Reliable Breast Cancer Diagnosis with Deep Learning: DCGAN-Driven Mammogram Synthesis and Validity Assessment

Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant obstacle when building deep learning models that can produce reliable outcomes. This paper proposes a novel approach that utilizes deep convo...

Full description

Saved in:
Bibliographic Details
Published in:Applied Computational Intelligence and Soft Computing Vol. 2024; no. 1
Main Authors: Shah, Dilawar, Ullah Khan, Mohammad Asmat, Abrar, Mohammad
Format: Journal Article
Language:English
Published: New York Hindawi 2024
John Wiley & Sons, Inc
Wiley
Subjects:
ISSN:1687-9724, 1687-9732
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant obstacle when building deep learning models that can produce reliable outcomes. This paper proposes a novel approach that utilizes deep convolutional generative adversarial networks (DCGANs) to effectively tackle the issue of limited data availability. The main goal is to produce synthetic mammograms that accurately reproduce the intrinsic patterns observed in real data, enhancing the current dataset. The proposed synthesis method is supported by thorough experimentation, demonstrating its ability to reproduce diverse viewpoints of the breast accurately. A mean similarity assessment with a standard deviation was performed to evaluate the credibility of the synthesized images and establish the clinical significance of the data obtained. A thorough evaluation of the uniformity within each class was conducted, and any deviations from each class’s mean values were measured. Including outlier removal using a specified threshold is a crucial process element. This procedure improves the accuracy level of each image cluster and strengthens the synthetic dataset’s general dependability. The visualization of the class clustering results highlights the alignment between the produced images and the inherent distribution of the data. After removing outliers, distinct and consistent clusters of homogeneous data points were observed. The proposed similarity assessment demonstrates noteworthy effectiveness, eliminating redundant and dissimilar images from all classes. Specifically, there are 505 instances in the normal class, 495 instances in the benign class, and 490 instances in the malignant class out of 600 synthetic mammograms for each class. To check the further validity of the proposed model, human experts visually inspected and validated synthetic images. This highlights the effectiveness of our methodology in identifying substantial outliers.
AbstractList Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant obstacle when building deep learning models that can produce reliable outcomes. This paper proposes a novel approach that utilizes deep convolutional generative adversarial networks (DCGANs) to effectively tackle the issue of limited data availability. The main goal is to produce synthetic mammograms that accurately reproduce the intrinsic patterns observed in real data, enhancing the current dataset. The proposed synthesis method is supported by thorough experimentation, demonstrating its ability to reproduce diverse viewpoints of the breast accurately. A mean similarity assessment with a standard deviation was performed to evaluate the credibility of the synthesized images and establish the clinical significance of the data obtained. A thorough evaluation of the uniformity within each class was conducted, and any deviations from each class’s mean values were measured. Including outlier removal using a specified threshold is a crucial process element. This procedure improves the accuracy level of each image cluster and strengthens the synthetic dataset’s general dependability. The visualization of the class clustering results highlights the alignment between the produced images and the inherent distribution of the data. After removing outliers, distinct and consistent clusters of homogeneous data points were observed. The proposed similarity assessment demonstrates noteworthy effectiveness, eliminating redundant and dissimilar images from all classes. Specifically, there are 505 instances in the normal class, 495 instances in the benign class, and 490 instances in the malignant class out of 600 synthetic mammograms for each class. To check the further validity of the proposed model, human experts visually inspected and validated synthetic images. This highlights the effectiveness of our methodology in identifying substantial outliers.
