttlJYq0t-DYTlvRTUqybcWf4SfwGxkn2bSLKm49cI0nluV88_ji8QzAG0tVZNANoH4L6bu7kr60OvNNEmqN9IHmpulaMhLjcTKdyskK_F7chXFplQub2BhqU2r3j3wdsYieFgNu8eH4h--6RrnT1UULjRYWO_bnGVK2-v3wE37ft5Rube593Pa7rgK-5iKY-9YYxkSUGxuwXKGP4FxqE4ncUmGTWOQYMynkjFkcGWu4jmiOFl1LoayNrXJdItDkX0M7LhzZE9NzgseQ77XVixiTwXqN3pEyQemSz2taA1wWz_6dlnnBz23d-d926C7c7iJqMmhV4B6s2OI-3LpQZ_EB_BqQ3aZTNsEQnUwqdzjl0r3JsHBp5fj2WJ02tUbKgrQ13Mmky2ZzYptVVVY1adIriCIbSn_HWUq0xe0rrsKJm6RNqcfx2hqCzxWZdJpJvpypakY-o4GedTdfyeBoH7dvfjB7CF-vZIMewWpRFvYJEJZEOsMJJMszHjORKB5H0lBjJU10kHvwbgGdVHdV213zkKMU2ZtDWdqjzIPXvehxW6rkMqENh79ewFUXbx6U1X7abUkaGSkoNwhxFvKM50iJFecY--VRYEMrPVhbIDDtTF6dnsPPg1f9MBordwKlCluetDJJyOIw8eBxC_Z-JS5yRnYSeZAsqcHSUpdHisODpiA6cobAZcU-_fe6XsKN7b3dUToajneewU2K4WmT9CfWYHVendjncF2fzg_r6kWj1gS-XbWW_AHsTJJC |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VW4TgUP4hUMAgkLhEm7WdOD4gtKVdsWq7RAKkcgpe22mrdpOSbFvxMjwIT8c4yYYuqrj1wDWeWJYzP9_En2cAXlmqQoNhAO1bSN_dlfSl1VPfxAOtMX2gmam7luyIySTe25PJCvxa3IVxtMqFT6wdtSm0-0feR13ESIuAW_SzlhaRbI7enXz3XQcpd9K6aKfRqMi2_XGO6Vv1dryJ3_o1paOtz-8_-G2HAV9zEcx9awxjIsyMDVimMF5wLrUJRWapsHEkMsRPCvPHaRQaa7gOaYbeXUuhrI2sch0j0P2vIiTntAeryXg3-dqlewyzv6aWEWMy6FcYKykTlC5FwLpRwGXo9m-S5oWoN7r1P-_XbVhrsTYZNsZxB1ZsfhduXqjAeA9-Dslu3UObIHgnSemOrRwRnIxzRzjHtyfqrK5CUuSkqe5Okpbn5sS2yrIoK1ITL4giG0of4SwFeunmFVf7xE3SkO1xvLKG4HNFktZmyadzVc7IR3Tds_ZOLBke7-P2zQ9m9-HLlWzQA-jlRW4fAWFxqKc4gWTZlEdMxIpHoTTUWEljHWQevFmoUarbeu6urchxinmd07i00zgPXnaiJ00Rk8uENpwudgKu7nj9oCj303ZL0tBIQblBEMMGfMozTJYV54gKszCwAys9WF9oY9o6wyr9o4oevOiG0Y25symV2-K0kYkHLBrEHjxsFL9bicPUmLeEHsRLJrG01OWR_PCgLpWO2UTg-LKP_72u53AdjSPdGU-2n8ANiri1ZgOKdejNy1P7FK7ps_lhVT5rbZzAt6s2k9_YyJyR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Predicting+Inertial+Navigation+System+Positioning+Errors+Using+a+Back+Propagation+Neural+Network+Based+on+a+Particle+Swarm+Optimization+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yabo+Wang&rft.au=Ruihan+Jiao&rft.au=Tingxiao+Wei&rft.au=Zhaoxing+Guo&rft.date=2024-06-07&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=12&rft.spage=3722&rft_id=info:doi/10.3390%2Fs24123722&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5d9724d429314b4f966a44240f50e1e9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |