Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India

This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990–2000 & 2000–2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, no...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment Vol. 628-629; pp. 1557 - 1566
Main Authors: Sahana, Mehebub, Hong, Haoyuan, Sajjad, Haroon
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.07.2018
Subjects:
ISSN:0048-9697, 1879-1026, 1879-1026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990–2000 & 2000–2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990–2000 and 24.5% during 2000–2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990–2000 and 66.9% during 2000–2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management. [Display omitted] •Sprawl matrix was used to analyze urban patterns and growth in an urban agglomeration.•Suburban fringe has increased within the municipalities located away from the river.•Urban primary and secondary cores have increased in newly developed municipalities.•The methodology adopted has proved instrumental for urban planning and management.
AbstractList This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990–2000 & 2000–2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990–2000 and 24.5% during 2000–2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990–2000 and 66.9% during 2000–2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management. [Display omitted] •Sprawl matrix was used to analyze urban patterns and growth in an urban agglomeration.•Suburban fringe has increased within the municipalities located away from the river.•Urban primary and secondary cores have increased in newly developed municipalities.•The methodology adopted has proved instrumental for urban planning and management.
This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990-2000 & 2000-2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990-2000 and 24.5% during 2000-2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990-2000 and 66.9% during 2000-2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management.
This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990-2000 & 2000-2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990-2000 and 24.5% during 2000-2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990-2000 and 66.9% during 2000-2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management.This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990-2000 & 2000-2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990-2000 and 24.5% during 2000-2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990-2000 and 66.9% during 2000-2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management.
Author Hong, Haoyuan
Sahana, Mehebub
Sajjad, Haroon
Author_xml – sequence: 1
  givenname: Mehebub
  surname: Sahana
  fullname: Sahana, Mehebub
  organization: Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
– sequence: 2
  givenname: Haoyuan
  orcidid: 0000-0001-6224-069X
  surname: Hong
  fullname: Hong, Haoyuan
  email: hong_haoyuan@outlook.com
  organization: Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
– sequence: 3
  givenname: Haroon
  surname: Sajjad
  fullname: Sajjad, Haroon
  email: haroon.geog@gmail.com
  organization: Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30045573$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URLeFvwA-ciDBziZxgsRhVUGpqMQFztbEGS9eHHuxnZblyh-vl90ixKX44DnM9-Zp5p2RE-cdEvKCs5Iz3r7elFGZ5BO6m7JivCtZVXLBHpEF70RfcFa1J2TBWN0VfduLU3IW44blJzr-hJwuc6dpxHJBfq0c2N1P49Z0DgM4GreQDFiaS8LgIgU30hQw_14fmXXwt-krnePfsgC3lk6Qgvnxhq5oTPO4o97Rj95-gwRHDtZr6ycM2cS7V_TKjQaekscabMRnx3pOvrx_9_niQ3H96fLqYnVdqFqwVAyibQCUwgGYElXPetGoFute9X3eWmum-IgVAmN6EKCgBt7VrdZL3gitquU5eXmYuw3--4wxyclEhdaCQz9HWTHRdl0-1_-gdSP2rl1Gnx_ReZhwlNtgJgg7eX_jDLw9ACr4GANqmaP7vX8KYKzkTO4zlRv5J1O5z1SySuZMs178o7-3eFi5OigxX_XGYNhz6BSOJqBKcvTmwRl3RH_D4w
CitedBy_id crossref_primary_10_1007_s10708_021_10374_w
crossref_primary_10_1088_2631_8695_adf27c
crossref_primary_10_1016_j_jenvman_2024_122469
