High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain
•Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition (SAI).•Coupling peripheral and cortical stimulation at early interstimulus intervals may modulate muscle response.•Afferent inhibition is produced...
Saved in:
| Published in: | Clinical neurophysiology Vol. 144; pp. 135 - 141 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.12.2022
|
| Subjects: | |
| ISSN: | 1388-2457, 1872-8952, 1872-8952 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition (SAI).•Coupling peripheral and cortical stimulation at early interstimulus intervals may modulate muscle response.•Afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs.
The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script.
Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between –1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak.
Coupling peripheral and cortical stimulation at early interstimulus intervals – before the SEPs N20 peak - may modulate muscle response.
Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway. |
|---|---|
| AbstractList | Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs.OBJECTIVESensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs.The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script.METHODSThe interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script.Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak.RESULTSThirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak.Coupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response.CONCLUSIONSCoupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response.Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.SIGNIFICANCEOur findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway. •Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition (SAI).•Coupling peripheral and cortical stimulation at early interstimulus intervals may modulate muscle response.•Afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway. Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between –1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. Coupling peripheral and cortical stimulation at early interstimulus intervals – before the SEPs N20 peak - may modulate muscle response. Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway. Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. Coupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response. Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway. Highlights•Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition (SAI). •Coupling peripheral and cortical stimulation at early interstimulus intervals may modulate muscle response. •Afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway. |
| Author | Motolese, Francesco Rossi, Mariagrazia Pilato, Fabio Cruciani, Alessandro Musumeci, Gabriella Manzo, Marco Di Pino, Giovanni Di Lazzaro, Vincenzo Capone, Fioravante |
| Author_xml | – sequence: 1 givenname: Francesco surname: Motolese fullname: Motolese, Francesco email: f.motolese@policlinicocampus.it organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 2 givenname: Mariagrazia surname: Rossi fullname: Rossi, Mariagrazia organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 3 givenname: Fioravante surname: Capone fullname: Capone, Fioravante organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 4 givenname: Alessandro surname: Cruciani fullname: Cruciani, Alessandro organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 5 givenname: Gabriella surname: Musumeci fullname: Musumeci, Gabriella organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 6 givenname: Marco surname: Manzo fullname: Manzo, Marco organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 7 givenname: Fabio surname: Pilato fullname: Pilato, Fabio organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 8 givenname: Giovanni surname: Di Pino fullname: Di Pino, Giovanni organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy – sequence: 9 givenname: Vincenzo surname: Di Lazzaro fullname: Di Lazzaro, Vincenzo organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36210268$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl-L1DAUxYOsuH_0G4jk0ZfWm9tO2ooIy6KusOCD-hzazI3N2CZjkgrz7U1nVh8EWXxKCL9zwj3nXrIz5x0x9lxAKUDIV7tST9btxxIBsYSuBJCP2IVoGyzaboNn-V61bYH1pjlnlzHuAKCBGp-w80qiAJTtBVtu7bexMIF-LOT0gfuo7TT1yXoXi6GPtOX7QNpG4onmvQ_9xANFPy0rwr3hcfQh8Sw56ntjKJBL3LrRDvYIWcfTSHxc5t7xIfTWPWWPTT9FenZ_XrGv7999ubkt7j59-HhzfVfouoFUaI01dR1qok52DUnRgNEA-U0KDVUrqgGMHFrQEgash9rUBiQNxhjAjamu2MuT7z74PGBMarZRUx7QkV-iwgarum0aiRl9cY8uw0xbtQ927sNB_Y4qA_UJ0MHHGMj8QQSotRG1U6dG1NqIgk7lRrLs9V8ybdMx35STmB4Svz2JKYf001JQuZ6cM21tLiWprbf_a7BCVvfTdzpQ3PkluFyAEipmjfq8bsy6MIgAbYerwZt_Gzz8_y8hYNTT |
| CitedBy_id | crossref_primary_10_3389_fneur_2022_1052989 crossref_primary_10_1016_j_clinph_2023_03_008 crossref_primary_10_1016_j_clinph_2024_11_012 crossref_primary_10_1093_cercor_bhad481 crossref_primary_10_1016_j_clinph_2022_09_014 crossref_primary_10_1016_j_clinph_2024_06_011 |
| Cites_doi | 10.1016/S0166-4115(97)80006-4 10.1016/j.clinph.2019.10.017 10.1016/j.msard.2019.101897 10.1111/j.1469-7793.2000.t01-1-00503.x 10.1016/j.clinph.2011.05.023 10.1038/s41583-020-0315-1 10.1007/s00221-020-05764-4 10.1146/annurev.neuro.27.070203.144152 10.1016/0013-4694(70)90096-9 10.1016/j.brs.2017.09.009 10.1038/2245 10.1152/physrev.00035.2008 10.1093/acprof:oso/9780195301069.001.0001 10.1016/j.neuron.2012.10.038 10.1097/00004691-200005000-00008 10.1016/j.clinph.2020.10.003 10.1016/j.clinph.2015.02.001 10.3109/08990220.2011.606660 10.1016/0028-3932(71)90067-4 10.3389/fneur.2020.00251 10.1152/jn.00345.2018 10.1016/0013-4694(81)91430-9 10.1016/j.clinph.2014.02.026 10.1177/1073858417717660 10.1016/j.clinph.2020.05.022 10.1016/j.clinph.2005.07.015 10.3389/fnhum.2019.00111 10.1113/JP279966 10.1002/(SICI)1097-4598(200002)23:2<278::AID-MUS22>3.0.CO;2-R 10.1113/jphysiol.2004.061747 |
| ContentType | Journal Article |
| Copyright | 2022 International Federation of Clinical Neurophysiology International Federation of Clinical Neurophysiology Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 International Federation of Clinical Neurophysiology – notice: International Federation of Clinical Neurophysiology – notice: Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.clinph.2022.09.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-8952 |
| EndPage | 141 |
| ExternalDocumentID | 36210268 10_1016_j_clinph_2022_09_006 S1388245722008926 1_s2_0_S1388245722008926 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG VQA AADPK AAIAV ABLVK ABYKQ AFMIJ AHPSJ AJBFU LCYCR ZA5 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c470t-cc24e992cee9697e6170fc00e9961c03813b0f6b80c60b24b4f4f06ebfff025f3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929728300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1388-2457 1872-8952 |
| IngestDate | Sun Sep 28 01:32:36 EDT 2025 Thu Apr 03 07:03:46 EDT 2025 Sat Nov 29 07:01:40 EST 2025 Tue Nov 18 20:05:58 EST 2025 Fri Feb 23 02:39:09 EST 2024 Tue Feb 25 20:11:31 EST 2025 Tue Oct 14 19:38:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | High-frequency oscillations Sensorimotor integration SAI HFOs Short-latency afferent inhibition |
| Language | English |
| License | Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c470t-cc24e992cee9697e6170fc00e9961c03813b0f6b80c60b24b4f4f06ebfff025f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 36210268 |
| PQID | 2723487762 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2723487762 pubmed_primary_36210268 crossref_primary_10_1016_j_clinph_2022_09_006 crossref_citationtrail_10_1016_j_clinph_2022_09_006 elsevier_sciencedirect_doi_10_1016_j_clinph_2022_09_006 elsevier_clinicalkeyesjournals_1_s2_0_S1388245722008926 elsevier_clinicalkey_doi_10_1016_j_clinph_2022_09_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Clinical neurophysiology |