Audience Academic
Author Ullah Khan, Mohammad Asmat
Abrar, Mohammad
Shah, Dilawar
Author_xml – sequence: 1
  givenname: Dilawar
  orcidid: 0000-0003-2701-6646
  surname: Shah
  fullname: Shah, Dilawar
  organization: Department of Computer ScienceFaculty of Computing and Information TechnologyInternational Islamic UniversityIslamabad 44000Pakistaniiu.edu.pk
– sequence: 2
  givenname: Mohammad Asmat
  surname: Ullah Khan
  fullname: Ullah Khan, Mohammad Asmat
  organization: Department of Computer ScienceFaculty of Computing and Information TechnologyInternational Islamic UniversityIslamabad 44000Pakistaniiu.edu.pk
– sequence: 3
  givenname: Mohammad
  surname: Abrar
  fullname: Abrar, Mohammad
  organization: Department of Computer ScienceBacha Khan UniversityCharsadda 24420Pakistanbkuc.edu.pk
BookMark eNp9kUtvEzEUhUeoSJTSHT_AEkuY1q95sQsJlEoBJF5b647Hntxqxg62S5V_X6cpIBAgL2xdfefYPudxceS8M0XxlNEzxqrqnFMuzxnjnNHuQXHM6rYpu0bwo59nLh8VpzFiT6mgVDZte1zMH82E0E-GvAoGYiJLcNoEskIYnY8YyQ2mDVkZsyVrA8GhG1-S1fJi8b5cBfxuHHkH8-zHADP5tHNpY_YicAP5ChMOmHZkEaOJcTYuPSkeWpiiOb3fT4ovb15_Xr4t1x8uLpeLdallQ1M5dBR000qpRc_qvm8a1lvZV1DRgUopqK0aKWrbi6G1tDas0bSvesmF1ZXkRpwUlwffwcOV2gacIeyUB1R3Ax9GBSGhnoyqzGBl3bX5HiE7qTs95NCkboSFbGez17OD1zb4b9cmJnXlr4PLz1e8E6LrcpD0FzVCNkVnfQqgZ4xaLfJPcvhM1Jk6-wuV12Bm1LlPi3n-m4AfBDr4GIOxSmOChN5lIU6KUbUvX-3LV_flZ9GLP0Q_EvgH_vyAb9ANcIP_p28BVnm7fQ
CitedBy_id crossref_primary_10_1007_s00261_025_04860_9
crossref_primary_10_1155_2024_5564649
crossref_primary_10_62347_XKFN1793
crossref_primary_10_7717_peerj_cs_3149
crossref_primary_10_1002_mco2_70247
crossref_primary_10_1109_ACCESS_2025_3569321
crossref_primary_10_1002_eng2_70120
crossref_primary_10_1080_21681163_2025_2556687
crossref_primary_10_1002_eng2_13073
Cites_doi 10.1117/12.2543506
10.1007/s00330-022-08617-6
10.3390/jimaging8050141
10.21203/rs.3.rs-2851632/v1
10.1002/acs.2916
10.1186/s12885-023-10890-7
10.1109/ASET56582.2023.10180771
10.3322/caac.21660
10.1016/j.isatra.2019.08.032
10.1109/tsmc.2022.3186610
10.1016/j.cmpb.2021.106019
10.1016/j.eswa.2020.113968
10.1109/tmi.2021.3108949
10.1016/j.asoc.2022.108836
10.1109/CICN49253.2020.9242551
10.1007/s00500-016-2447-9
10.1016/j.compbiomed.2021.104248
10.1007/s00500-023-08061-8
10.1038/s41598-023-29521-z
ContentType Journal Article
Copyright Copyright © 2024 Dilawar Shah et al.
COPYRIGHT 2024 John Wiley & Sons, Inc.
Copyright © 2024 Dilawar Shah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2024 Dilawar Shah et al.
– notice: COPYRIGHT 2024 John Wiley & Sons, Inc.
– notice: Copyright © 2024 Dilawar Shah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1155/2024/1122109
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1687-9732
Editor Nayak, Soumya Ranjan
Editor_xml – sequence: 1
  givenname: Soumya Ranjan
  surname: Nayak
  fullname: Nayak, Soumya Ranjan
ExternalDocumentID oai_doaj_org_article_5edf469816b3494c9cd7324c73fa3fcf
A784972136
10_1155_2024_1122109
GeographicLocations United Kingdom--UK
Pakistan
GeographicLocations_xml – name: United Kingdom--UK
– name: Pakistan
GroupedDBID 3V.
