Reliable Breast Cancer Diagnosis with Deep Learning: DCGAN-Driven Mammogram Synthesis and Validity Assessment
Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant obstacle when building deep learning models that can produce reliable outcomes. This paper proposes a novel approach that utilizes deep convo...
Saved in:
| Published in: | Applied Computational Intelligence and Soft Computing Vol. 2024; no. 1 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Hindawi
2024
John Wiley & Sons, Inc Wiley |
| Subjects: | |
| ISSN: | 1687-9724, 1687-9732 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant obstacle when building deep learning models that can produce reliable outcomes. This paper proposes a novel approach that utilizes deep convolutional generative adversarial networks (DCGANs) to effectively tackle the issue of limited data availability. The main goal is to produce synthetic mammograms that accurately reproduce the intrinsic patterns observed in real data, enhancing the current dataset. The proposed synthesis method is supported by thorough experimentation, demonstrating its ability to reproduce diverse viewpoints of the breast accurately. A mean similarity assessment with a standard deviation was performed to evaluate the credibility of the synthesized images and establish the clinical significance of the data obtained. A thorough evaluation of the uniformity within each class was conducted, and any deviations from each class’s mean values were measured. Including outlier removal using a specified threshold is a crucial process element. This procedure improves the accuracy level of each image cluster and strengthens the synthetic dataset’s general dependability. The visualization of the class clustering results highlights the alignment between the produced images and the inherent distribution of the data. After removing outliers, distinct and consistent clusters of homogeneous data points were observed. The proposed similarity assessment demonstrates noteworthy effectiveness, eliminating redundant and dissimilar images from all classes. Specifically, there are 505 instances in the normal class, 495 instances in the benign class, and 490 instances in the malignant class out of 600 synthetic mammograms for each class. To check the further validity of the proposed model, human experts visually inspected and validated synthetic images. This highlights the effectiveness of our methodology in identifying substantial outliers. |
|---|---|
| AbstractList | Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant obstacle when building deep learning models that can produce reliable outcomes. This paper proposes a novel approach that utilizes deep convolutional generative adversarial networks (DCGANs) to effectively tackle the issue of limited data availability. The main goal is to produce synthetic mammograms that accurately reproduce the intrinsic patterns observed in real data, enhancing the current dataset. The proposed synthesis method is supported by thorough experimentation, demonstrating its ability to reproduce diverse viewpoints of the breast accurately. A mean similarity assessment with a standard deviation was performed to evaluate the credibility of the synthesized images and establish the clinical significance of the data obtained. A thorough evaluation of the uniformity within each class was conducted, and any deviations from each class’s mean values were measured. Including outlier removal using a specified threshold is a crucial process