Oracles and Query Lower Bounds in Generalised Probabilistic Theories

We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical pri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Foundations of physics Ročník 48; číslo 8; s. 954 - 981
Hlavní autoři: Barnum, Howard, Lee, Ciarán M., Selby, John H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2018
Springer Nature B.V
Témata:
ISSN:0015-9018, 1572-9516
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding “no-information” lower bound in theories lying at the k th level of Sorkin’s hierarchy is ⌈ n / k ⌉ . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.
AbstractList We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding "no-information" lower bound in theories lying at the kth level of Sorkin's hierarchy is ⌈ n / k ⌉ . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding "no-information" lower bound in theories lying at the kth level of Sorkin's hierarchy is ⌈ n / k ⌉ . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.
We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding “no-information” lower bound in theories lying at the k th level of Sorkin’s hierarchy is ⌈ n / k ⌉ . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.
We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding "no-information" lower bound in theories lying at the th level of Sorkin's hierarchy is . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.
We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding “no-information” lower bound in theories lying at the kth level of Sorkin’s hierarchy is $$\lceil {n/k}\rceil $$ ⌈n/k⌉. This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.
We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding “no-information” lower bound in theories lying at the kth level of Sorkin’s hierarchy is ⌈n/k⌉. This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.
Author Selby, John H.
Barnum, Howard
Lee, Ciarán M.
Author_xml – sequence: 1
  givenname: Howard
  surname: Barnum
  fullname: Barnum, Howard
  organization: Department of Mathematical Sciences, University of Copenhagen, Department of Physics and Astronomy, University of New Mexico
– sequence: 2
  givenname: Ciarán M.
  surname: Lee
  fullname: Lee, Ciarán M.
  organization: Department of Physics and Astronomy, University College London
– sequence: 3
  givenname: John H.
  orcidid: 0000-0002-4596-7501
  surname: Selby
  fullname: Selby, John H.
  email: john.selby08@imperial.ac.uk
  organization: Department of Computer Science, University of Oxford, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30393388$$D View this record in MEDLINE/PubMed
BookMark eNp9UdFKHTEQDWLR660f0Jey4Etf1k6STbJ5EaxtbeGCLdjnkM3OamRvoslui3_fXK5aK7QPYQhzzpkzcw7IbogBCXlD4ZgCqPeZggJaA23L023d7JAFFYrVWlC5SxYAVNS6tPfJQc43AKCVbPbIPgeuOW_bBfl4kawbMVc29NX3GdN9tYq_MFUf4hz6XPlQnWPAZEefsa--pdjZzpfP5F11eY0xecyvyavBjhkPH-qS_Pj86fLsS726OP96drqqXaNgqtE6NvQ4MCXl0Fsne8V6qxg2UrbcUcuwE4A4oJOOcWhUy7uuzHNSCCssX5KTre7t3K2xdximYszcJr-26d5E683fneCvzVX8aSTVlEpdBN49CKR4N2OezNpnh-NoA8Y5G0Y5gBC61CU5egG9iXMKZT3DQHOQvBFNQb197ujJyuOBC4BuAS7FnBMOTxAKZhOi2YZoSkpmE6LZiKoXHOcnO_m4WcqP_2WyLTOXKeEK0x_T_yb9Bon6sSg
CitedBy_id crossref_primary_10_1038_s41534_018_0123_x
crossref_primary_10_1038_s41534_022_00574_8
crossref_primary_10_1002_andp_202100303
crossref_primary_10_1016_j_physrep_2023_09_001
crossref_primary_10_1038_s41534_019_0151_1
crossref_primary_10_1088_1751_8121_ac8ea4
crossref_primary_10_1103_PhysRevResearch_2_043128
crossref_primary_10_3390_universe8010040
Cites_doi 10.1088/1367-2630/17/10/103027
10.1137/S0097539796300933
10.1088/1367-2630/17/8/083001
10.1103/PhysRevLett.79.325
10.1088/1367-2630/18/3/033023
10.1103/PhysRevA.75.032110
10.1098/rspa.1998.0164
10.1088/1367-2630/aa5d98