4.4
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABUWG
ACIPV
ADBBV
ADDVE
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CWDGH
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RHX
RNS
TR2
0R~
188
24P
2UF
AAMMB
AAYXX
ACCMX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
C1A
CITATION
CNMHZ
CVCKV
EJD
H13
IL9
PHGZM
PHGZT
PQGLB
TUXDW
UZ4
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c470t-d90ac7844c3b16bb771bf4b5a50d04430f57436fb3d8f06e17c0b5b423fc542e3
IEDL.DBID P5Z
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172246000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-9724
IngestDate Fri Oct 03 12:52:45 EDT 2025
Sun Jul 13 04:42:21 EDT 2025
Wed Oct 16 18:05:15 EDT 2024
Tue Oct 15 04:49:17 EDT 2024
Sat Nov 29 03:05:38 EST 2025
Tue Nov 18 20:58:06 EST 2025
Sun Jun 02 18:52:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-d90ac7844c3b16bb771bf4b5a50d04430f57436fb3d8f06e17c0b5b423fc542e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2701-6646
OpenAccessLink https://www.proquest.com/docview/2933994780?pq-origsite=%requestingapplication%
PQID 2933994780
PQPubID 237331
ParticipantIDs doaj_primary_oai_doaj_org_article_5edf469816b3494c9cd7324c73fa3fcf
proquest_journals_2933994780
gale_infotracmisc_A784972136
gale_infotracacademiconefile_A784972136
crossref_citationtrail_10_1155_2024_1122109
crossref_primary_10_1155_2024_1122109
hindawi_primary_10_1155_2024_1122109
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Computational Intelligence and Soft Computing
PublicationYear 2024
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References International S. (e_1_2_8_4_2) 2022; 2023
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
De Bueger F. (e_1_2_8_3_2) 2022
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – ident: e_1_2_8_5_2
– ident: e_1_2_8_17_2
  doi: 10.1117/12.2543506
– ident: e_1_2_8_1_2
  doi: 10.1007/s00330-022-08617-6
– ident: e_1_2_8_12_2
  doi: 10.3390/jimaging8050141
– ident: e_1_2_8_15_2
  doi: 10.21203/rs.3.rs-2851632/v1
– ident: e_1_2_8_24_2
– ident: e_1_2_8_13_2
  doi: 10.1002/acs.2916
– ident: e_1_2_8_6_2
  doi: 10.1186/s12885-023-10890-7
– ident: e_1_2_8_9_2
  doi: 10.1109/ASET56582.2023.10180771
– ident: e_1_2_8_2_2
  doi: 10.3322/caac.21660
– ident: e_1_2_8_14_2
  doi: 10.1016/j.isatra.2019.08.032
– ident: e_1_2_8_10_2
  doi: 10.1109/tsmc.2022.3186610
– ident: e_1_2_8_20_2
  doi: 10.1016/j.cmpb.2021.106019
– volume: 2023
  year: 2022
  ident: e_1_2_8_4_2
  article-title: Importance of breast cancer awareness in Pakistan
  publication-title: Shifa International Patients
– ident: e_1_2_8_21_2
  doi: 10.1016/j.eswa.2020.113968
– ident: e_1_2_8_18_2
– year: 2022
  ident: e_1_2_8_3_2
  article-title: Deep learning in mammography: reducing annotation effort for breast mass segmentation
  publication-title: Master in Mathematical Engineering, Ecole polytechnique de Louvain
– ident: e_1_2_8_22_2
  doi: 10.1109/tmi.2021.3108949
– ident: e_1_2_8_16_2
  doi: 10.1016/j.asoc.2022.108836
