High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain

•Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition (SAI).•Coupling peripheral and cortical stimulation at early interstimulus intervals may modulate muscle response.•Afferent inhibition is produced...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Clinical neurophysiology Ročník 144; s. 135 - 141
Hlavní autori: Motolese, Francesco, Rossi, Mariagrazia, Capone, Fioravante, Cruciani, Alessandro, Musumeci, Gabriella, Manzo, Marco, Pilato, Fabio, Di Pino, Giovanni, Di Lazzaro, Vincenzo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.12.2022
Predmet:
ISSN:1388-2457, 1872-8952, 1872-8952
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition (SAI).•Coupling peripheral and cortical stimulation at early interstimulus intervals may modulate muscle response.•Afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway. Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between –1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. Coupling peripheral and cortical stimulation at early interstimulus intervals – before the SEPs N20 peak - may modulate muscle response. Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
AbstractList Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs.OBJECTIVESensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs.The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script.METHODSThe interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script.Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak.RESULTSThirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak.Coupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response.CONCLUSIONSCoupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response.Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.SIGNIFICANCEOur findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
•Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition (SAI).•Coupling peripheral and cortical stimulation at early interstimulus intervals may modulate muscle response.•Afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway. Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between –1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. Coupling peripheral and cortical stimulation at early interstimulus intervals – before the SEPs N20 peak - may modulate muscle response. Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. Coupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response. Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
Highlights•Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition (SAI). •Coupling peripheral and cortical stimulation at early interstimulus intervals may modulate muscle response. •Afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
Author Motolese, Francesco
Rossi, Mariagrazia
Pilato, Fabio
Cruciani, Alessandro
Musumeci, Gabriella
Manzo, Marco
Di Pino, Giovanni
Di Lazzaro, Vincenzo
Capone, Fioravante
Author_xml – sequence: 1
  givenname: Francesco
  surname: Motolese
  fullname: Motolese, Francesco
  email: f.motolese@policlinicocampus.it
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 2
  givenname: Mariagrazia
  surname: Rossi
  fullname: Rossi, Mariagrazia
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 3
  givenname: Fioravante
  surname: Capone
  fullname: Capone, Fioravante
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 4
  givenname: Alessandro
  surname: Cruciani
  fullname: Cruciani, Alessandro
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 5
  givenname: Gabriella
  surname: Musumeci
  fullname: Musumeci, Gabriella
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 6
  givenname: Marco
  surname: Manzo
  fullname: Manzo, Marco
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 7
  givenname: Fabio
  surname: Pilato
  fullname: Pilato, Fabio
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 8
  givenname: Giovanni
  surname: Di Pino
  fullname: Di Pino, Giovanni
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
– sequence: 9
  givenname: Vincenzo
  surname: Di Lazzaro
  fullname: Di Lazzaro, Vincenzo
  organization: Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36210268$$D View this record in MEDLINE/PubMed
BookMark eNqVkl-L1DAUxYOsuH_0G4jk0ZfWm9tO2ooIy6KusOCD-hzazI3N2CZjkgrz7U1nVh8EWXxKCL9zwj3nXrIz5x0x9lxAKUDIV7tST9btxxIBsYSuBJCP2IVoGyzaboNn-V61bYH1pjlnlzHuAKCBGp-w80qiAJTtBVtu7bexMIF-LOT0gfuo7TT1yXoXi6GPtOX7QNpG4onmvQ_9xANFPy0rwr3hcfQh8Sw56ntjKJBL3LrRDvYIWcfTSHxc5t7xIfTWPWWPTT9FenZ_XrGv7999ubkt7j59-HhzfVfouoFUaI01dR1qok52DUnRgNEA-U0KDVUrqgGMHFrQEgash9rUBiQNxhjAjamu2MuT7z74PGBMarZRUx7QkV-iwgarum0aiRl9cY8uw0xbtQ927sNB_Y4qA_UJ0MHHGMj8QQSotRG1U6dG1NqIgk7lRrLs9V8ybdMx35STmB4Svz2JKYf001JQuZ6cM21tLiWprbf_a7BCVvfTdzpQ3PkluFyAEipmjfq8bsy6MIgAbYerwZt_Gzz8_y8hYNTT
