Oracles and Query Lower Bounds in Generalised Probabilistic Theories
We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical pri...
Uloženo v:
| Vydáno v: | Foundations of physics Ročník 48; číslo 8; s. 954 - 981 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0015-9018, 1572-9516 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least
n
queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding “no-information” lower bound in theories lying at the
k
th level of Sorkin’s hierarchy is
⌈
n
/
k
⌉
. This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation. |
|---|---|
| AbstractList | We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding "no-information" lower bound in theories lying at the kth level of Sorkin's hierarchy is ⌈ n / k ⌉ . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding "no-information" lower bound in theories lying at the kth level of Sorkin's hierarchy is ⌈ n / k ⌉ . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation. We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding “no-information” lower bound in theories lying at the k th level of Sorkin’s hierarchy is ⌈ n / k ⌉ . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation. We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding "no-information" lower bound in theories lying at the th level of Sorkin's hierarchy is . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation. We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding “no-information” lower bound in theories lying at the kth level of Sorkin’s hierarchy is $$\lceil {n/k}\rceil $$ ⌈n/k⌉. This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation. We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding “no-information” lower bound in theories lying at the kth level of Sorkin’s hierarchy is ⌈n/k⌉. This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation. |
| Author | Selby, John H. Barnum, Howard Lee, Ciarán M. |
| Author_xml | – sequence: 1 givenname: Howard surname: Barnum fullname: Barnum, Howard organization: Department of Mathematical Sciences, University of Copenhagen, Department of Physics and Astronomy, University of New Mexico – sequence: 2 givenname: Ciarán M. surname: Lee fullname: Lee, Ciarán M. organization: Department of Physics and Astronomy, University College London – sequence: 3 givenname: John H. orcidid: 0000-0002-4596-7501 surname: Selby fullname: Selby, John H. email: john.selby08@imperial.ac.uk organization: Department of Computer Science, University of Oxford, Imperial College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30393388$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UdFKHTEQDWLR660f0Jey4Etf1k6STbJ5EaxtbeGCLdjnkM3OamRvoslui3_fXK5aK7QPYQhzzpkzcw7IbogBCXlD4ZgCqPeZggJaA23L023d7JAFFYrVWlC5SxYAVNS6tPfJQc43AKCVbPbIPgeuOW_bBfl4kawbMVc29NX3GdN9tYq_MFUf4hz6XPlQnWPAZEefsa--pdjZzpfP5F11eY0xecyvyavBjhkPH-qS_Pj86fLsS726OP96drqqXaNgqtE6NvQ4MCXl0Fsne8V6qxg2UrbcUcuwE4A4oJOOcWhUy7uuzHNSCCssX5KTre7t3K2xdximYszcJr-26d5E683fneCvzVX8aSTVlEpdBN49CKR4N2OezNpnh-NoA8Y5G0Y5gBC61CU5egG9iXMKZT3DQHOQvBFNQb197ujJyuOBC4BuAS7FnBMOTxAKZhOi2YZoSkpmE6LZiKoXHOcnO_m4WcqP_2WyLTOXKeEK0x_T_yb9Bon6sSg |
| CitedBy_id | crossref_primary_10_1038_s41534_018_0123_x crossref_primary_10_1038_s41534_022_00574_8 crossref_primary_10_1002_andp_202100303 crossref_primary_10_1016_j_physrep_2023_09_001 crossref_primary_10_1038_s41534_019_0151_1 crossref_primary_10_1088_1751_8121_ac8ea4 crossref_primary_10_1103_PhysRevResearch_2_043128 crossref_primary_10_3390_universe8010040 |