element. This procedure improves the accuracy level of each image cluster and strengthens the synthetic dataset’s general dependability. The visualization of the class clustering results highlights the alignment between the produced images and the inherent distribution of the data. After removing outliers, distinct and consistent clusters of homogeneous data points were observed. The proposed similarity assessment demonstrates noteworthy effectiveness, eliminating redundant and dissimilar images from all classes. Specifically, there are 505 instances in the normal class, 495 instances in the benign class, and 490 instances in the malignant class out of 600 synthetic mammograms for each class. To check the further validity of the proposed model, human experts visually inspected and validated synthetic images. This highlights the effectiveness of our methodology in identifying substantial outliers. |
| Audience | Academic |
| Author | Ullah Khan, Mohammad Asmat Abrar, Mohammad Shah, Dilawar |
| Author_xml | – sequence: 1 givenname: Dilawar orcidid: 0000-0003-2701-6646 surname: Shah fullname: Shah, Dilawar organization: Department of Computer ScienceFaculty of Computing and Information TechnologyInternational Islamic UniversityIslamabad 44000Pakistaniiu.edu.pk – sequence: 2 givenname: Mohammad Asmat surname: Ullah Khan fullname: Ullah Khan, Mohammad Asmat organization: Department of Computer ScienceFaculty of Computing and Information TechnologyInternational Islamic UniversityIslamabad 44000Pakistaniiu.edu.pk – sequence: 3 givenname: Mohammad surname: Abrar fullname: Abrar, Mohammad organization: Department of Computer ScienceBacha Khan UniversityCharsadda 24420Pakistanbkuc.edu.pk |
| BookMark | eNp9kUtvEzEUhUeoSJTSHT_AEkuY1q95sQsJlEoBJF5b647Hntxqxg62S5V_X6cpIBAgL2xdfefYPudxceS8M0XxlNEzxqrqnFMuzxnjnNHuQXHM6rYpu0bwo59nLh8VpzFiT6mgVDZte1zMH82E0E-GvAoGYiJLcNoEskIYnY8YyQ2mDVkZsyVrA8GhG1-S1fJi8b5cBfxuHHkH8-zHADP5tHNpY_YicAP5ChMOmHZkEaOJcTYuPSkeWpiiOb3fT4ovb15_Xr4t1x8uLpeLdallQ1M5dBR000qpRc_qvm8a1lvZV1DRgUopqK0aKWrbi6G1tDas0bSvesmF1ZXkRpwUlwffwcOV2gacIeyUB1R3Ax9GBSGhnoyqzGBl3bX5HiE7qTs95NCkboSFbGez17OD1zb4b9cmJnXlr4PLz1e8E6LrcpD0FzVCNkVnfQqgZ4xaLfJPcvhM1Jk6-wuV12Bm1LlPi3n-m4AfBDr4GIOxSmOChN5lIU6KUbUvX-3LV_flZ9GLP0Q_EvgH_vyAb9ANcIP_p28BVnm7fQ |
| CitedBy_id | crossref_primary_10_1007_s00261_025_04860_9 crossref_primary_10_1155_2024_5564649 crossref_primary_10_62347_XKFN1793 crossref_primary_10_7717_peerj_cs_3149 crossref_primary_10_1002_mco2_70247 crossref_primary_10_1109_ACCESS_2025_3569321 crossref_primary_10_1002_eng2_70120 crossref_primary_10_1080_21681163_2025_2556687 crossref_primary_10_1002_eng2_13073 |
| Cites_doi | 10.1117/12.2543506 10.1007/s00330-022-08617-6 10.3390/jimaging8050141 10.21203/rs.3.rs-2851632/v1 10.1002/acs.2916 10.1186/s12885-023-10890-7 10.1109/ASET56582.2023.10180771 10.3322/caac.21660 10.1016/j.isatra.2019.08.032 10.1109/tsmc.2022.3186610 10.1016/j.cmpb.2021.106019 10.1016/j.eswa.2020.113968 10.1109/tmi.2021.3108949 10.1016/j.asoc.2022.108836 10.1109/CICN49253.2020.9242551 10.1007/s00500-016-2447-9 10.1016/j.compbiomed.2021.104248 10.1007/s00500-023-08061-8 10.1038/s41598-023-29521-z |
| ContentType | Journal Article |
| Copyright | Copyright © 2024 Dilawar Shah et al. COPYRIGHT 2024 John Wiley & Sons, Inc. Copyright © 2024 Dilawar Shah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2024 Dilawar Shah et al. – notice: COPYRIGHT 2024 John Wiley & Sons, Inc. – notice: Copyright © 2024 Dilawar Shah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