10.1103/PhysRevA.75.032304
10.1007/s10701-010-9429-z
10.1147/rd.53.0183
10.1142/S021773239400294X
10.1209/0295-5075/107/20009
10.1098/rspa.2016.0076
10.1142/S0217751X14300257
10.1103/PhysRevLett.108.130401
10.1103/PhysRevA.57.2403
10.1088/1367-2630/12/5/053037
10.1017/CBO9780511976667
10.1007/s10701-016-0045-4
10.1080/00107510903257624
10.1088/1367-2630/16/12/123029
10.1038/srep10304
10.1103/PhysRevA.90.022302
10.1103/PhysRevLett.99.240501
10.1088/1367-2630/18/9/093047
10.1088/1367-2630/14/11/113025
10.1016/j.tcs.2011.06.037
10.1103/PhysRevA.81.062348
10.1126/science.1190545
10.1145/2840728.2840739
10.1103/PhysRevA.95.052324
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Springer Science & Business Media 2018
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s10701-018-0198-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Astronomy & Astrophysics
Physics
EISSN 1572-9516
EndPage 981
ExternalDocumentID PMC6191169
30393388
10_1007_s10701_018_0198_4
Genre Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Danish council for independent research
– fundername: European Research Council
  grantid: 337603
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: Villum Fonden
  grantid: 10059
  funderid: http://dx.doi.org/10.13039/100008398
– fundername: ;
– fundername: ;
  grantid: 10059
– fundername: ;
  grantid: 337603
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29H
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ3
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QF4
QM9
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
XJT
YLTOR
YYP
Z45
Z7R
Z7X
Z7Y
Z83
Z88
Z8R
Z8W
Z92
ZKB
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PCBAR
PHGZM
PHGZT
PQGLB
NPM
7X8
5PM
ID FETCH-LOGICAL-c470t-eac2fdef2766fdac6d72da72e46683c1a2eb50eefec6c2304783bbbabc655a5a3
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442731900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0015-9018
IngestDate Tue Nov 04 01:32:37 EST 2025
Wed Oct 01 12:47:42 EDT 2025
Wed Sep 17 13:51:04 EDT 2025
Wed Feb 19 02:41:12 EST 2025
Sat Nov 29 02:39:08 EST 2025
Tue Nov 18 21:13:14 EST 2025
Fri Feb 21 02:35:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Query complexity
Generalised probabilistic theories
Higher order interference
Oracles
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-eac2fdef2766fdac6d72da72e46683c1a2eb50eefec6c2304783bbbabc655a5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4596-7501
OpenAccessLink https://link.springer.com/10.1007/s10701-018-0198-4
PMID 30393388
PQID 2093063454
PQPubID 2043555
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6191169
proquest_miscellaneous_2130055921
proquest_journals_2093063454
pubmed_primary_30393388
crossref_primary_10_1007_s10701_018_0198_4
crossref_citationtrail_10_1007_s10701_018_0198_4
springer_journals_10_1007_s10701_018_0198_4
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics
PublicationTitle Foundations of physics
PublicationTitleAbbrev Found Phys
PublicationTitleAlternate Found Phys
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Paterek, Dakić, Brukner (CR2) 2010; 12
Meyer, Pommersheim (CR18) 2011; 412
Landauer (CR1) 1961; 5
Park, Moussa, Laflamme (CR13) 2012; 14
Lee, Selby (CR9) 2016; 18
CR19
Kauten, Keil, Kaufmann, Pressl, Brukner, Weihs (CR15) 2017; 19
Bennett, Bernstein, Brassard, Vazirani (CR17) 1997; 26
Chiribella, Scandolo (CR26) 2015; 17
Lee, Selby (CR42) 2017; 47
CR12
CR11
CR32
CR31
CR30
Barnum, Barrett, Leifer, Wilce (CR22) 2007; 99
Papadimitriou (CR43) 2003
Barnum, Mueller, Ududec (CR36) 2014; 16
Coecke, Kissinger (CR27) 2016
Cleve, Ekert, Macchiavello, Mosca (CR38) 1998; 454
Farhi, Gutmann (CR44) 1998; 57
Ududec, Barnum, Emerson (CR40) 2011; 41
D’Ariano, Manessi, Perinotti, Tosini (CR35) 2014; 29