CitedBy_id crossref_primary_10_3389_fneur_2022_1052989
crossref_primary_10_1016_j_clinph_2023_03_008
crossref_primary_10_1016_j_clinph_2024_11_012
crossref_primary_10_1093_cercor_bhad481
crossref_primary_10_1016_j_clinph_2022_09_014
crossref_primary_10_1016_j_clinph_2024_06_011
Cites_doi 10.1016/S0166-4115(97)80006-4
10.1016/j.clinph.2019.10.017
10.1016/j.msard.2019.101897
10.1111/j.1469-7793.2000.t01-1-00503.x
10.1016/j.clinph.2011.05.023
10.1038/s41583-020-0315-1
10.1007/s00221-020-05764-4
10.1146/annurev.neuro.27.070203.144152
10.1016/0013-4694(70)90096-9
10.1016/j.brs.2017.09.009
10.1038/2245
10.1152/physrev.00035.2008
10.1093/acprof:oso/9780195301069.001.0001
10.1016/j.neuron.2012.10.038
10.1097/00004691-200005000-00008
10.1016/j.clinph.2020.10.003
10.1016/j.clinph.2015.02.001
10.3109/08990220.2011.606660
10.1016/0028-3932(71)90067-4
10.3389/fneur.2020.00251
10.1152/jn.00345.2018
10.1016/0013-4694(81)91430-9
10.1016/j.clinph.2014.02.026
10.1177/1073858417717660
10.1016/j.clinph.2020.05.022
10.1016/j.clinph.2005.07.015
10.3389/fnhum.2019.00111
10.1113/JP279966
10.1002/(SICI)1097-4598(200002)23:2<278::AID-MUS22>3.0.CO;2-R
10.1113/jphysiol.2004.061747
ContentType Journal Article
Copyright 2022 International Federation of Clinical Neurophysiology
International Federation of Clinical Neurophysiology
Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 International Federation of Clinical Neurophysiology
– notice: International Federation of Clinical Neurophysiology
– notice: Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.clinph.2022.09.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage 141
ExternalDocumentID 36210268
10_1016_j_clinph_2022_09_006
S1388245722008926
1_s2_0_S1388245722008926
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
VQA
AADPK
AAIAV
ABLVK
ABYKQ
AFMIJ
AHPSJ
AJBFU
LCYCR
ZA5
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c470t-cc24e992cee9697e6170fc00e9961c03813b0f6b80c60b24b4f4f06ebfff025f3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929728300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1388-2457
1872-8952
IngestDate Sun Sep 28 01:32:36 EDT 2025
Thu Apr 03 07:03:46 EDT 2025
Sat Nov 29 07:01:40 EST 2025
Tue Nov 18 20:05:58 EST 2025
Fri Feb 23 02:39:09 EST 2024
Tue Feb 25 20:11:31 EST 2025
Tue Oct 14 19:38:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords High-frequency oscillations
Sensorimotor integration
SAI
HFOs
Short-latency afferent inhibition
Language English
License Copyright © 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-cc24e992cee9697e6170fc00e9961c03813b0f6b80c60b24b4f4f06ebfff025f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36210268
PQID 2723487762
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2723487762
pubmed_primary_36210268
crossref_primary_10_1016_j_clinph_2022_09_006
crossref_citationtrail_10_1016_j_clinph_2022_09_006
elsevier_sciencedirect_doi_10_1016_j_clinph_2022_09_006
elsevier_clinicalkeyesjournals_1_s2_0_S1388245722008926
elsevier_clinicalkey_doi_10_1016_j_clinph_2022_09_006
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Clinical neurophysiology
PublicationTitleAlternate Clin Neurophysiol
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bastos, Usrey, Adams, Mangun, Fries, Friston (b0010) 2012; 76
Desmedt, Cheron (b0035) 1981; 52
Di Lazzaro, Rothwell, Capogna (b0045) 2018; 24
Ghahramani, Wolpert, Michale (b0065) 1997; 119
Wolpert, Goodbody, Husain (b0155) 1998; 1
Paparella, Rocchi, Bologna, Berardelli, Rothwell (b0115) 2020; 598
Hashimoto (b0075) 2000; 17
Rossi, Antal, Bestmann, Bikson, Brewer, Brockmöller, Carpenter, Cincotta, Chen, Daskalakis, Di Lazzaro, Fox, George, Gilbert, Kimiskidis, Koch, Ilmoniemi, Lefaucheur, Leocani, Lisanby, Miniussi, Padberg, Pascual-Leone, Paulus, Peterchev, Quartarone, Rotenberg, Rothwell, Rossini, Santarnecchi, Shafi, Siebner, Ugawa, Wassermann, Zangen, Ziemann, Hallett (b0125) 2021; 132
Capone, Motolese, Falato, Rossi, Di Lazzaro (b0020) 2020; 11
Dubbioso, Manganelli, Siebner, Di Lazzaro (b0060) 2019; 13
Isayama, Vesia, Jegatheeswaran, Elahi, Gunraj, Cardinali (b0080) 2019; 121
Tsang, Jacobs, Lee, Asmussen, Zapallow, Nelson (b0140) 2014; 125
Ozaki, Suzuki, Tanosaki, Baba, Matsunaga (b0110) 2000; 23
Di Lazzaro, Oliviero, Saturno, Dileone, Pilato, Nardone, Ranieri, Musumeci, Fiorilla, Tonali (b0040) 2005; 564
Douglas, Martin (b0055) 2004; 27
Lanzone, Boscarino, Ricci, Insola, Tombini, Di Lazzaro, Assenza (b0085) 2020; 131
Wang (b0150) 2010; 90
Goldring, Aras, Weber (b0070) 1970; 29
Oliviero, Leon, Holler, Vila, Siebner, Marca, Dilazzaro, Alvarez (b0100) 2005; 116
Buzsáki G. Rhythms of the brain. Oxford University Press; 2006.