| Cites_doi | 10.1088/1367-2630/17/10/103027 10.1137/S0097539796300933 10.1088/1367-2630/17/8/083001 10.1103/PhysRevLett.79.325 10.1088/1367-2630/18/3/033023 10.1103/PhysRevA.75.032110 10.1098/rspa.1998.0164 10.1088/1367-2630/aa5d98 10.1103/PhysRevA.75.032304 10.1007/s10701-010-9429-z 10.1147/rd.53.0183 10.1142/S021773239400294X 10.1209/0295-5075/107/20009 10.1098/rspa.2016.0076 10.1142/S0217751X14300257 10.1103/PhysRevLett.108.130401 10.1103/PhysRevA.57.2403 10.1088/1367-2630/12/5/053037 10.1017/CBO9780511976667 10.1007/s10701-016-0045-4 10.1080/00107510903257624 10.1088/1367-2630/16/12/123029 10.1038/srep10304 10.1103/PhysRevA.90.022302 10.1103/PhysRevLett.99.240501 10.1088/1367-2630/18/9/093047 10.1088/1367-2630/14/11/113025 10.1016/j.tcs.2011.06.037 10.1103/PhysRevA.81.062348 10.1126/science.1190545 10.1145/2840728.2840739 10.1103/PhysRevA.95.052324 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | C6C AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1007/s10701-018-0198-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Astronomy & Astrophysics Physics |
| EISSN | 1572-9516 |
| EndPage | 981 |
| ExternalDocumentID | PMC6191169 30393388 10_1007_s10701_018_0198_4 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Danish council for independent research – fundername: European Research Council grantid: 337603 funderid: http://dx.doi.org/10.13039/501100000781 – fundername: Villum Fonden grantid: 10059 funderid: http://dx.doi.org/10.13039/100008398 – fundername: ; – fundername: ; grantid: 10059 – fundername: ; grantid: 337603 |
| GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29H 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ3 GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QF4 QM9 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 XJT YLTOR YYP Z45 Z7R Z7X Z7Y Z83 Z88 Z8R Z8W Z92 ZKB ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AETEA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO GNUQQ HCIFZ M2P PCBAR PHGZM PHGZT PQGLB NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c470t-eac2fdef2766fdac6d72da72e46683c1a2eb50eefec6c2304783bbbabc655a5a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442731900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0015-9018 |
| IngestDate | Tue Nov 04 01:32:37 EST 2025 Wed Oct 01 12:47:42 EDT 2025 Wed Sep 17 13:51:04 EDT 2025 Wed Feb 19 02:41:12 EST 2025 Sat Nov 29 02:39:08 EST 2025 Tue Nov 18 21:13:14 EST 2025 Fri Feb 21 02:35:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Query complexity Generalised probabilistic theories Higher order interference Oracles |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-eac2fdef2766fdac6d72da72e46683c1a2eb50eefec6c2304783bbbabc655a5a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4596-7501 |
| OpenAccessLink | https://link.springer.com/10.1007/s10701-018-0198-4 |
| PMID | 30393388 |
| PQID | 2093063454 |
| PQPubID | 2043555 |
| PageCount | 28 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6191169 proquest_miscellaneous_2130055921 proquest_journals_2093063454 pubmed_primary_30393388 crossref_primary_10_1007_s10701_018_0198_4 crossref_citationtrail_10_1007_s10701_018_0198_4 springer_journals_10_1007_s10701_018_0198_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics |
| PublicationTitle | Foundations of physics |
| PublicationTitleAbbrev | Found Phys |
| PublicationTitleAlternate | Found Phys |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Paterek, Dakić, Brukner (CR2) 2010; 12 Meyer, Pommersheim (CR18) 2011; 412 Landauer (CR1) 1961; 5 Park, Moussa, Laflamme (CR13) 2012; 14 Lee, Selby (CR9) 2016; 18 CR19 Kauten, Keil, Kaufmann, Pressl, Brukner, Weihs (CR15) 2017; 19 Bennett, Bernstein, Brassard, Vazirani (CR17) 1997; 26 Chiribella, Scandolo (CR26) 2015; 17 Lee, Selby (CR42) 2017; 47 CR12 CR11 CR32 CR31 CR30 Barnum, Barrett, Leifer, Wilce (CR22) 2007; 99 Papadimitriou (CR43) 2003 Barnum, Mueller, Ududec (CR36) 2014; 16 Coecke, Kissinger (CR27) 2016 Cleve, Ekert, Macchiavello, Mosca (CR38) 1998; 454 Farhi, Gutmann (CR44) 1998; 57 Ududec, Barnum, Emerson (CR40) 2011; 41 D’Ariano, Manessi, Perinotti, Tosini (CR35) 2014; 29 D’Ariano, Manessi, Perinotti, Tosini (CR34) 2014; 107 Müller, Ududec (CR37) 2012; 108 CR6 Spekkens (CR33) 2007; 75 Nielsen, Chuang (CR16) 2010 CR7 Barrett (CR21) 2007; 75 CR29 CR25 Lee, Selby (CR5) 2016; 18 CR24 Sinha, Couteau, Jennewein, Laflamme, Weihs (CR14) 2010; 329 Sinha, Vijay, Sinha (CR39) 2015; 5 Stahlke (CR8) 2014; 90 CR20 CR41 Coecke (CR28) 2010; 51 Chiribella, D’Ariano, Perinotti (CR23) 2010; 81 Grover (CR45) 1997; 79 Lee, Barrett (CR3) 2015; 17 Lee, Hoban (CR4) 2016; 472 Sorkin (CR10) 1994; 9 T Kauten (198_CR15) 2017; 19 GM D’Ariano (198_CR35) 2014; 29 H Barnum (198_CR22) 2007; 99 198_CR29 J Barrett (198_CR21) 2007; 75 R Landauer (198_CR1) 1961; 5 CH Bennett (198_CR17) 1997; 26 198_CR24 198_CR25 CH Papadimitriou (198_CR43) 2003 B Coecke (198_CR27) 2016 MA Nielsen (198_CR16) 2010 G Chiribella (198_CR23) 2010; 81 RW Spekkens (198_CR33) 2007; 75 CM Lee (198_CR5) 2016; 18 LK Grover (198_CR45) 1997; 79 U Sinha (198_CR14) 2010; 329 CM Lee (198_CR4) 2016; 472 198_CR11 198_CR12 198_CR31 198_CR32 D Stahlke (198_CR8) 2014; 90 198_CR30 198_CR19 B Coecke (198_CR28) 2010; 51 RD Sorkin (198_CR10) 1994; 9 MP Müller (198_CR37) 2012; 108 CM Lee (198_CR3) 2015; 17 DA Meyer (198_CR18) 2011; 412 CM Lee (198_CR42) 2017; 47 198_CR6 T Paterek (198_CR2) 2010; 12 198_CR7 R Cleve (198_CR38) 1998; 454 GM D’Ariano (198_CR34) 2014; 107 G Chiribella (198_CR26) 2015; 17 H Barnum (198_CR36) 2014; 16 198_CR20 C Ududec (198_CR40) 2011; 41 DK Park (198_CR13) 2012; 14 A Sinha (198_CR39) 2015; 5 E Farhi (198_CR44) 1998; 57 198_CR41 CM Lee (198_CR9) 2016; 18 |
| References_xml | – volume: 17 start-page: 103027 issue: 10 year: 2015 ident: CR26 article-title: Entanglement and thermodynamics in general probabilistic theories publication-title: New J. Phys. doi: 10.1088/1367-2630/17/10/103027 – volume: 26 start-page: 1510 issue: 5 year: 1997 end-page: 1523 ident: CR17 article-title: Strengths and weaknesses of quantum computing publication-title: SIAM J. Comput. doi: 10.1137/S0097539796300933 – volume: 17 start-page: 083001 issue: 8 year: 2015 ident: CR3 article-title: Computation in generalised probabilisitic theories publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083001 – volume: 79 start-page: 325 issue: 2 year: 1997 ident: CR45 article-title: Quantum mechanics helps in searching for a needle in a haystack publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.325 – volume: 18 start-page: 033023 issue: 3 year: 2016 ident: CR9 article-title: Generalised phase kick-back: the structure of computational algorithms from physical principles publication-title: New J. Phys. doi: 10.1088/1367-2630/18/3/033023 – ident: CR12 – ident: CR30 – volume: 75 start-page: 032110 issue: 3 year: 2007 ident: CR33 article-title: Evidence for the epistemic view of quantum states: a toy theory publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.032110 – volume: 454 start-page: 339 year: 1998 end-page: 354 ident: CR38 article-title: Quantum algorithms revisited publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1998.0164 – ident: CR6 – volume: 19 start-page: 033017 year: 2017 ident: CR15 article-title: Obtaining tight bounds on higher-order interferences with a 5-path interferometer publication-title: New J. Phys. doi: 10.1088/1367-2630/aa5d98 – ident: CR29 – volume: 75 start-page: 032304 issue: 3 year: 2007 ident: CR21 article-title: Information processing in generalized probabilistic theories publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.032304 – volume: 41 start-page: 396 issue: 3 year: 2011 end-page: 405 ident: CR40 article-title: Three slit experiments and the structure of quantum theory publication-title: Found. Phys. doi: 10.1007/s10701-010-9429-z – volume: 5 start-page: 183 issue: 3 year: 1961 end-page: 191 ident: CR1 article-title: Irreversibility and heat generation in the computing process publication-title: IBM J Res. Dev. doi: 10.1147/rd.53.0183 – volume: 9 start-page: 3119 issue: 33 year: 1994 end-page: 3127 ident: CR10 article-title: Quantum mechanics as quantum measure theory publication-title: Mod. Phys. Lett. A doi: 10.1142/S021773239400294X – volume: 107 start-page: 20009 issue: 2 year: 2014 ident: CR34 article-title: Fermionic computation is non-local tomographic and violates monogamy of entanglement publication-title: Europhys. Lett. doi: 10.1209/0295-5075/107/20009 – ident: CR25 – year: 2016 ident: CR27 publication-title: Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning – volume: 472 start-page: 20160076 issue: 2190 year: 2016 ident: CR4 article-title: Bounds on the power of proofs and advice in general physical theories publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2016.0076 – volume: 29 start-page: 1430025 issue: 17 year: 2014 ident: CR35 article-title: The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X14300257 – volume: 108 start-page: 130401 issue: 13 year: 2012 ident: CR37 article-title: Structure of reversible computation determines the self-duality of quantum theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.130401 – ident: CR19 – year: 2003 ident: CR43 publication-title: Computational complexity – volume: 57 start-page: 2403 issue: 5 year: 1998 ident: CR44 article-title: An analog analogue of a quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.2403 – volume: 12 start-page: 053037 issue: 5 year: 2010 ident: CR2 article-title: Theories of systems with limited information content publication-title: New J. Phys. doi: 10.1088/1367-2630/12/5/053037 – year: 2010 ident: CR16 publication-title: Quantum Computation and Quantum Information doi: 10.1017/CBO9780511976667 – volume: 47 start-page: 89 issue: 1 year: 2017 end-page: 112 ident: CR42 article-title: Higher-order interference in extensions of quantum theory publication-title: Found. Phys. doi: 10.1007/s10701-016-0045-4 – volume: 51 start-page: 59 issue: 1 year: 2010 end-page: 83 ident: CR28 article-title: Quantum picturalism publication-title: Cont. Phys. doi: 10.1080/00107510903257624 – ident: CR31 – ident: CR11 – ident: CR32 – volume: 16 start-page: 123029 issue: 12 year: 2014 ident: CR36 article-title: Higher-order interference and single-system postulates characterizing quantum theory publication-title: New J. Phys. doi: 10.1088/1367-2630/16/12/123029 – ident: CR7 – volume: 5 start-page: 10304 year: 2015 ident: CR39 article-title: On the superposition principle in interference experiments publication-title: Sci. Rep. doi: 10.1038/srep10304 – volume: 90 start-page: 022302 issue: 2 year: 2014 ident: CR8 article-title: Quantum interference as a resource for quantum speedup publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.022302 – volume: 99 start-page: 240501 issue: 24 year: 2007 ident: CR22 article-title: Generalized no-broadcasting theorem publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.240501 – ident: CR41 – volume: 18 start-page: 093047 issue: 9 year: 2016 ident: CR5 article-title: Deriving Grover’s lower bound from simple physical principles publication-title: New J. Phys. doi: 10.1088/1367-2630/18/9/093047 – volume: 14 start-page: 113025 issue: 11 year: 2012 ident: CR13 article-title: Three path interference using nuclear magnetic resonance: a test of the consistency of Born’s rule publication-title: New J. Phys. doi: 10.1088/1367-2630/14/11/113025 – volume: 412 start-page: 7068 issue: 51 year: 2011 end-page: 7074 ident: CR18 article-title: On the uselessness of quantum queries publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2011.06.037 – volume: 81 start-page: 062348 issue: 6 year: 2010 ident: CR23 article-title: Probabilistic theories with purification publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.062348 – ident: CR24 – volume: 329 start-page: 418 issue: 5990 year: 2010 end-page: 421 ident: CR14 article-title: Ruling out multi-order interference in quantum mechanics publication-title: Science doi: 10.1126/science.1190545 – ident: CR20 – volume: 79 start-page: 325 issue: 2 year: 1997 ident: 198_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.325 – ident: 198_CR12 – volume: 18 start-page: 033023 issue: 3 year: 2016 ident: 198_CR9 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/3/033023 – volume: 41 start-page: 396 issue: 3 year: 2011 ident: 198_CR40 publication-title: Found. Phys. doi: 10.1007/s10701-010-9429-z – volume: 75 start-page: 032110 issue: 3 year: 2007 ident: 198_CR33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.032110 – ident: 198_CR41 – ident: 198_CR7 – ident: 198_CR20 – volume: 9 start-page: 3119 issue: 33 year: 1994 ident: 198_CR10 publication-title: Mod. Phys. Lett. A doi: 10.1142/S021773239400294X – volume-title: Computational complexity year: 2003 ident: 198_CR43 – volume-title: Quantum Computation and Quantum Information year: 2010 ident: 198_CR16 doi: 10.1017/CBO9780511976667 – volume: 17 start-page: 103027 issue: 10 year: 2015 ident: 198_CR26 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/10/103027 – volume: 18 start-page: 093047 issue: 9 year: 2016 ident: 198_CR5 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/9/093047 – ident: 198_CR31 – volume: 81 start-page: 062348 issue: 6 year: 2010 ident: 198_CR23 