D’Ariano, Manessi, Perinotti, Tosini (CR34) 2014; 107
Müller, Ududec (CR37) 2012; 108
CR6
Spekkens (CR33) 2007; 75
Nielsen, Chuang (CR16) 2010
CR7
Barrett (CR21) 2007; 75
CR29
CR25
Lee, Selby (CR5) 2016; 18
CR24
Sinha, Couteau, Jennewein, Laflamme, Weihs (CR14) 2010; 329
Sinha, Vijay, Sinha (CR39) 2015; 5
Stahlke (CR8) 2014; 90
CR20
CR41
Coecke (CR28) 2010; 51
Chiribella, D’Ariano, Perinotti (CR23) 2010; 81
Grover (CR45) 1997; 79
Lee, Barrett (CR3) 2015; 17
Lee, Hoban (CR4) 2016; 472
Sorkin (CR10) 1994; 9
T Kauten (198_CR15) 2017; 19
GM D’Ariano (198_CR35) 2014; 29
H Barnum (198_CR22) 2007; 99
198_CR29
J Barrett (198_CR21) 2007; 75
R Landauer (198_CR1) 1961; 5
CH Bennett (198_CR17) 1997; 26
198_CR24
198_CR25
CH Papadimitriou (198_CR43) 2003
B Coecke (198_CR27) 2016
MA Nielsen (198_CR16) 2010
G Chiribella (198_CR23) 2010; 81
RW Spekkens (198_CR33) 2007; 75
CM Lee (198_CR5) 2016; 18
LK Grover (198_CR45) 1997; 79
U Sinha (198_CR14) 2010; 329
CM Lee (198_CR4) 2016; 472
198_CR11
198_CR12
198_CR31
198_CR32
D Stahlke (198_CR8) 2014; 90
198_CR30
198_CR19
B Coecke (198_CR28) 2010; 51
RD Sorkin (198_CR10) 1994; 9
MP Müller (198_CR37) 2012; 108
CM Lee (198_CR3) 2015; 17
DA Meyer (198_CR18) 2011; 412
CM Lee (198_CR42) 2017; 47
198_CR6
T Paterek (198_CR2) 2010; 12
198_CR7
R Cleve (198_CR38) 1998; 454
GM D’Ariano (198_CR34) 2014; 107
G Chiribella (198_CR26) 2015; 17
H Barnum (198_CR36) 2014; 16
198_CR20
C Ududec (198_CR40) 2011; 41
DK Park (198_CR13) 2012; 14
A Sinha (198_CR39) 2015; 5
E Farhi (198_CR44) 1998; 57
198_CR41
CM Lee (198_CR9) 2016; 18
References_xml – volume: 17
  start-page: 103027
  issue: 10
  year: 2015
  ident: CR26
  article-title: Entanglement and thermodynamics in general probabilistic theories
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/10/103027
– volume: 26
  start-page: 1510
  issue: 5
  year: 1997
  end-page: 1523
  ident: CR17
  article-title: Strengths and weaknesses of quantum computing
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796300933
– volume: 17
  start-page: 083001
  issue: 8
  year: 2015
  ident: CR3
  article-title: Computation in generalised probabilisitic theories
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083001
– volume: 79
  start-page: 325
  issue: 2
  year: 1997
  ident: CR45
  article-title: Quantum mechanics helps in searching for a needle in a haystack
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.325
– volume: 18
  start-page: 033023
  issue: 3
  year: 2016
  ident: CR9
  article-title: Generalised phase kick-back: the structure of computational algorithms from physical principles
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/3/033023
– ident: CR12
– ident: CR30
– volume: 75
  start-page: 032110
  issue: 3
  year: 2007
  ident: CR33
  article-title: Evidence for the epistemic view of quantum states: a toy theory
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032110
– volume: 454
  start-page: 339
  year: 1998
  end-page: 354
  ident: CR38
  article-title: Quantum algorithms revisited
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1998.0164
– ident: CR6
– volume: 19
  start-page: 033017
  year: 2017
  ident: CR15
  article-title: Obtaining tight bounds on higher-order interferences with a 5-path interferometer
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa5d98
– ident: CR29
– volume: 75
  start-page: 032304
  issue: 3
  year: 2007
  ident: CR21
  article-title: Information processing in generalized probabilistic theories
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032304
– volume: 41
  start-page: 396
  issue: 3
  year: 2011
  end-page: 405
  ident: CR40
  article-title: Three slit experiments and the structure of quantum theory
  publication-title: Found. Phys.