Ziemann (b0165) 2020; 238
Oldfield (b0095) 1971; 9
Rocco-Donovan, Ramos, Giraldo, Brumberg (b0120) 2011; 28
Tokimura, Lazzaro, Tokimura, Oliviero, Profice, Insola, Mazzone, Tonali, Rothwell (b0135) 2000; 523
Assenza, Lanzone, Insola, Amatori, Ricci, Tombini, Di Lazzaro (b0005) 2020; 131
.
McColgan, Joubert, Tabrizi, Rees (b0090) 2020; 21
Capone, Motolese, Rossi, Musumeci, Insola, Di Lazzaro (b0025) 2020; 39
Rossini, Burke, Chen, Cohen, Daskalakis, Di Iorio, Di Lazzaro, Ferreri, Fitzgerald, George, Hallett, Lefaucheur, Langguth, Matsumoto, Miniussi, Nitsche, Pascual-Leone, Paulus, Rossi, Rothwell, Siebner, Ugawa, Walsh, Ziemann (b0130) 2015; 126
Turco, El-Sayes, Savoie, Fassett, Locke, Nelson (b0145) 2018; 11
Di Lazzaro, Ziemann (b0050) 2013; 7
Ozaki, Hashimoto (b0105) 2011; 122
Bastos (10.1016/j.clinph.2022.09.006_b0010) 2012; 76
10.1016/j.clinph.2022.09.006_b0015
Ozaki (10.1016/j.clinph.2022.09.006_b0105) 2011; 122
Capone (10.1016/j.clinph.2022.09.006_b0020) 2020; 11
Assenza (10.1016/j.clinph.2022.09.006_b0005) 2020; 131
Desmedt (10.1016/j.clinph.2022.09.006_b0035) 1981; 52
Oldfield (10.1016/j.clinph.2022.09.006_b0095) 1971; 9
Tokimura (10.1016/j.clinph.2022.09.006_b0135) 2000; 523
Ziemann (10.1016/j.clinph.2022.09.006_b0165) 2020; 238
Rocco-Donovan (10.1016/j.clinph.2022.09.006_b0120) 2011; 28
Rossi (10.1016/j.clinph.2022.09.006_b0125) 2021; 132
Paparella (10.1016/j.clinph.2022.09.006_b0115) 2020; 598
Hashimoto (10.1016/j.clinph.2022.09.006_b0075) 2000; 17
Capone (10.1016/j.clinph.2022.09.006_b0025) 2020; 39
Ozaki (10.1016/j.clinph.2022.09.006_b0110) 2000; 23
Dubbioso (10.1016/j.clinph.2022.09.006_b0060) 2019; 13
Di Lazzaro (10.1016/j.clinph.2022.09.006_b0045) 2018; 24
Di Lazzaro (10.1016/j.clinph.2022.09.006_b0050) 2013; 7
Wang (10.1016/j.clinph.2022.09.006_b0150) 2010; 90
Wolpert (10.1016/j.clinph.2022.09.006_b0155) 1998; 1
Lanzone (10.1016/j.clinph.2022.09.006_b0085) 2020; 131
Di Lazzaro (10.1016/j.clinph.2022.09.006_b0040) 2005; 564
Isayama (10.1016/j.clinph.2022.09.006_b0080) 2019; 121
Douglas (10.1016/j.clinph.2022.09.006_b0055) 2004; 27
Rossini (10.1016/j.clinph.2022.09.006_b0130) 2015; 126
Ghahramani (10.1016/j.clinph.2022.09.006_b0065) 1997; 119
McColgan (10.1016/j.clinph.2022.09.006_b0090) 2020; 21
Oliviero (10.1016/j.clinph.2022.09.006_b0100) 2005; 116
Tsang (10.1016/j.clinph.2022.09.006_b0140) 2014; 125
Turco (10.1016/j.clinph.2022.09.006_b0145) 2018; 11
Goldring (10.1016/j.clinph.2022.09.006_b0070) 1970; 29
36244913 - Clin Neurophysiol. 2022 Dec;144:119-120
References_xml – volume: 21
  start-page: 401
  year: 2020
  end-page: 415
  ident: b0090
  article-title: The human motor cortex microcircuit: insights for neurodegenerative disease
  publication-title: Nat Rev Neurosci
– volume: 125
  start-page: 2253
  year: 2014
  end-page: 2259
  ident: b0140
  article-title: Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition
  publication-title: Clin Neurophysiol
– volume: 121
  start-page: 563
  year: 2019
  end-page: 573
  ident: b0080
  article-title: Rubber hand illusion modulates the influences of somatosensory and parietal inputs to the motor cortex
  publication-title: J Neurophysiol
– volume: 122
  start-page: 1908
  year: 2011
  end-page: 1923
  ident: b0105
  article-title: Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex
  publication-title: Clin Neurophysiol
– volume: 27
  start-page: 419
  year: 2004
  end-page: 451
  ident: b0055
  article-title: Neuronal circuits of the neocortex