– ident: e_1_2_8_19_2
  doi: 10.1109/CICN49253.2020.9242551
– ident: e_1_2_8_11_2
  doi: 10.1007/s00500-016-2447-9
– ident: e_1_2_8_7_2
  doi: 10.1016/j.compbiomed.2021.104248
– ident: e_1_2_8_8_2
  doi: 10.1007/s00500-023-08061-8
– ident: e_1_2_8_25_2
– ident: e_1_2_8_23_2
  doi: 10.1038/s41598-023-29521-z
SSID ssib003004788
ssj0000395709
ssib044730003
Score 2.3880813
Snippet Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Breast cancer
Cancer
Clustering
Data analysis
Data points
Datasets
Deep learning
Diagnosis
Effectiveness
Evaluation
Generative adversarial networks
Image databases
Machine learning
Mammography
Medical imaging
Medical imaging equipment
Medical research
Neural networks
Outliers (statistics)
R&D
Research & development
Similarity
Synthetic data
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQBRIXRHmI0IB8KAKEVnVie-3lliYUDhAhAVVv1vhVIsG2SgKIf8_MrhOlQqgXrrterXde_sY7_oaxw7FobFObXIlkY6XCWFYAYCpc_ACS9Am6bg2n7818bs_Omo87rb6oJqynB-4Fd6RTzNTlcFR7YlIJTYgGQUAwMoPMIVP0FabZSaa6GEy_n0SzqXTXmpJ8dYTgYtzVHu6sQR1V_zYg3_pKqfCvxV-huVtvTu6yOwUo8kk_wX12I7X32H5xxRV_UfiiX95n36msmE5A8WOqMF_zKWlyyWd9Fd1ixWmzlc9SuuSFTvX8NZ9N307m1WxJ0Y5_ADRHqtPin363CAnpIWgjP0WUHhGn88mWwPMB-3Ly5vP0XVW6KFRBGbGuYiMgGKtUkB6F6I0Z-ay8Bi2iUEqKrBFF1NnLaLOo08gE4bVHmJWDVuMkH7K99qJNjxgX4AWqI4C1UkEDMKJDBHWwKkZAnDNgrzZydaFQjFOni2-uSzW0dqQFV7QwYM-2oy97ao1_jDsmFW3HECF2dwHNxBUzcdeZyYA9JwU7clucUoBy-gA_jAiw3AQlRERGsh6w4ZWR6G7hyu3DYiLXTHq4sR9XosLKIbRCPKiMFY__xzcdsNv0yn5DaMj21ssf6Qm7GX6uF6vl084h_gAcwwuZ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbYFUhcEMtDFAryYREgFOHUTuxw67Yse4AK8Vj1Zo1fSyUIq6aA-PfMpG61ZYXgmMSxbM_D39jjz4wdjkRjmlqnQkQTCuVHsgAAXeDkBxCli9Df1nD6Rs9mZj5v3mWSpO7yFj7OdhSeqxcICzA4afbYnqkoc-v9yfyCmoqLJPBKEQd73lzsHTLtRfXJHmWNJtXokdqkwP9R_c7k1HP4bz31tc8UI_9cXPLZ_UR0fJPdyAiSj9ciP2BXYnuLHWQb7fjTTCT97Db7SvnGdDSKH1Hq-YpPSMRLPl2n1y06TquwfBrjOc88q2cv-XTyejwrpktyg_wtoJ5SAhf_8KtFrEg_QRv4KcL3gACej7fMnnfYp-NXHycnRb5eofBKi1URGgFeG6W8dGXtnNalS8pVUImAgyhFqhBe1MnJYJKoY6m9cJVD_JV8pUZR3mX77bc23mNcgBMxJA_GSAUNQEmnC2pvVAiAAGjAnm_G1frMPU5XYHyxfQxSVZakYLMUBuzxtvT5mnPjL-WOSETbMsSU3b9A7bHZ8GyF7aJbMrGHxMTjGx80gkivZQLsSBqwJyRgS_aMTfKQjyVgx4gZy45xhIjhSNYDNtwpiXbodz4fZhX5R6OHG_2x2V10FjEXAkVUYnH__2p5wK7T43otaMj2V8vv8SG76n-sFt3yUW8evwHKOQEd
  priority: 102
  providerName: Hindawi Publishing
Title Reliable Breast Cancer Diagnosis with Deep Learning: DCGAN-Driven Mammogram Synthesis and Validity Assessment
URI https://dx.doi.org/10.1155/2024/1122109
https://www.proquest.com/docview/2933994780
https://doaj.org/article/5edf469816b3494c9cd7324c73fa3fcf
Volume 2024
WOSCitedRecordID wos001172246000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044730003
  issn: 1687-9724
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: CWDGH
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-9732
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395709
  issn: 1687-9724