  doi: 10.1007/s10701-010-9429-z
– volume: 5
  start-page: 183
  issue: 3
  year: 1961
  end-page: 191
  ident: CR1
  article-title: Irreversibility and heat generation in the computing process
  publication-title: IBM J Res. Dev.
  doi: 10.1147/rd.53.0183
– volume: 9
  start-page: 3119
  issue: 33
  year: 1994
  end-page: 3127
  ident: CR10
  article-title: Quantum mechanics as quantum measure theory
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S021773239400294X
– volume: 107
  start-page: 20009
  issue: 2
  year: 2014
  ident: CR34
  article-title: Fermionic computation is non-local tomographic and violates monogamy of entanglement
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/107/20009
– ident: CR25
– year: 2016
  ident: CR27
  publication-title: Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning
– volume: 472
  start-page: 20160076
  issue: 2190
  year: 2016
  ident: CR4
  article-title: Bounds on the power of proofs and advice in general physical theories
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2016.0076
– volume: 29
  start-page: 1430025
  issue: 17
  year: 2014
  ident: CR35
  article-title: The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X14300257
– volume: 108
  start-page: 130401
  issue: 13
  year: 2012
  ident: CR37
  article-title: Structure of reversible computation determines the self-duality of quantum theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.130401
– ident: CR19
– year: 2003
  ident: CR43
  publication-title: Computational complexity
– volume: 57
  start-page: 2403
  issue: 5
  year: 1998
  ident: CR44
  article-title: An analog analogue of a quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.2403
– volume: 12
  start-page: 053037
  issue: 5
  year: 2010
  ident: CR2
  article-title: Theories of systems with limited information content
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/5/053037
– year: 2010
  ident: CR16
  publication-title: Quantum Computation and Quantum Information
  doi: 10.1017/CBO9780511976667
– volume: 47
  start-page: 89
  issue: 1
  year: 2017
  end-page: 112
  ident: CR42
  article-title: Higher-order interference in extensions of quantum theory
  publication-title: Found. Phys.
  doi: 10.1007/s10701-016-0045-4
– volume: 51
  start-page: 59
  issue: 1
  year: 2010
  end-page: 83
  ident: CR28
  article-title: Quantum picturalism
  publication-title: Cont. Phys.
  doi: 10.1080/00107510903257624
– ident: CR31
– ident: CR11
– ident: CR32
– volume: 16
  start-page: 123029
  issue: 12
  year: 2014
  ident: CR36
  article-title: Higher-order interference and single-system postulates characterizing quantum theory
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/12/123029
– ident: CR7
– volume: 5
  start-page: 10304
  year: 2015
  ident: CR39
  article-title: On the superposition principle in interference experiments
  publication-title: Sci. Rep.