  publication-title: Annu Rev Neurosci
– volume: 52
  start-page: 553
  year: 1981
  end-page: 570
  ident: b0035
  article-title: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal: differentiation of widespread N18 and contralateral N20 from the prerolandic p22 and N30 components
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 598
  start-page: 4031
  year: 2020
  end-page: 4045
  ident: b0115
  article-title: Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans
  publication-title: J Physiol
– volume: 39
  start-page: 101897
  year: 2020
  ident: b0025
  article-title: Thalamo-cortical dysfunction contributes to fatigability in multiple sclerosis patients: A neurophysiological study
  publication-title: Multiple Scler Rel Dis
– volume: 116
  start-page: 2592
  year: 2005
  end-page: 2598
  ident: b0100
  article-title: Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus
  publication-title: Clin Neurophysiol
– volume: 131
  start-page: 1917
  year: 2020
  end-page: 1924
  ident: b0085
  article-title: The effects of antiepileptic drugs on high-frequency oscillations in somatosensory evoked potentials
  publication-title: Clin Neurophysiol
– volume: 126
  start-page: 1071
  year: 2015
  end-page: 1107
  ident: b0130
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee
  publication-title: Clin Neurophysiol
– volume: 132
  start-page: 269
  year: 2021
  end-page: 306
  ident: b0125
  article-title: Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines
  publication-title: Clin Neurophysiol
– volume: 17
  start-page: 309
  year: 2000
  end-page: 320
  ident: b0075
  article-title: High-frequency oscillations of somatosensory evoked potentials and fields
  publication-title: J Clin Neurophysiol
– volume: 564
  start-page: 661
  year: 2005
  end-page: 668
  ident: b0040
  article-title: Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans
  publication-title: J Physiol
– volume: 24
  start-page: 246
  year: 2018
  end-page: 260
  ident: b0045
  article-title: Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits
  publication-title: Neuroscientist
– volume: 13
  start-page: 111
  year: 2019
  ident: b0060
  article-title: Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease
  publication-title: Front Hum Neurosci
– volume: 131
  start-page: 548
  year: 2020
  end-page: 554
  ident: b0005
  article-title: Thalamo-cortical network dysfunction in temporal lobe epilepsy
  publication-title: Clin Neurophysiol
– volume: 28
  start-page: 63
  year: 2011
  end-page: 72
  ident: b0120
  article-title: Characteristics of synaptic connections between rodent primary somatosensory and motor cortices
  publication-title: Somatosens Motor Res
– volume: 523
  start-page: 503
  year: 2000
  end-page: 513
  ident: b0135
  article-title: Short latency inhibition of human hand motor cortex by somatosensory input from the hand
  publication-title: J Physiol
– volume: 11
  start-page: 59
  year: 2018
  end-page: 74
  ident: b0145
  article-title: Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors
  publication-title: Brain Stimul
– volume: 238
  start-page: 1601
  year: 2020
  end-page: 1610
  ident: b0165
  article-title: I-waves in motor cortex revisited
  publication-title: Exp Brain Res
– volume: 1
  start-page: 529
  year: 1998
  end-page: 533
  ident: b0155
  article-title: Maintaining internal representations: the role of the human superior parietal lobe
  publication-title: Nat Neurosci
– reference: .