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.062348 – ident: 198_CR24 – volume: 12 start-page: 053037 issue: 5 year: 2010 ident: 198_CR2 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/5/053037 – volume: 16 start-page: 123029 issue: 12 year: 2014 ident: 198_CR36 publication-title: New J. Phys. doi: 10.1088/1367-2630/16/12/123029 – volume: 14 start-page: 113025 issue: 11 year: 2012 ident: 198_CR13 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/11/113025 – volume-title: Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning year: 2016 ident: 198_CR27 – volume: 29 start-page: 1430025 issue: 17 year: 2014 ident: 198_CR35 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X14300257 – volume: 5 start-page: 10304 year: 2015 ident: 198_CR39 publication-title: Sci. Rep. doi: 10.1038/srep10304 – ident: 198_CR19 doi: 10.1145/2840728.2840739 – volume: 57 start-page: 2403 issue: 5 year: 1998 ident: 198_CR44 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.2403 – volume: 47 start-page: 89 issue: 1 year: 2017 ident: 198_CR42 publication-title: Found. Phys. doi: 10.1007/s10701-016-0045-4 – volume: 472 start-page: 20160076 issue: 2190 year: 2016 ident: 198_CR4 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2016.0076 – ident: 198_CR11 – volume: 412 start-page: 7068 issue: 51 year: 2011 ident: 198_CR18 publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2011.06.037 – volume: 19 start-page: 033017 year: 2017 ident: 198_CR15 publication-title: New J. Phys. doi: 10.1088/1367-2630/aa5d98 – volume: 75 start-page: 032304 issue: 3 year: 2007 ident: 198_CR21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.032304 – ident: 198_CR6 – volume: 26 start-page: 1510 issue: 5 year: 1997 ident: 198_CR17 publication-title: SIAM J. Comput. doi: 10.1137/S0097539796300933 – volume: 51 start-page: 59 issue: 1 year: 2010 ident: 198_CR28 publication-title: Cont. Phys. doi: 10.1080/00107510903257624 – volume: 99 start-page: 240501 issue: 24 year: 2007 ident: 198_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.240501 – ident: 198_CR29 – ident: 198_CR30 – volume: 5 start-page: 183 issue: 3 year: 1961 ident: 198_CR1 publication-title: IBM J Res. Dev. doi: 10.1147/rd.53.0183 – volume: 90 start-page: 022302 issue: 2 year: 2014 ident: 198_CR8 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.022302 – ident: 198_CR25 – volume: 329 start-page: 418 issue: 5990 year: 2010 ident: 198_CR14 publication-title: Science doi: 10.1126/science.1190545 – volume: 108 start-page: 130401 issue: 13 year: 2012 ident: 198_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.130401 – volume: 17 start-page: 083001 issue: 8 year: 2015 ident: 198_CR3 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/8/083001 – ident: 198_CR32 doi: 10.1103/PhysRevA.95.052324 – volume: 107 start-page: 20009 issue: 2 year: 2014 ident: 198_CR34 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/107/20009 – volume: 454 start-page: 339 year: 1998 ident: 198_CR38 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1998.0164 |
| SSID | ssj0009764 |
| Score | 2.3086157 |
| Snippet | We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 954 |
| SubjectTerms | Classical and Quantum Gravitation Classical Mechanics Computation Foundational Aspects of Quantum Information History and Philosophical Foundations of Physics Interference Lower bounds Philosophy of Science Physics Physics and Astronomy Quantum Physics Queries Relativity Theory Statistical Physics and Dynamical Systems |