| DOI | 10.1155/2024/1122109 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1687-9732 |
| Editor | Nayak, Soumya Ranjan |
| Editor_xml | – sequence: 1 givenname: Soumya Ranjan surname: Nayak fullname: Nayak, Soumya Ranjan |
| ExternalDocumentID | oai_doaj_org_article_5edf469816b3494c9cd7324c73fa3fcf A784972136 10_1155_2024_1122109 |
| GeographicLocations | United Kingdom--UK Pakistan |
| GeographicLocations_xml | – name: United Kingdom--UK – name: Pakistan |
| GroupedDBID | 3V. 4.4 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAJEY AAKPC ABUWG ACIPV ADBBV ADDVE AFKRA AFPKN AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CWDGH DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RHX RNS TR2 0R~ 188 24P 2UF AAMMB AAYXX ACCMX AEFGJ AFFHD AGXDD AIDQK AIDYY ALUQN C1A CITATION CNMHZ CVCKV EJD H13 IL9 PHGZM PHGZT PQGLB TUXDW UZ4 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c470t-d90ac7844c3b16bb771bf4b5a50d04430f57436fb3d8f06e17c0b5b423fc542e3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172246000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-9724 |
| IngestDate | Fri Oct 03 12:52:45 EDT 2025 Sun Jul 13 04:42:21 EDT 2025 Wed Oct 16 18:05:15 EDT 2024 Tue Oct 15 04:49:17 EDT 2024 Sat Nov 29 03:05:38 EST 2025 Tue Nov 18 20:58:06 EST 2025 Sun Jun 02 18:52:31 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-d90ac7844c3b16bb771bf4b5a50d04430f57436fb3d8f06e17c0b5b423fc542e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2701-6646 |
| OpenAccessLink | https://www.proquest.com/docview/2933994780?pq-origsite=%requestingapplication% |
| PQID | 2933994780 |
| PQPubID | 237331 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5edf469816b3494c9cd7324c73fa3fcf proquest_journals_2933994780 gale_infotracmisc_A784972136 gale_infotracacademiconefile_A784972136 crossref_citationtrail_10_1155_2024_1122109 crossref_primary_10_1155_2024_1122109 hindawi_primary_10_1155_2024_1122109 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied Computational Intelligence and Soft Computing |
| PublicationYear | 2024 |
| Publisher | Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | International S. (e_1_2_8_4_2) 2022; 2023 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 De Bueger F. (e_1_2_8_3_2) 2022 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_10_2 e_1_2_8_11_2 |
| References_xml | – ident: e_1_2_8_5_2 – ident: e_1_2_8_17_2 doi: 10.1117/12.2543506 – ident: e_1_2_8_1_2 doi: 10.1007/s00330-022-08617-6 – ident: e_1_2_8_12_2 doi: 10.3390/jimaging8050141 – ident: e_1_2_8_15_2 doi: 10.21203/rs.3.rs-2851632/v1 – ident: e_1_2_8_24_2 – ident: e_1_2_8_13_2 doi: 10.1002/acs.2916 – ident: e_1_2_8_6_2 doi: 10.1186/s12885-023-10890-7 – ident: e_1_2_8_9_2 doi: 10.1109/ASET56582.2023.10180771 – ident: e_1_2_8_2_2 doi: 10.3322/caac.21660 – ident: e_1_2_8_14_2 doi: 10.1016/j.isatra.2019.08.032 – ident: e_1_2_8_10_2 doi: 10.1109/tsmc.2022.3186610 – ident: e_1_2_8_20_2 doi: 10.1016/j.cmpb.2021.106019 – volume: 2023 year: 2022 ident: e_1_2_8_4_2 article-title: Importance of breast cancer awareness in Pakistan publication-title: Shifa International Patients – ident: e_1_2_8_21_2 doi: 10.1016/j.eswa.2020.113968 – ident: e_1_2_8_18_2 – year: 2022 ident: e_1_2_8_3_2 article-title: Deep learning in mammography: reducing annotation effort for breast mass segmentation publication-title: Master in Mathematical Engineering, Ecole polytechnique de Louvain – ident: e_1_2_8_22_2 doi: 10.1109/tmi.2021.3108949 – ident: e_1_2_8_16_2 doi: 10.1016/j.asoc.2022.108836 – ident: e_1_2_8_19_2 doi: 10.1109/CICN49253.2020.9242551 – ident: e_1_2_8_11_2 doi: 10.1007/s00500-016-2447-9 – ident: e_1_2_8_7_2 doi: 10.1016/j.compbiomed.2021.104248 – ident: e_1_2_8_8_2 doi: 10.1007/s00500-023-08061-8 – ident: e_1_2_8_25_2 – ident: e_1_2_8_23_2 doi: 10.1038/s41598-023-29521-z |