– volume: 29
  start-page: 537
  year: 1970
  end-page: 550
  ident: b0070
  article-title: Comparative study of sensory input to motor cortex in animals and man
  publication-title: Electroencephalogr Clin Neurophysiol
– reference: Buzsáki G. Rhythms of the brain. Oxford University Press; 2006.
– volume: 7
  year: 2013
  ident: b0050
  article-title: The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex
  publication-title: Front Neural Circ
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  ident: b0095
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
– volume: 90
  start-page: 1195
  year: 2010
  end-page: 1268
  ident: b0150
  article-title: Neurophysiological and Computational Principles of Cortical Rhythms in Cognition
  publication-title: Physiol Rev
– volume: 11
  start-page: 251
  year: 2020
  ident: b0020
  article-title: The Potential Role of Neurophysiology in the Management of Multiple Sclerosis-Related Fatigue
  publication-title: Front Neurol
– volume: 23
  start-page: 278
  year: 2000
  end-page: 282
  ident: b0110
  article-title: Stability of N20 onset or peak latency in median somatosensory evoked potentials
  publication-title: Muscle Nerve
– volume: 76
  start-page: 695
  year: 2012
  end-page: 711
  ident: b0010
  article-title: Canonical Microcircuits for Predictive Coding
  publication-title: Neuron
– volume: 119
  start-page: 117
  year: 1997
  end-page: 147
  ident: b0065
  article-title: Computational models of sensorimotor integration
  publication-title: Adv Psychol
– volume: 119
  start-page: 117
  year: 1997
  ident: 10.1016/j.clinph.2022.09.006_b0065
  article-title: Computational models of sensorimotor integration
  publication-title: Adv Psychol
  doi: 10.1016/S0166-4115(97)80006-4
– volume: 131
  start-page: 548
  year: 2020
  ident: 10.1016/j.clinph.2022.09.006_b0005
  article-title: Thalamo-cortical network dysfunction in temporal lobe epilepsy
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2019.10.017
– volume: 39
  start-page: 101897
  year: 2020
  ident: 10.1016/j.clinph.2022.09.006_b0025
  article-title: Thalamo-cortical dysfunction contributes to fatigability in multiple sclerosis patients: A neurophysiological study
  publication-title: Multiple Scler Rel Dis
  doi: 10.1016/j.msard.2019.101897
– volume: 523
  start-page: 503
  issue: 2
  year: 2000
  ident: 10.1016/j.clinph.2022.09.006_b0135
  article-title: Short latency inhibition of human hand motor cortex by somatosensory input from the hand
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2000.t01-1-00503.x
– volume: 122
  start-page: 1908
  year: 2011
  ident: 10.1016/j.clinph.2022.09.006_b0105
  article-title: Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.05.023
– volume: 21
  start-page: 401
  year: 2020
  ident: 10.1016/j.clinph.2022.09.006_b0090
  article-title: The human motor cortex microcircuit: insights for neurodegenerative disease
  publication-title: Nat Rev Neurosci
  doi: 10.1038/s41583-020-0315-1
– volume: 238
  start-page: 1601
  year: 2020
  ident: 10.1016/j.clinph.2022.09.006_b0165
  article-title: I-waves in motor cortex revisited
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-020-05764-4
– volume: 27
  start-page: 419
  year: 2004
  ident: 10.1016/j.clinph.2022.09.006_b0055
  article-title: Neuronal circuits of the neocortex
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.27.070203.144152
– volume: 29
  start-page: 537
  year: 1970
  ident: 10.1016/j.clinph.2022.09.006_b0070
  article-title: Comparative study of sensory input to motor cortex in animals and man
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(70)90096-9
– volume: 11
  start-page: 59
  year: 2018
  ident: 10.1016/j.clinph.2022.09.006_b0145
  article-title: Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2017.09.009
– volume: 1
  start-page: 529
  year: 1998
  ident: 10.1016/j.clinph.2022.09.006_b0155
  article-title: Maintaining internal representations: the role of the human superior parietal lobe
  publication-title: Nat Neurosci
  doi: 10.1038/2245
– volume: 90
  start-page: 1195
  year: 2010
  ident: 10.1016/j.clinph.2022.09.006_b0150
  article-title: Neurophysiological and Computational Principles of Cortical Rhythms in Cognition
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00035.2008
– ident: 10.1016/j.clinph.2022.09.006_b0015