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdgA2kXYHyIQql8GAKEojmJHSdcUL_GELSqBkyFS-TYzlYJ0pIUEBf-dt5z3dIJAQcukRI7qd336efn3yPkIGJZmiWyDJhNTcB1FAdKKRmA8VPKxoVVrlrD6Ws5HqfTaTbxAbfGp1WudaJT1GauMUZ-CGYJbCmXKXu--Bxg1SjcXfUlNC6TXURJwNINE_Fhi3_ZNjo85wjO7ncdnabGTSqXBRImIGuZjPg6N14IDAvwQ3BHIpetuGW1HLj_RoVfPcfF87fZb8rcWaij6_87txvkmvdNaXfFTPvkkq1ukn0v_Q197CGqn9winzCTGQ9d0R4mtS9pH5mnpoNV4t6soRjfpQNrF9QjuJ49o4P-i-44GNSoYOlIwc9iahh9870CLxRfUpWhp7AwMLA0oN0NZuht8u5o-LZ_HPjCDYHmki0DkzGlZcq5joswKQopw6LkhVCCGaBCzEoBjktSFrFJS5bYUGpWiAI8u1ILHtn4Dtmp5pW9SyhTBbOm1CpNY64ypUI8t5DolBujwLVqkadrwuTao5pjcY2PuVvdCJEjGXNPxhZ5uOm9WKF5_KFfD2m86YMY3O7BvD7LvUjnAsaF9TdhhojxozNtJLinWsalgomULfIIOSRHTQFD0sofeICJIeZW3oV_CLGT4qRF2hd6goTrC80Hnsf-Mej2mrtyr4ia_Bdr3ft7832yhx9bRZfaZGdZf7EPyBX9dTlr6g7Z7Q3Hk5OOC1nA9ZUM4Dr6Mew4iYP2ycvR5D3cnRxPfwIQsimZ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMELMC6iUMAPmwChaE7ixAkSQl3D2NSuQmJMezOO7YxKkJakMO1P8Rs5J3FKJwQ87YHXxIl8ku_c7OPvELIZsDRJY1F4zCbG4zoIPaWU8MD5KWXD3KqmW8PRWEwmyfFx-m6N_OjOwmBZZWcTG0NtZhrXyLfBLYEv5SJhr-dfPewahburXQuNFhYje3YKKVv9aj-D_7sVBLtvDod7nusq4Gku2MIzKVNaJJzrMPfjPBfCzwueRypihnEesiICrxoXeWiSgsXWF5rlUQ5hR6EjHtgQ3nuJXOZhIlCvRsJb0Re2ykbPOZLBu13OxjPgplhTdeLHoNupCHhXix9FuAzBtyH8CZrqyBUv2TQTWLqMq58wWT-d_uY8Go-4e_N_-5a3yA0Xe9NBqywbZM2Wt8mGs241feYouJ_fIV-wUhsPldEdLNpf0CEqR0WztjBxWlNcv6aZtXPqGGpPXtJs-HYw8bIKHQg9UCAmlr7R92clRNn4kCoNPYLEx0DqQwdLTtS75MOFiH2PrJez0t4nlKmcWVNolSQhV6lSPp7LiHXCjVEQOvbIiw4IUjvWdmwe8lk22VsUSYSNdLDpka3l6HnLVvKHcTuIqeUY5BhvLsyqE-lMloxgXthfFCREDiOdaiMg_NYiLBQIUvTIU0SkREsIU9LKHegAwZBTTA7gCyE3VBj3SP_cSLBg-tztTYfpf0y636FZOkNby19QfvD320_Itb3Dg7Ec709GD8l1fHG7ktYn64vqm31Erujvi2ldPW50mpKPFw38n175fkg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLbGgIkLMGCiUMCHTYBQVDex4wQJoa6hMG1UlWDTxMU4tjMqQVrSwrR_jb-O91KndELAaQeuiRP5Jd_7ZT9_j5DtkKVJGssiYC6xATdhFGitZQDOT2sX5U7X3RqODuRwmBwfp6M18qM5C4NllY1NrA21nRhcI--AWwJfymXCOoUvixhlg5fTrwF2kMKd1qadxgIi--7sFNK32Yu9DP71ThgOXr3vvwl8h4HAcMnmgU2ZNjLh3ER5N85zKbt5wXOhBbOM84gVAjxsXOSRTQoWu640LBc5hCCFETx0Ebz3ErksIcfEcsKR-LCiO2yVmZ5zJIb3O561l8ANsroCpRuDnqcy5E1dvhC4JME7EAqFdaXkisesGwss3cfVT5i4n45_cyS1dxzc-J-_601y3cfktLdQok2y5spbZNNbvRl94qm5n94mX7CCGw-b0V0s5p_TPipNRbNFweJ4RnFdm2bOTalnrj15TrP-694wyCp0LPStBjGxJI6-Oysh-saHdGnpESREFlIi2ltypd4hhxci9hZZLyelu0so0zlztjA6SSKuU627eF4jNgm3VkNI2SLPGlAo49ncsanIZ1VndUIohJDyEGqRneXo6YLF5A_jdhFfyzHIPV5fmFQnypsyJWBe2HcUJERuI5MaKyEsNzIqNAhStMhjRKdCCwlTMtof9ADBkGtM9eALIWdUFLdI-9xIsGzm3O1tj-9_TLrdIFt5AzxTv2B97--3H5ENwLs62Bvu3yfX8L2LBbY2WZ9X39wDcsV8n49n1cNavSn5eNG4_wmMlods
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+Breast+Cancer+Diagnosis+with+Deep+Learning%3A+DCGAN-Driven+Mammogram+Synthesis+and+Validity+Assessment&rft.jtitle=Applied+Computational+Intelligence+and+Soft+Computing&rft.au=Shah%2C+Dilawar&rft.au=Ullah+Khan%2C+Mohammad+Asmat&rft.au=Abrar%2C+Mohammad&rft.date=2024&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-9724&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F1122109&rft.externalDocID=A784972136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-9724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-9724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-9724&client=summon