On the Analytical Solution of Fractional SIR Epidemic Model

This article presents the solution of the fractional SIR epidemic model using the Laplace residual power series method. We introduce the fractional SIR model in the sense of Caputo’s derivative; it is presented by three fractional differential equations, in which the third one depends on the first c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Computational Intelligence and Soft Computing Ročník 2023; s. 1 - 16
Hlavní autoři: Qazza, Ahmad, Saadeh, Rania
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Hindawi 02.02.2023
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:1687-9724, 1687-9732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article presents the solution of the fractional SIR epidemic model using the Laplace residual power series method. We introduce the fractional SIR model in the sense of Caputo’s derivative; it is presented by three fractional differential equations, in which the third one depends on the first coupled equations. The Laplace residual power series method (LRPSM) is implemented in this research to solve the proposed model, in which we present the solution in a form of convergent series expansion that converges rapidly to the exact one. We analyze the results and compare the obtained approximate solutions to those obtained from other methods. Figures and tables are illustrated to show the efficiency of the LRPSM in handling the proposed SIR model.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-9724
1687-9732
DOI:10.1155/2023/6973734