  doi: 10.1093/acprof:oso/9780195301069.001.0001
– volume: 7
  year: 2013
  ident: 10.1016/j.clinph.2022.09.006_b0050
  article-title: The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex
  publication-title: Front Neural Circ
– volume: 76
  start-page: 695
  year: 2012
  ident: 10.1016/j.clinph.2022.09.006_b0010
  article-title: Canonical Microcircuits for Predictive Coding
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.038
– volume: 17
  start-page: 309
  year: 2000
  ident: 10.1016/j.clinph.2022.09.006_b0075
  article-title: High-frequency oscillations of somatosensory evoked potentials and fields
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-200005000-00008
– volume: 132
  start-page: 269
  issue: 1
  year: 2021
  ident: 10.1016/j.clinph.2022.09.006_b0125
  article-title: Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2020.10.003
– volume: 126
  start-page: 1071
  issue: 6
  year: 2015
  ident: 10.1016/j.clinph.2022.09.006_b0130
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.02.001
– volume: 28
  start-page: 63
  issue: 3-4
  year: 2011
  ident: 10.1016/j.clinph.2022.09.006_b0120
  article-title: Characteristics of synaptic connections between rodent primary somatosensory and motor cortices
  publication-title: Somatosens Motor Res
  doi: 10.3109/08990220.2011.606660
– volume: 9
  start-page: 97
  year: 1971
  ident: 10.1016/j.clinph.2022.09.006_b0095
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 11
  start-page: 251
  year: 2020
  ident: 10.1016/j.clinph.2022.09.006_b0020
  article-title: The Potential Role of Neurophysiology in the Management of Multiple Sclerosis-Related Fatigue
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.00251
– volume: 121
  start-page: 563
  year: 2019
  ident: 10.1016/j.clinph.2022.09.006_b0080
  article-title: Rubber hand illusion modulates the influences of somatosensory and parietal inputs to the motor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00345.2018
– volume: 52
  start-page: 553
  year: 1981
  ident: 10.1016/j.clinph.2022.09.006_b0035
  article-title: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal: differentiation of widespread N18 and contralateral N20 from the prerolandic p22 and N30 components
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(81)91430-9
– volume: 125
  start-page: 2253
  year: 2014
  ident: 10.1016/j.clinph.2022.09.006_b0140
  article-title: Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.02.026
– volume: 24
  start-page: 246
  year: 2018
  ident: 10.1016/j.clinph.2022.09.006_b0045
  article-title: Noninvasive Stimulation of the Human Brain: Activation of Multiple Cortical Circuits
  publication-title: Neuroscientist
  doi: 10.1177/1073858417717660
– volume: 131
  start-page: 1917
  issue: 8
  year: 2020
  ident: 10.1016/j.clinph.2022.09.006_b0085
  article-title: The effects of antiepileptic drugs on high-frequency oscillations in somatosensory evoked potentials
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2020.05.022
– volume: 116
  start-page: 2592
  issue: 11
  year: 2005
  ident: 10.1016/j.clinph.2022.09.006_b0100
  article-title: Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.07.015
– volume: 13
  start-page: 111
  year: 2019
  ident: 10.1016/j.clinph.2022.09.006_b0060
  article-title: Fast Intracortical Sensory-Motor Integration: A Window Into the Pathophysiology of Parkinson's Disease
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2019.00111
– volume: 598
  start-page: 4031
  year: 2020
  ident: 10.1016/j.clinph.2022.09.006_b0115
  article-title: Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans
  publication-title: J Physiol
  doi: 10.1113/JP279966
– volume: 23
  start-page: 278
  year: 2000
  ident: 10.1016/j.clinph.2022.09.006_b0110
  article-title: Stability of N20 onset or peak latency in median somatosensory evoked potentials
  publication-title: Muscle Nerve
  doi: 10.1002/(SICI)1097-4598(200002)23:2<278::AID-MUS22>3.0.CO;2-R
– volume: 564
  start-page: 661
  issue: 2
  year: 2005
  ident: 10.1016/j.clinph.2022.09.006_b0040
  article-title: Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2004.061747
– reference: 36244913 - Clin Neurophysiol. 2022 Dec;144:119-120
SSID ssj0007042
Score 2.4356534
Snippet •Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent inhibition...