| SSID | ssib003004788 ssj0000395709 ssib044730003 |
| Score | 2.3880813 |
| Snippet | Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant... |
| SourceID | doaj proquest gale crossref hindawi |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Breast cancer Cancer Clustering Data analysis Data points Datasets Deep learning Diagnosis Effectiveness Evaluation Generative adversarial networks Image databases Machine learning Mammography Medical imaging Medical imaging equipment Medical research Neural networks Outliers (statistics) R&D Research & development Similarity Synthetic data |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmxKS9THxsWkdBfgCxaYpwGztOeCstbC-rkPYh3iz7bLNKW6jason_nrvErYoQ4mUPeUmcxL47n3_nXH7H2GFwuCx6C5lyRcgkVDErlZZZYZ3F5aFAByiaYhN6PC6vrqrLtVJflBPW0gO3gjtRwUeqctgrHDGpQAVeIwgAnUebR4jkfYWu1oKpxgfT5ydRLTPdlaIgX54guOg3uYdra1BD1b9yyC9_USj8b_LINTfrzcUWe52AIh-0HdxmL0K9w7bTVJzzD4kv-uMu-0NpxfQHFD-jDPMFH5ImZ3zUZtFN5pw2W_kohClPdKrXp3w0_DwYZ6MZeTv-1aI5Up4W_3ZXIySkm2zt-U9E6R5xOh-sCDzfsB8X59-HX7JURSEDqcUi85WwoEspIXcoRKd1z0XplFXCCylzEVE3eRFd7ssoitDTIJxyCLMiKNkP-Vu2Ud_U4R3jKEOn8FmFCFYG8KjVqm-jUwK0xKPDPi3laiBRjFOli9-mCTWUMqQFk7TQYUer1tOWWuOJdmekolUbIsRuTqCZmGQm5jkz6bBjUrChaYtdApv-PsCBEQGWGaCEiMgoLzqs-6AlTjd4cPkwmcgzne4u7cckrzA3CK0QD0pdivf_Y0x77BW9st0Q6rKNxew27LNN-LuYzGcHzYS4ByHoCx8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5iE0i8TIyLKBTkhyFAKMJtfEl469qNvVAhbuqb5euoBNnUlE38e85J3WrdhOAhD0kcy_a5fbZPPgMcRIdhMVhfSKdiIXydikpqUSjrLIYHhQ6Qd4dN6Om0ms3qj5kkqb25hY_Rjqbn4i3CApyc1DuwU0nK3Pp0MruipvwqCbwQxMGeNxc7h0x7UV2yx0ChSdV6KNYp8Neq3wpOHYf_xlPf-U5z5Mv5DZ_dBaLje7CXESQbrUS-D7dicx_2s4227FUmkn79AH5SvjH9GsUOKfV8ycYk4gWbrNLr5i2jVVg2ifGcZZ7V03dsMn4_mhaTBblB9sGinlICF_v8u0GsSB_ZJrBvCN8DAng22jB7PoSvx0dfxidFPl6h8ELzZRFqbr2uhPClGyjntB64JJy0kgccxJInFFqpkitDlbiKA-25kw7xV_JSDGP5CHabsyY-BoZj6CTWpXi0IvqA4q6HNjnJvRZ49eDNelyNz9zjdATGD9PNQaQ0JAWTpdCDF5vS5yvOjb-UOyQRbcoQU3b3ALXHZMMzMoZEp2RiD4mJx9c-aASRXpfJYkdSD16SgA3ZMzbJ2_xbAnaMmLHMCEeIGI5K1YP-Vkm0Q7_1-iCryD8a3V_rj8nuojWIuRAoohLzJ_9Xy1O4S7ertaA-7C4Xv-IzuO0vlvN28bwzjz_aPwCj priority: 102 providerName: Hindawi Publishing |
| Title | Reliable Breast Cancer Diagnosis with Deep Learning: DCGAN-Driven Mammogram Synthesis and Validity Assessment |
| URI | https://dx.doi.org/10.1155/2024/1122109 https://www.proquest.com/docview/2933994780 https://doaj.org/article/5edf469816b3494c9cd7324c73fa3fcf |
| Volume | 2024 |
| WOSCitedRecordID | wos001172246000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-9732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395709 issn: 1687-9724 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1687-9732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044730003 issn: 1687-9724 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1687-9732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395709 issn: 1687-9724 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1687-9732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395709 issn: 1687-9724 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-9732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395709 issn: 1687-9724 databaseCode: CWDGH dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1687-9732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395709 