| PublicationTitleAlternate | Clin Neurophysiol |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bastos, Usrey, Adams, Mangun, Fries, Friston (b0010) 2012; 76 Desmedt, Cheron (b0035) 1981; 52 Di Lazzaro, Rothwell, Capogna (b0045) 2018; 24 Ghahramani, Wolpert, Michale (b0065) 1997; 119 Wolpert, Goodbody, Husain (b0155) 1998; 1 Paparella, Rocchi, Bologna, Berardelli, Rothwell (b0115) 2020; 598 Hashimoto (b0075) 2000; 17 Rossi, Antal, Bestmann, Bikson, Brewer, Brockmöller, Carpenter, Cincotta, Chen, Daskalakis, Di Lazzaro, Fox, George, Gilbert, Kimiskidis, Koch, Ilmoniemi, Lefaucheur, Leocani, Lisanby, Miniussi, Padberg, Pascual-Leone, Paulus, Peterchev, Quartarone, Rotenberg, Rothwell, Rossini, Santarnecchi, Shafi, Siebner, Ugawa, Wassermann, Zangen, Ziemann, Hallett (b0125) 2021; 132 Capone, Motolese, Falato, Rossi, Di Lazzaro (b0020) 2020; 11 Dubbioso, Manganelli, Siebner, Di Lazzaro (b0060) 2019; 13 Isayama, Vesia, Jegatheeswaran, Elahi, Gunraj, Cardinali (b0080) 2019; 121 Tsang, Jacobs, Lee, Asmussen, Zapallow, Nelson (b0140) 2014; 125 Ozaki, Suzuki, Tanosaki, Baba, Matsunaga (b0110) 2000; 23 Di Lazzaro, Oliviero, Saturno, Dileone, Pilato, Nardone, Ranieri, Musumeci, Fiorilla, Tonali (b0040) 2005; 564 Douglas, Martin (b0055) 2004; 27 Lanzone, Boscarino, Ricci, Insola, Tombini, Di Lazzaro, Assenza (b0085) 2020; 131 Wang (b0150) 2010; 90 Goldring, Aras, Weber (b0070) 1970; 29 Oliviero, Leon, Holler, Vila, Siebner, Marca, Dilazzaro, Alvarez (b0100) 2005; 116 Buzsáki G. Rhythms of the brain. Oxford University Press; 2006. Ziemann (b0165) 2020; 238 Oldfield (b0095) 1971; 9 Rocco-Donovan, Ramos, Giraldo, Brumberg (b0120) 2011; 28 Tokimura, Lazzaro, Tokimura, Oliviero, Profice, Insola, Mazzone, Tonali, Rothwell (b0135) 2000; 523 Assenza, Lanzone, Insola, Amatori, Ricci, Tombini, Di Lazzaro (b0005) 2020; 131 . McColgan, Joubert, Tabrizi, Rees (b0090) 2020; 21 Capone, Motolese, Rossi, Musumeci, Insola, Di Lazzaro (b0025) 2020; 39 Rossini, Burke, Chen, Cohen, Daskalakis, Di Iorio, Di Lazzaro, Ferreri, Fitzgerald, George, Hallett, Lefaucheur, Langguth, Matsumoto, Miniussi, Nitsche, Pascual-Leone, Paulus, Rossi, Rothwell, Siebner, Ugawa, Walsh, Ziemann (b0130) 2015; 126 Turco, El-Sayes, Savoie, Fassett, Locke, Nelson (b0145) 2018; 11 Di Lazzaro, Ziemann (b0050) 2013; 7 Ozaki, Hashimoto (b0105) 2011; 122 Bastos (10.1016/j.clinph.2022.09.006_b0010) 2012; 76 10.1016/j.clinph.2022.09.006_b0015 Ozaki (10.1016/j.clinph.2022.09.006_b0105) 2011; 122 Capone (10.1016/j.clinph.2022.09.006_b0020) 2020; 11 Assenza (10.1016/j.clinph.2022.09.006_b0005) 2020; 131 Desmedt (10.1016/j.clinph.2022.09.006_b0035) 1981; 52 Oldfield (10.1016/j.clinph.2022.09.006_b0095) 1971; 9 Tokimura (10.1016/j.clinph.2022.09.006_b0135) 2000; 523 Ziemann (10.1016/j.clinph.2022.09.006_b0165) 2020; 238 Rocco-Donovan (10.1016/j.clinph.2022.09.006_b0120) 2011; 28 Rossi (10.1016/j.clinph.2022.09.006_b0125) 2021; 132 Paparella (10.1016/j.clinph.2022.09.006_b0115) 2020; 598 Hashimoto (10.1016/j.clinph.2022.09.006_b0075) 2000; 17 Capone (10.1016/j.clinph.2022.09.006_b0025) 2020; 39 Ozaki (10.1016/j.clinph.2022.09.006_b0110) 2000; 23 Dubbioso (10.1016/j.clinph.2022.09.006_b0060) 2019; 13 Di Lazzaro (10.1016/j.clinph.2022.09.006_b0045) 2018; 24 Di Lazzaro (10.1016/j.clinph.2022.09.006_b0050) 2013; 7 Wang (10.1016/j.clinph.2022.09.006_b0150) 2010; 90 Wolpert (10.1016/j.clinph.2022.09.006_b0155) 1998; 1 Lanzone (10.1016/j.clinph.2022.09.006_b0085) 2020; 131 Di Lazzaro (10.1016/j.clinph.2022.09.006_b0040) 2005; 564 Isayama (10.1016/j.clinph.2022.09.006_b0080) 2019; 121 Douglas (10.1016/j.clinph.2022.09.006_b0055) 2004; 27 Rossini (10.1016/j.clinph.2022.09.006_b0130) 2015; 126 Ghahramani (10.1016/j.clinph.2022.09.006_b0065) 1997; 119 McColgan (10.1016/j.clinph.2022.09.006_b0090) 2020; 21 Oliviero (10.1016/j.clinph.2022.09.006_b0100) 2005; 116 Tsang (10.1016/j.clinph.2022.09.006_b0140) 2014; 125 Turco (10.1016/j.clinph.2022.09.006_b0145) 2018; 11 Goldring (10.1016/j.clinph.2022.09.006_b0070) 1970; 29 36244913 - Clin Neurophysiol. 2022 Dec;144:119-120 |