  doi: 10.1038/srep10304
– volume: 90
  start-page: 022302
  issue: 2
  year: 2014
  ident: CR8
  article-title: Quantum interference as a resource for quantum speedup
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.022302
– volume: 99
  start-page: 240501
  issue: 24
  year: 2007
  ident: CR22
  article-title: Generalized no-broadcasting theorem
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.240501
– ident: CR41
– volume: 18
  start-page: 093047
  issue: 9
  year: 2016
  ident: CR5
  article-title: Deriving Grover’s lower bound from simple physical principles
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/9/093047
– volume: 14
  start-page: 113025
  issue: 11
  year: 2012
  ident: CR13
  article-title: Three path interference using nuclear magnetic resonance: a test of the consistency of Born’s rule
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/11/113025
– volume: 412
  start-page: 7068
  issue: 51
  year: 2011
  end-page: 7074
  ident: CR18
  article-title: On the uselessness of quantum queries
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2011.06.037
– volume: 81
  start-page: 062348
  issue: 6
  year: 2010
  ident: CR23
  article-title: Probabilistic theories with purification
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.062348
– ident: CR24
– volume: 329
  start-page: 418
  issue: 5990
  year: 2010
  end-page: 421
  ident: CR14
  article-title: Ruling out multi-order interference in quantum mechanics
  publication-title: Science
  doi: 10.1126/science.1190545
– ident: CR20
– volume: 79
  start-page: 325
  issue: 2
  year: 1997
  ident: 198_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.325
– ident: 198_CR12
– volume: 18
  start-page: 033023
  issue: 3
  year: 2016
  ident: 198_CR9
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/3/033023
– volume: 41
  start-page: 396
  issue: 3
  year: 2011
  ident: 198_CR40
  publication-title: Found. Phys.
  doi: 10.1007/s10701-010-9429-z
– volume: 75
  start-page: 032110
  issue: 3
  year: 2007
  ident: 198_CR33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032110
– ident: 198_CR41
– ident: 198_CR7
– ident: 198_CR20
– volume: 9
  start-page: 3119
  issue: 33
  year: 1994
  ident: 198_CR10
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S021773239400294X
– volume-title: Computational complexity
  year: 2003
  ident: 198_CR43
– volume-title: Quantum Computation and Quantum Information
  year: 2010
  ident: 198_CR16
  doi: 10.1017/CBO9780511976667
– volume: 17
  start-page: 103027
  issue: 10
  year: 2015
  ident: 198_CR26
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/10/103027
– volume: 18
  start-page: 093047
  issue: 9
  year: 2016
  ident: 198_CR5
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/9/093047
– ident: 198_CR31
– volume: 81
  start-page: 062348
  issue: 6
  year: 2010
  ident: 198_CR23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.062348
– ident: 198_CR24
– volume: 12
  start-page: 053037
  issue: 5
  year: 2010
  ident: 198_CR2
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/5/053037
– volume: 16
  start-page: 123029
  issue: 12
  year: 2014
  ident: 198_CR36
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/12/123029
– volume: 14
  start-page: 113025
  issue: 11
  year: 2012
  ident: 198_CR13
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/11/113025
– volume-title: Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning
  year: 2016
  ident: 198_CR27
– volume: 29
  start-page: 1430025
  issue: 17
  year: 2014
  ident: 198_CR35
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X14300257
– volume: 5
  start-page: 10304
  year: 2015
  ident: 198_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/srep10304
– ident: 198_CR19
  doi: 10.1145/2840728.2840739
– volume: 57
  start-page: 2403
  issue: 5
  year: 1998
  ident: 198_CR44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.2403
– volume: 47
  start-page: 89
  issue: 1
  year: 2017
  ident: 198_CR42
  publication-title: Found. Phys.
  doi: 10.1007/s10701-016-0045-4
– volume: 472
  start-page: 20160076
  issue: 2190
  year: 2016
  ident: 198_CR4
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2016.0076
– ident: 198_CR11
– volume: 412
  start-page: 7068
  issue: 51
  year: 2011
  ident: 198_CR18
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2011.06.037
– volume: 19
  start-page: 033017
  year: 2017
  ident: 198_CR15
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa5d98
– volume: 75
  start-page: 032304
  issue: 3
  year: 2007
  ident: 198_CR21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032304
– ident: 198_CR6
– volume: 26
  start-page: 1510
  issue: 5
  year: 1997
  ident: 198_CR17
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796300933
– volume: 51
  start-page: 59
  issue: 1
  year: 2010
  ident: 198_CR28
  publication-title: Cont. Phys.