Highlights•Sensorimotor integration can be explored through a conditioned transcranial magnetic stimulation (TMS) protocol -i.e., short-latency afferent...
Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135
SubjectTerms Afferent Pathways - physiology
Electric Stimulation
Evoked Potentials, Motor - physiology
Evoked Potentials, Somatosensory - physiology
HFOs
High-frequency oscillations
Humans
Median Nerve - physiology
Motor Cortex - physiology
Neural Inhibition - physiology
Neurology
SAI
Sensorimotor integration
Short-latency afferent inhibition
Transcranial Magnetic Stimulation
Title High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245722008926
https://www.clinicalkey.es/playcontent/1-s2.0-S1388245722008926
https://dx.doi.org/10.1016/j.clinph.2022.09.006
https://www.ncbi.nlm.nih.gov/pubmed/36210268
https://www.proquest.com/docview/2723487762
Volume 144
WOSCitedRecordID wos000929728300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: AIEXJ
  dateStart: 20180601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpOsZexq5ddika7C14KPJF9mMJGbu1DNZB3oStWKtLSEKchm7_cP9q5-jiuEtDu8FejLGlyM75LH2SzvkOIW8mvNQTJopgMGEsAAYeB4UWeZArkU60SmEWYtT1P4uTk3Q8zr50Or98LMx6Kmaz9PIyW_xXU8M1MDaGzv6FuZsfhQtwDkaHI5gdjrcyPHpuBHppXaR_9FGscuoc3gIcs4wuAObS6DtZKlT294-E3LE-A0rehyqmfm4TqGAmgbOqqNq-kTa_X4FJJtocd-iDLY1Wplk6ubJ2fzxfoYpU6Xkz9FRqvtn4gY_UBRFV-fdl_rPa-BLli7lzR0ZhgTWCorkHGK1sfioM2qnrHJUY2msanLf8Q2w3HKJRIytd3fTTUdTqaQdW5cQN2gOrnrU1HtilifO3GGa6wL0nzo2sLbtGfns0_DQIargffMX2sXmO3iEZ_6OwnTzJmksmt4rukX0u4iztkv2jD6Pxx4YWCGYyOTWv5uM4jbPh9vPt4km75kGGD50-IPfdRIYeWQA-JJ1y9ojcPXauGo_JxVUc0m0cUodD6nFINzikc00NDqnDIfU4pBscwikFHFKDQ2pw-IR8ezc6Hb4PXI6PQEWCrQKleFRmGQeuliWZKDE_gFaMwbVkoHAbOyyYToqUqYQVPCoiHWmWlIXWGui6Dp-S7gyw94xQYJphKqB0ARw_jydFkmSJiidxWkLFUvVI6P9RqZwAPuZhmUrv6XgurR0k2kGyTIIdeiRoai2sAMwN5WNvLOmDm2E4loDIG-qJ6-qVtetaarkLce2ajjZbOnyLNl97NEkYVXCrMJ-V84tacsHDKBXAlHrkwMKseXugvDArSdLn__zEL8i9zVf_knRXy4vyFbmj1quqXh6SPTFOD93n8xsHmALs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-frequency+oscillations-based+precise+temporal+resolution+of+short+latency+afferent+inhibition+in+the+human+brain&rft.jtitle=Clinical+neurophysiology&rft.au=Motolese%2C+Francesco&rft.au=Rossi%2C+Mariagrazia&rft.au=Capone%2C+Fioravante&rft.au=Cruciani%2C+Alessandro&rft.date=2022-12-01&rft.issn=1388-2457&rft.volume=144&rft.spage=135&rft.epage=141&rft_id=info:doi/10.1016%2Fj.clinph.2022.09.006&rft.externalDBID=ECK1-s2.0-S1388245722008926&rft.externalDocID=1_s2_0_S1388245722008926
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245722X00114%2Fcov150h.gif