| References_xml | – volume: 21 start-page: 401 year: 2020 end-page: 415 ident: b0090 article-title: The human motor cortex microcircuit: insights for neurodegenerative disease publication-title: Nat Rev Neurosci – volume: 125 start-page: 2253 year: 2014 end-page: 2259 ident: b0140 article-title: Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition publication-title: Clin Neurophysiol – volume: 121 start-page: 563 year: 2019 end-page: 573 ident: b0080 article-title: Rubber hand illusion modulates the influences of somatosensory and parietal inputs to the motor cortex publication-title: J Neurophysiol – volume: 122 start-page: 1908 year: 2011 end-page: 1923 ident: b0105 article-title: Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex publication-title: Clin Neurophysiol – volume: 27 start-page: 419 year: 2004 end-page: 451 ident: b0055 article-title: Neuronal circuits of the neocortex publication-title: Annu Rev Neurosci – volume: 52 start-page: 553 year: 1981 end-page: 570 ident: b0035 article-title: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal: differentiation of widespread N18 and contralateral N20 from the prerolandic p22 and N30 components publication-title: Electroencephalogr Clin Neurophysiol – volume: 598 start-page: 4031 year: 2020 end-page: 4045 ident: b0115 article-title: Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans publication-title: J Physiol – volume: 39 start-page: 101897 year: 2020 ident: b0025 article-title: Thalamo-cortical dysfunction contributes to fatigability in multiple sclerosis patients: A neurophysiological study publication-title: Multiple Scler Rel Dis – volume: 116 start-page: 2592 year: 2005 end-page: 2598 ident: b0100 article-title: Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus publication-title: Clin Neurophysiol – volume: 131 start-page: 1917 year: 2020 end-page: 1924 ident: b0085 article-title: The effects of antiepileptic drugs on high-frequency oscillations in somatosensory evoked potentials publication-title: Clin Neurophysiol – volume: 126 start-page: 1071 year: 2015 end-page: 1107 ident: b0130 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee publication-title: Clin Neurophysiol – volume: 132 start-page: 269 year: 2021 end-page: 306 ident: b0125 article-title: Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines publication-title: Clin Neurophysiol – volume: 17 start-page: 309 year: 2000 end-page: 320 ident: b0075 article-title: High-frequency oscillations of somatosensory evoked potentials and fields publication-title: J Clin Neurophysiol – volume: 564 start-page: 661 year: 2005 end-page: 668 ident: b0040 article-title: Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans publication-title: J Physiol – volume: 24 start-page: 246 year: 2018 end-page: 260 ident: b0045 article-title: Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits publication-title: Neuroscientist – volume: 13 start-page: 111 year: 2019 ident: b0060 article-title: Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease publication-title: Front Hum Neurosci – volume: 131 start-page: 548 year: 2020 end-page: 554 ident: b0005 article-title: Thalamo-cortical network dysfunction in temporal lobe epilepsy publication-title: Clin Neurophysiol – volume: 28 start-page: 63 year: 2011 end-page: 72 ident: b0120 article-title: Characteristics of synaptic connections between rodent primary somatosensory and motor cortices publication-title: Somatosens Motor Res – volume: 523 start-page: 503 year: 2000 end-page: 513 ident: b0135 article-title: Short latency inhibition of human hand motor