  doi: 10.1080/00107510903257624
– volume: 99
  start-page: 240501
  issue: 24
  year: 2007
  ident: 198_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.240501
– ident: 198_CR29
– ident: 198_CR30
– volume: 5
  start-page: 183
  issue: 3
  year: 1961
  ident: 198_CR1
  publication-title: IBM J Res. Dev.
  doi: 10.1147/rd.53.0183
– volume: 90
  start-page: 022302
  issue: 2
  year: 2014
  ident: 198_CR8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.022302
– ident: 198_CR25
– volume: 329
  start-page: 418
  issue: 5990
  year: 2010
  ident: 198_CR14
  publication-title: Science
  doi: 10.1126/science.1190545
– volume: 108
  start-page: 130401
  issue: 13
  year: 2012
  ident: 198_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.130401
– volume: 17
  start-page: 083001
  issue: 8
  year: 2015
  ident: 198_CR3
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/8/083001
– ident: 198_CR32
  doi: 10.1103/PhysRevA.95.052324
– volume: 107
  start-page: 20009
  issue: 2
  year: 2014
  ident: 198_CR34
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/107/20009
– volume: 454
  start-page: 339
  year: 1998
  ident: 198_CR38
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1998.0164
SSID ssj0009764
Score 2.3086157
Snippet We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 954
SubjectTerms Classical and Quantum Gravitation
Classical Mechanics
Computation
Foundational Aspects of Quantum Information
History and Philosophical Foundations of Physics
Interference
Lower bounds
Philosophy of Science
Physics
Physics and Astronomy
Quantum Physics
Queries
Relativity Theory
Statistical Physics and Dynamical Systems
Title Oracles and Query Lower Bounds in Generalised Probabilistic Theories
URI https://link.springer.com/article/10.1007/s10701-018-0198-4
https://www.ncbi.nlm.nih.gov/pubmed/30393388
https://www.proquest.com/docview/2093063454
https://www.proquest.com/docview/2130055921
https://pubmed.ncbi.nlm.nih.gov/PMC6191169
Volume 48
WOSCitedRecordID wos000442731900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1572-9516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009764
  issn: 0015-9018