issn: 1687-9724 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1687-9732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395709 issn: 1687-9724 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-9732 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395709 issn: 1687-9724 databaseCode: 24P dateStart: 20090101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgFyQuwPIQhVL5sAgQitZt7DjhgvpaFqFW0fJQ4WLZjrNUgrQkBcSF386M65auEHDgkEiJnYczT48n3xBy6AyYxULbSJjERdxmZZQKyaNEGw3mIQEFyHyxCTmdprNZloeAWxPSKjc60SvqYmExRn4EZglsKZcpe7b8HGHVKFxdDSU0LpJ9REnA0g25eL_Dv2wXHZ5zBGcPq45eU-Milc8C6SYga5ns8U1uvBAYFuBH4I70fLbijtXy4P5bFX75A06ev81_U-beQh1f-9-xXSdXg29K-2tmOiAXXHWDHATpb-ijAFH9-Cb5hJnM-NMVHWBS-4oOkXlqOlon7s0bivFdOnJuSQOC69lTOho-70-jUY0Klk40PBZTw-ir7xV4oXiRrgr6FiYGBUwNaH-LGXqLvDkevx6eRKFwQ2S5ZKuoyJi2MuXcxqabGCNl15TcCC1YAVSIWQnsECeliYu0ZInrSsuMMODZlVbwnotvk71qUbk7hAIRjIB7Jcxp7mwBjJT1dGkEs5LD1iJPNoRRNqCaY3GNj8rPboRQSEYVyNgiD7a9l2s0jz_0GyCNt30Qg9ufWNRnKoi0Eq4osf4mjBAxfmxmCwnuqZVxqWEgZYs8RA5RqCnglawOPzzAwBBzS_XhCyF2Upy0SPtcT5Bwe675MPDYP166veEuFRRRo36x1t2_N98jV_Bm6-hSm-yt6i_uPrlkv67mTd0h-4PxND_t-JAF7F_KCPaTH-OOlzhoz19M8ndwdHoy-wkFKikf |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELbGAMELMH5ohQJ-2AQIRXMTO06QEOoaxqZuFRIb2puxHWerBGlpCtP-Kf5G7hKndELA0x54yEviWL7kuzufff6OkA1nwC3m2gbCxC7gNi2CREgexNpocA8xGEBWF5uQo1FyfJy-XyE_2rMwmFbZ2sTaUOcTi2vkW-CWwJdymbA3068BVo3C3dW2hEYDi6E7P4OQrXq9l8H_3QzDnbeHg93AVxUILJdsHuQp01YmnNvI9GJjpOyZghuhBcsZ5xErYKxRXJgoTwoWu560zAgD047CCh66CPq9Qq7yKJGoV0MZLOkLW2aj5xzJ4P0uZ-0ZcFOszjrpxaDbqQx5m4svBC5D8C2Y_oR1duSSl6yLCSxcxvVTDNbPxr85j9oj7tz-377lHXLLz71pv1GWNbLiyrtkzVu3ij73FNwv7pEvmKmNh8roNibtz-kAlWNGsyYxcVxRXL-mmXNT6hlqT17RbPCuPwqyGToQeqBBTEx9ox_OS5hl40u6zOlHCHxyCH1of8GJep8cXYrYD8hqOSndOqHw042AvmLmNHc2B0VJQ10YwazkcHXIyxYIynrWdiwe8lnV0ZsQCmGjPGw6ZHPRetqwlfyh3TZiatEGOcbrG5PZifImSwmXF1hfFCREDiOb2lzC9NvKqNAgSNEhzxCRCi0hDMlqf6ADBENOMdWHL4TcUFHcId0LLcGC2QuPNzym_zHobotm5Q1tpX5B-eHfHz8lN3YPD_bV_t5o-IjcxI6blbQuWZ3PvrnH5Jr9Ph9Xsye1TlPy6bKB_xMS-33O |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKeYgLUB4iEMCHVoDQKs6uvd5FQijNEqgKUSQoqrgY22uXSJCETaDqX-PXMbPxhlQIOPXAIZesY3k237zs8TeEbDsDbrHUNhImdRG3uY8yIXmUaqPBPaRgAFndbEIOh9nhYT7aID-auzBYVtnYxNpQl1OLe-QdcEvgS7nMWMeHsohRMXg--xphByk8aW3aaSwhsu9OjiF9mz_bK-C_3onjwYt3_VdR6DAQWS7ZIipzpq3MOLeJ6abGSNk1nhuhBSsZ5wnzsO4k9SYpM89S15WWGWEgBPFW8NglMO85cl5CjonlhCPxYU132DozPedIDB9OPGsvgQdkdQVKNwU9z2XMm7p8IXBLgncgFIrrSsk1j1k3Fli5j4ufMHE_Hv_mSGrvOLj6P7_Xa-RKiMlpb6lEW2TDTa6TrWD15vRRoOZ-fIN8wQpuvGxGd7GYf0H7qDQVLZYFi-M5xX1tWjg3o4G59ugpLfove8OoqNCx0DcaxMSSOPr2ZALRN_5IT0r6HhKiElIi2ltxpd4kB2ci9i2yOZlO3G1CAQBGwFwpc5o7W4IC5bH2RjArOXxa5EkDCmUDmzs2Ffms6qxOCIUQUgFCLbKzGj1bspj8Ydwu4ms1BrnH6y-m1ZEKpkwJV3rsOwoSIreRzW0pISy3MvEaBPEt8hDRqdBCwpKsDhc9QDDkGlM9eEPIGZWkLdI-NRIsmz31eDvg-x-LbjfIVsEAz9UvWN_5--MH5BLgXb3eG-7fJZdx3uUGW5tsLqpv7h65YL8vxvPqfq3elHw8a9z_BD3KhvI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+Breast+Cancer+Diagnosis+with+Deep+Learning%3A+DCGAN-Driven+Mammogram+Synthesis+and+Validity+Assessment&rft.jtitle=Applied+computational+intelligence+and+soft+computing&rft.au=Shah%2C+Dilawar&rft.au=Mohammad+Asmat+Ullah+Khan&rft.au=Abrar%2C+Mohammad&rft.date=2024&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-9724&rft.eissn=1687-9732&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F1122109&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-9724&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-9724&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-9724&client=summon |