cortex by somatosensory input from the hand publication-title: J Physiol – volume: 11 start-page: 59 year: 2018 end-page: 74 ident: b0145 article-title: Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors publication-title: Brain Stimul – volume: 238 start-page: 1601 year: 2020 end-page: 1610 ident: b0165 article-title: I-waves in motor cortex revisited publication-title: Exp Brain Res – volume: 1 start-page: 529 year: 1998 end-page: 533 ident: b0155 article-title: Maintaining internal representations: the role of the human superior parietal lobe publication-title: Nat Neurosci – reference: . – volume: 29 start-page: 537 year: 1970 end-page: 550 ident: b0070 article-title: Comparative study of sensory input to motor cortex in animals and man publication-title: Electroencephalogr Clin Neurophysiol – reference: Buzsáki G. Rhythms of the brain. Oxford University Press; 2006. – volume: 7 year: 2013 ident: b0050 article-title: The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex publication-title: Front Neural Circ – volume: 9 start-page: 97 year: 1971 end-page: 113 ident: b0095 article-title: The assessment and analysis of handedness: The Edinburgh inventory publication-title: Neuropsychologia – volume: 90 start-page: 1195 year: 2010 end-page: 1268 ident: b0150 article-title: Neurophysiological and Computational Principles of Cortical Rhythms in Cognition publication-title: Physiol Rev – volume: 11 start-page: 251 year: 2020 ident: b0020 article-title: The Potential Role of Neurophysiology in the Management of Multiple Sclerosis-Related Fatigue publication-title: Front Neurol – volume: 23 start-page: 278 year: 2000 end-page: 282 ident: b0110 article-title: Stability of N20 onset or peak latency in median somatosensory evoked potentials publication-title: Muscle Nerve – volume: 76 start-page: 695 year: 2012 end-page: 711 ident: b0010 article-title: Canonical Microcircuits for Predictive Coding publication-title: Neuron – volume: 119 start-page: 117 year: 1997 end-page: 147 ident: b0065 article-title: Computational models of sensorimotor integration publication-title: Adv Psychol – volume: 119 start-page: 117 year: 1997 ident: 10.1016/j.clinph.2022.09.006_b0065 article-title: Computational models of sensorimotor integration publication-title: Adv Psychol doi: 10.1016/S0166-4115(97)80006-4 – volume: 131 start-page: 548 year: 2020 ident: 10.1016/j.clinph.2022.09.006_b0005 article-title: Thalamo-cortical network dysfunction in temporal lobe epilepsy publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2019.10.017 – volume: 39 start-page: 101897 year: 2020 ident: 10.1016/j.clinph.2022.09.006_b0025 article-title: Thalamo-cortical dysfunction contributes to fatigability in multiple sclerosis patients: A neurophysiological study publication-title: Multiple Scler Rel Dis doi: 10.1016/j.msard.2019.101897 – volume: 523 start-page: 503 issue: 2 year: 2000 ident: 10.1016/j.clinph.2022.09.006_b0135 article-title: Short latency inhibition of human hand motor cortex by somatosensory input from the hand publication-title: J Physiol doi: 10.1111/j.1469-7793.2000.t01-1-00503.x – volume: 122 start-page: 1908 year: 2011 ident: 10.1016/j.clinph.2022.09.006_b0105 article-title: Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2011.05.023 – volume: 21 start-page: 401 year: 2020 ident: 10.1016/j.clinph.2022.09.006_b0090 article-title: The human motor cortex microcircuit: insights for neurodegenerative disease publication-title: Nat Rev Neurosci doi: 10.1038/s41583-020-0315-1 – volume: 238 start-page: 1601 year: 2020 ident: 10.1016/j.clinph.2022.09.006_b0165 article-title: I-waves in motor cortex revisited publication-title: Exp Brain Res doi: 10.1007/s00221-020-05764-4 – volume: 27 start-page: 419 year: 2004 ident: 10.1016/j.clinph.2022.09.006_b0055 article-title: Neuronal circuits of the neocortex publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.27.070203.144152 – volume: 29 start-page: 537 year: 1970 ident: 10.1016/j.clinph.2022.09.006_b0070 article-title: Comparative study of sensory input to motor cortex in animals and man publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(70)90096-9 – volume: 11 start-page: 59 year: 2018 ident: 10.1016/j.clinph.2022.09.006_b0145 article-title: Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors publication-title: Brain Stimul doi: 10.1016/j.brs.2017.09.009 – volume: 1 start-page: 529 year: 1998 ident: 10.1016/j.clinph.2022.09.006_b0155 article-title: Maintaining internal representations: the role of the human superior parietal lobe publication-title: Nat Neurosci doi: 10.1038/2245 – volume: 90 start-page: 1195 year: 2010 ident: 10.1016/j.clinph.2022.09.006_b0150 article-title: Neurophysiological and Computational Principles of Cortical Rhythms in Cognition publication-title: Physiol Rev doi: 10.1152/physrev.00035.2008 – ident: 10.1016/j.clinph.2022.09.006_b0015 doi: 10.1093/acprof:oso/9780195301069.001.0001 – volume: 7 year: 2013 ident: 10.1016/j.clinph.2022.09.006_b0050 article-title: The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex publication-title: Front Neural Circ – volume: 76 start-page: 695 year: 2012 ident: 10.1016/j.clinph.2022.09.006_b0010 article-title: Canonical Microcircuits for Predictive Coding publication-title: Neuron doi: 10.1016/j.neuron.2012.10.038 – volume: 17 start-page: 309 year: 2000 ident: 10.1016/j.clinph.2022.09.006_b0075 article-title: High-frequency oscillations of somatosensory evoked potentials and fields publication-title: J Clin Neurophysiol doi: 10.1097/00004691-200005000-00008 – volume: 132 start-page: 269 issue: 1 year: 2021 ident: 10.1016/j.clinph.2022.09.006_b0125 article-title: Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2020.10.003 – volume: 126 start-page: 1071 issue: 6 year: 2015 ident: 10.1016/j.clinph.2022.09.006_b0130 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.02.001 – volume: 28 start-page: 63 issue: 3-4 year: 2011 ident: 10.1016/j.clinph.2022.09.006_b0120 article-title: Characteristics of synaptic connections between rodent primary somatosensory and motor cortices publication-title: Somatosens Motor Res doi: 10.3109/08990220.2011.606660 – volume: 9 start-page: 97 year: 1971 ident: 10.1016/j.clinph.2022.09.006_b0095 article-title: The assessment and analysis of handedness: The Edinburgh inventory publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 – volume: 11 start-page: 251 year: 2020 ident: 10.1016/j.clinph.2022.09.006_b0020 article-title: The Potential Role of Neurophysiology in the Management of Multiple Sclerosis-Related Fatigue publication-title: Front Neurol doi: 10.3389/fneur.2020.00251 – volume: 121 start-page: 563 year: 2019 ident: 10.1016/j.clinph.2022.09.006_b0080 article-title: Rubber hand illusion modulates the influences of somatosensory and parietal inputs to the motor cortex publication-title: J Neurophysiol doi: 10.1152/jn.00345.2018 – volume: 52 start-page: 553 year: 1981 ident: 10.1016/j.clinph.2022.09.006_b0035 article-title: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal: differentiation of widespread N18 and contralateral N20 from the prerolandic p22 and N30 components publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(81)91430-9 – volume: 125 start-page: 2253 year: 2014 ident: 10.1016/j.clinph.2022.09.006_b0140 article-title: Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.02.026 – volume: 24 start-page: 246 year: 2018 ident: 10.1016/j.clinph.2022.09.006_b0045 article-title: Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits publication-title: Neuroscientist doi: 10.1177/1073858417717660 – volume: 131 start-page: 1917 issue: 8 year: 2020 ident: 10.1016/j.clinph.2022.09.006_b0085 article-title: The effects of antiepileptic drugs on high-frequency oscillations in somatosensory