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6xARovAwpjYWMyEuIBFKmxHTt53AYTD9MoAqa-RY7tiEqQoqRF2r_nzklaugESvEXxxbHPZ5_Pd_4O4EXpFGoCiROJSxFLqVVsfFXFKArc5JXwMpxDXp7ri4tsOs0n_T3udoh2H1ySYaX-5bKbDqYvBV_lWSy34HZKYDNkon-8XCPt6g4zCvUcxR5kgyvzd1VsKqMbO8ybgZLXvKVBCZ3d_6_mP4Ddfs_JjjsheQi3fD2C_eOWTsHn367YSxaeu0OOdgQ7p0MWuBHcnXRvH8Gb942hEDpmasc-LH1zxc4pxRo7ocxMLZvVrMewnrXesUmDKwVF3hIQNAsQAGiUP4bPZ28_nb6L-xwMsZV6vIhxXeaV8xXXSlXOWOU0d0ZzL5XKhE0M92U69r7yVtngw8tEWWL9VqWpSY3Yg-16Xvt9YIk21riqtFiblEiDpp4XxqBNk7rE8gjGw2AUtgcopzwZX4s1tDLxsEAeFsTDQkbwavXJ9w6d42_Eh8MIF_1EbQs-ztFoEjLF4uerYuQx-U1M7edLpCGXH7aSJxE86QRi9TdBd5tFlkWgN0RlRUDw3Zsl9exLgPFG0zVJVB7B60Fg1s36Yyee_hP1AdzjQeJI6A5he9Es_TO4Y38sZm1zBFt6mh2F2fMTQ1gUSA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BAG0vfBTYwgYYCfHAFKlxHDt53AbTEKUUMaa9RY7tiEosnZIWaf89d07SUgZI8BbFF8c-n30-3_l3AC8LK1ETCJxIXMShEEqG2pVliKLAdVbGTvhzyLORGo_T8_Ns0t3jbvpo994l6Vfqny67KW_6UvBVlobiJtwSlGWHTPTPZyukXdViRqGeo9iDtHdl_q6KdWV0bYd5PVDyF2-pV0LH9_6r-ffhbrfnZAetkDyAG64awM5BQ6fgs4sr9or55_aQoxnA5lGfBW4Adybt24fw5mOtKYSO6cqyTwtXX7ERpVhjh5SZqWHTinUY1tPGWTapcaWgyFsCgmYeAgCN8kfw5fjt6dFJ2OVgCI1Qw3mI6zIvrSu5krK02kiruNWKOyFlGptIc1ckQ-dKZ6TxPrw0Lgqs38gk0YmOH8NGNavcDrBIaaNtWRisTQikQVPPxVqjTZPYyPAAhv1g5KYDKKc8Gd_yFbQy8TBHHubEw1wE8Hr5yWWLzvE34r1-hPNuojY5H2ZoNMUiweIXy2LkMflNdOVmC6Qhlx-2kkcBbLcCsfxbTHeb4zQNQK2JypKA4LvXS6rpVw_jjaZrFMksgP1eYFbN-mMnnvwT9XPYPDn9MMpH78bvd2GLe-kjAdyDjXm9cE_htvk-nzb1Mz-HfgC6uBZE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED_BeH7hUR4LDDAS4sNQtMZ27OTj2KhAVKW8pn2LHD-0SiOdkhZp_z1nJ2kpAyTEt8i-OPb5nPP5zr8DeFEagZqA40KinMWcSxEr61yMokBV7pjl4RzyaCwnk-z4OJ92eU6bPtq9d0m2dxo8SlO12Dszbu-ni28ymME-ECvPYn4ZrnAs8zFdnz4frVF3ZYsfhTrPxyFkvVvzd01sKqYLu82LQZO_eE6DQhrd_u-h3IFb3V6U7LfCcxcu2WoA2_uNPx2ffzsnL0l4bg8_mgHcOOizww3g2rQtvQeHH2rlQ-uIqgz5uLT1ORn71Gvktc_Y1JBZRTps61ljDZnW-AfxEbkeIJoEaAA01u_D19GbLwdv4y43Q6y5HC5i_F9TZ6yjUghnlBZGUqMktVyIjOlEUVumQ2ud1UIH317GyhLb1yJNVarYA9iq5pXdBpJIpZVxpcbWOEcaNAEtUwptndQkmkYw7Cem0B1wuc-fcVqsIZc9DwvkYeF5WPAIdlevnLWoHX8j3ulnu-gWcFPQYY7GFOMpVj9fVSOPvT9FVXa-RBrvCsRe0iSCh61wrL7G_J1nlmURyA2xWRF4WO_Nmmp2EuC90aRNEpFH8KoXnnW3_jiIR_9E_QyuTw9Hxfjd5P1juEmD8Hn524GtRb20T-Cq_r6YNfXTsJx-AHbFHyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oracles+and+Query+Lower+Bounds+in+Generalised+Probabilistic+Theories&rft.jtitle=Foundations+of+physics&rft.au=Barnum%2C+Howard&rft.au=Lee%2C+Ciar%C3%A1n+M&rft.au=Selby%2C+John+H&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0015-9018&rft.eissn=1572-9516&rft.volume=48&rft.issue=8&rft.spage=954&rft.epage=981&rft_id=info:doi/10.1007%2Fs10701-018-0198-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-9018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-9018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-9018&client=summon