| Title | Oracles and Query Lower Bounds in Generalised Probabilistic Theories |
| URI | https://link.springer.com/article/10.1007/s10701-018-0198-4 https://www.ncbi.nlm.nih.gov/pubmed/30393388 https://www.proquest.com/docview/2093063454 https://www.proquest.com/docview/2130055921 https://pubmed.ncbi.nlm.nih.gov/PMC6191169 |
| Volume | 48 |
| WOSCitedRecordID | wos000442731900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1572-9516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009764 issn: 0015-9018 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6xARovAwpjYWMyEuIBFKmxHTt53AYTD9MoAqa-RY7tiEqQoqRF2r_nzklaugESvEXxxbHPZ5_Pd_4O4EXpFGoCiROJSxFLqVVsfFXFKArc5JXwMpxDXp7ri4tsOs0n_T3udoh2H1ySYaX-5bKbDqYvBV_lWSy34HZKYDNkon-8XCPt6g4zCvUcxR5kgyvzd1VsKqMbO8ybgZLXvKVBCZ3d_6_mP4Ddfs_JjjsheQi3fD2C_eOWTsHn367YSxaeu0OOdgQ7p0MWuBHcnXRvH8Gb942hEDpmasc-LH1zxc4pxRo7ocxMLZvVrMewnrXesUmDKwVF3hIQNAsQAGiUP4bPZ28_nb6L-xwMsZV6vIhxXeaV8xXXSlXOWOU0d0ZzL5XKhE0M92U69r7yVtngw8tEWWL9VqWpSY3Yg-16Xvt9YIk21riqtFiblEiDpp4XxqBNk7rE8gjGw2AUtgcopzwZX4s1tDLxsEAeFsTDQkbwavXJ9w6d42_Eh8MIF_1EbQs-ztFoEjLF4uerYuQx-U1M7edLpCGXH7aSJxE86QRi9TdBd5tFlkWgN0RlRUDw3Zsl9exLgPFG0zVJVB7B60Fg1s36Yyee_hP1AdzjQeJI6A5he9Es_TO4Y38sZm1zBFt6mh2F2fMTQ1gUSA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BAG0vfBTYwgYYCfHAFKlxHDt53AbTEKUUMaa9RY7tiEosnZIWaf89d07SUgZI8BbFF8c-n30-3_l3AC8LK1ETCJxIXMShEEqG2pVliKLAdVbGTvhzyLORGo_T8_Ns0t3jbvpo994l6Vfqny67KW_6UvBVlobiJtwSlGWHTPTPZyukXdViRqGeo9iDtHdl_q6KdWV0bYd5PVDyF2-pV0LH9_6r-ffhbrfnZAetkDyAG64awM5BQ6fgs4sr9or55_aQoxnA5lGfBW4Adybt24fw5mOtKYSO6cqyTwtXX7ERpVhjh5SZqWHTinUY1tPGWTapcaWgyFsCgmYeAgCN8kfw5fjt6dFJ2OVgCI1Qw3mI6zIvrSu5krK02kiruNWKOyFlGptIc1ckQ-dKZ6TxPrw0Lgqs38gk0YmOH8NGNavcDrBIaaNtWRisTQikQVPPxVqjTZPYyPAAhv1g5KYDKKc8Gd_yFbQy8TBHHubEw1wE8Hr5yWWLzvE34r1-hPNuojY5H2ZoNMUiweIXy2LkMflNdOVmC6Qhlx-2kkcBbLcCsfxbTHeb4zQNQK2JypKA4LvXS6rpVw_jjaZrFMksgP1eYFbN-mMnnvwT9XPYPDn9MMpH78bvd2GLe-kjAdyDjXm9cE_htvk-nzb1Mz-HfgC6uBZE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED_BeH7hUR4LDDAS4sNQtMZ27OTj2KhAVKW8pn2LHD-0SiOdkhZp_z1nJ2kpAyTEt8i-OPb5nPP5zr8DeFEagZqA40KinMWcSxEr61yMokBV7pjl4RzyaCwnk-z4OJ92eU6bPtq9d0m2dxo8SlO12Dszbu-ni28ymME-ECvPYn4ZrnAs8zFdnz4frVF3ZYsfhTrPxyFkvVvzd01sKqYLu82LQZO_eE6DQhrd_u-h3IFb3V6U7LfCcxcu2WoA2_uNPx2ffzsnL0l4bg8_mgHcOOizww3g2rQtvQeHH2rlQ-uIqgz5uLT1ORn71Gvktc_Y1JBZRTps61ljDZnW-AfxEbkeIJoEaAA01u_D19GbLwdv4y43Q6y5HC5i_F9TZ6yjUghnlBZGUqMktVyIjOlEUVumQ2ud1UIH317GyhLb1yJNVarYA9iq5pXdBpJIpZVxpcbWOEcaNAEtUwptndQkmkYw7Cem0B1wuc-fcVqsIZc9DwvkYeF5WPAIdlevnLWoHX8j3ulnu-gWcFPQYY7GFOMpVj9fVSOPvT9FVXa-RBrvCsRe0iSCh61wrL7G_J1nlmURyA2xWRF4WO_Nmmp2EuC90aRNEpFH8KoXnnW3_jiIR_9E_QyuTw9Hxfjd5P1juEmD8Hn524GtRb20T-Cq_r6YNfXTsJx-AHbFHyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oracles+and+Query+Lower+Bounds+in+Generalised+Probabilistic+Theories&rft.jtitle=Foundations+of+physics&rft.au=Barnum%2C+Howard&rft.au=Lee%2C+Ciar%C3%A1n+M&rft.au=Selby%2C+John+H&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0015-9018&rft.eissn=1572-9516&rft.volume=48&rft.issue=8&rft.spage=954&rft.epage=981&rft_id=info:doi/10.1007%2Fs10701-018-0198-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-9018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-9018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-9018&client=summon |