evoked potentials publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2020.05.022 – volume: 116 start-page: 2592 issue: 11 year: 2005 ident: 10.1016/j.clinph.2022.09.006_b0100 article-title: Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.07.015 – volume: 13 start-page: 111 year: 2019 ident: 10.1016/j.clinph.2022.09.006_b0060 article-title: Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2019.00111 – volume: 598 start-page: 4031 year: 2020 ident: 10.1016/j.clinph.2022.09.006_b0115 article-title: Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans publication-title: J Physiol doi: 10.1113/JP279966 – volume: 23 start-page: 278 year: 2000 ident: 10.1016/j.clinph.2022.09.006_b0110 article-title: Stability of N20 onset or peak latency in median somatosensory evoked potentials publication-title: Muscle Nerve doi: 10.1002/(SICI)1097-4598(200002)23:2<278::AID-MUS22>3.0.CO;2-R – volume: 564 start-page: 661 issue: 2 year: 2005 ident: 10.1016/j.clinph.2022.09.006_b0040 article-title: Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans publication-title: J Physiol doi: 10.1113/jphysiol.2004.061747 – reference: 36244913 - Clin Neurophysiol. 2022 Dec;144:119-120 |
| SSID | ssj0007042 |
| Score | 2.4356534 |
| Snippet | •Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition... Highlights•Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent... Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 135 |
| SubjectTerms | Afferent Pathways - physiology Electric Stimulation Evoked Potentials, Motor - physiology Evoked Potentials, Somatosensory - physiology HFOs High-frequency oscillations Humans Median Nerve - physiology Motor Cortex - physiology Neural Inhibition - physiology Neurology SAI Sensorimotor integration Short-latency afferent inhibition Transcranial Magnetic Stimulation |
| Title | High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245722008926 https://www.clinicalkey.es/playcontent/1-s2.0-S1388245722008926 https://dx.doi.org/10.1016/j.clinph.2022.09.006 https://www.ncbi.nlm.nih.gov/pubmed/36210268 https://www.proquest.com/docview/2723487762 |
| Volume | 144 |
| WOSCitedRecordID | wos000929728300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8952 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007042 issn: 1388-2457 databaseCode: AIEXJ dateStart: 20180601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpOsZexr6XfRQN9lZcFFm27MdSOraxlsE6yJuwNWl1CUmIk9Dtj9vftjt95KNZaTfYizGKFSm5n-9O0t3vCHlbCwNmMZNJaaxIhKnypODSJhno4yKzeZFqJ-lP8vS0GAzKz53Or5gLsxjK0ai4vCwn_1XU0AbCxtTZvxD38kuhAe5B6HAFscP1VoLHyI3ETn2I9I99JKschoC3BG2W4wXAWhr7gZYKmf3jlNB3bM_BJd-HLq5_5QuoYCWB86Zu1mMjfX2_GotMrPu4RzHZ0nFluq2Tjb37k_EMWaRM9JtBU-nx6uAHXtKQRNRU36fVz2YVS1RNxiEcGYkFFgiK5WeA0cbXp8KknbatkIlhfU-D8yvxIdvJNk43pyhp4fmsD4xvKyQo9DLbVOhCrKnkvqdDCda972m2tgyH38O4OMB81AkeUnHu-G_ZFZ5uZ_m_4FRwJhyjR0qe75BdLrOy6JLdww_Hg49LX0AyV75pOfWYvOkiDLfHus45um7x45ygswfkfli90EOPuoekY0aPyN2TEJ_xmMw3wUe3wUcD-GgEH12Bj44tdeCjAXw0go-uwAe3FMBHHfioA98T8vXd8dnR-yQU9ki0kGyWaM2FKUsODlqZl9JgUQCrGYO2vK_x7Dqtmc3rgumc1VzUwgrLclNba8FHt-lT0h0B4J4TyrXNDGfZNwO6xsisZrrSVlrB6kLqOu-RNP6jSgfWeyy-MlQxvPFCeTkolINipQI59Eiy7DXxrC83PJ9FYamY0Qw2WAG6bugn_9TPtEGftKqvWnhYbSFuvWfwlb0PfIsx30Q0KTAleD5Yjcx43ioueSoKCe5RjzzzMFv-evBzYSmSFy_-edyX5N7qVX9FurPp3Lwmd_Ri1rTTPbIjB8VeeH1-A0A2Aro |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-frequency+oscillations-based+precise+temporal+resolution+of+short+latency+afferent+inhibition+in+the+human+brain&rft.jtitle=Clinical+neurophysiology&rft.au=Motolese%2C+Francesco&rft.au=Rossi%2C+Mariagrazia&rft.au=Capone%2C+Fioravante&rft.au=Cruciani%2C+Alessandro&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=1388-2457&rft.eissn=1872-8952&rft.volume=144&rft.spage=135&rft.epage=141&rft_id=info:doi/10.1016%2Fj.clinph.2022.09.006&rft.externalDocID=S1388245722008926 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245722X00114%2Fcov150h.gif |