crossref_primary_10_3390_rs11030332
crossref_primary_10_1016_j_ecolind_2021_107584
crossref_primary_10_1080_10095020_2025_2505550
crossref_primary_10_1016_j_scs_2022_104295
crossref_primary_10_1016_j_ocecoaman_2022_106201
crossref_primary_10_1016_j_ecolind_2020_107178
crossref_primary_10_1016_j_rsase_2018_10_008
crossref_primary_10_1016_j_scs_2021_102715
crossref_primary_10_1080_10106049_2022_2091161
crossref_primary_10_3390_w16152153
crossref_primary_10_1007_s10661_021_08890_w
crossref_primary_10_1007_s11356_022_21902_7
crossref_primary_10_1080_10106049_2022_2142957
crossref_primary_10_1007_s00024_021_02660_y
crossref_primary_10_1007_s10708_022_10617_4
crossref_primary_10_1007_s10708_021_10554_8
crossref_primary_10_1007_s10661_025_14388_6
crossref_primary_10_1007_s11252_022_01220_z
crossref_primary_10_1016_j_cities_2020_102611
crossref_primary_10_1007_s12517_020_05693_0
crossref_primary_10_1016_j_jclepro_2019_03_276
crossref_primary_10_3390_rs17061082
crossref_primary_10_1002_ldr_5225
crossref_primary_10_1007_s10668_022_02641_8
crossref_primary_10_1111_grow_12534
crossref_primary_10_1016_j_gsd_2020_100500
crossref_primary_10_1080_1573062X_2025_2531256
crossref_primary_10_1061__ASCE_UP_1943_5444_0000652
crossref_primary_10_1108_SRJ_01_2018_0012
crossref_primary_10_1016_j_rsase_2024_101386
crossref_primary_10_1007_s12524_023_01729_6
crossref_primary_10_1007_s12524_021_01420_8
crossref_primary_10_1051_e3sconf_202346803006
crossref_primary_10_2478_jlecol_2024_0007
crossref_primary_10_1007_s10708_022_10606_7
crossref_primary_10_1007_s10708_024_11236_x
crossref_primary_10_1007_s11356_022_21225_7
crossref_primary_10_1177_2399808319895272
crossref_primary_10_3390_rs13091801
crossref_primary_10_1016_j_scitotenv_2019_02_178
crossref_primary_10_1007_s12524_022_01546_3
crossref_primary_10_1007_s13762_023_05305_w
crossref_primary_10_1080_10106049_2022_2136259
crossref_primary_10_1007_s40808_018_0535_9
crossref_primary_10_1016_j_gsf_2022_101489
crossref_primary_10_1007_s11442_020_1744_5
crossref_primary_10_3390_land10030263
crossref_primary_10_1080_00330124_2024_2341074
crossref_primary_10_1016_j_apgeog_2023_103097
crossref_primary_10_1007_s11356_023_25854_4
crossref_primary_10_1016_j_envres_2019_03_018
crossref_primary_10_1007_s12524_020_01123_6
crossref_primary_10_3390_rs15030843
crossref_primary_10_1016_j_cities_2025_105850
crossref_primary_10_1371_journal_pone_0275241
crossref_primary_10_1016_j_scs_2020_102326
crossref_primary_10_1080_27658511_2024_2366556
crossref_primary_10_1016_j_habitatint_2022_102695
crossref_primary_10_1007_s12524_021_01401_x
crossref_primary_10_1016_j_ufug_2020_126877
crossref_primary_10_1088_1748_9326_abb4ff
crossref_primary_10_1007_s10668_025_06568_8
crossref_primary_10_1007_s10653_025_02744_x
crossref_primary_10_1007_s11356_023_28841_x
crossref_primary_10_1007_s10668_024_04563_z
crossref_primary_10_1016_j_compenvurbsys_2020_101475
crossref_primary_10_1007_s12524_022_01543_6
crossref_primary_10_1080_10106049_2021_1980617
crossref_primary_10_1016_j_envres_2023_115967
crossref_primary_10_1371_journal_pone_0296496
crossref_primary_10_1016_j_scitotenv_2020_136763
crossref_primary_10_3390_su11216174
crossref_primary_10_3390_su11102973
crossref_primary_10_1007_s42974_023_00169_z
crossref_primary_10_1007_s10661_023_11709_5
crossref_primary_10_1016_j_compenvurbsys_2020_101586
crossref_primary_10_1007_s41064_024_00278_y
crossref_primary_10_1016_j_uclim_2021_101052
crossref_primary_10_1080_10106049_2021_2002424
crossref_primary_10_1016_j_compenvurbsys_2022_101867
crossref_primary_10_1016_j_scitotenv_2019_135828
crossref_primary_10_3390_su14116862
crossref_primary_10_1007_s12524_020_01212_6
crossref_primary_10_1007_s10668_023_03378_8
crossref_primary_10_1007_s12040_024_02321_3
crossref_primary_10_3390_w14193017
crossref_primary_10_3390_ijgi11080442
crossref_primary_10_1016_j_geogeo_2022_100163
crossref_primary_10_1007_s10668_023_03998_0
crossref_primary_10_3389_frsc_2025_1538006
crossref_primary_10_3390_rs13214423
crossref_primary_10_3390_rs15040959
crossref_primary_10_3390_land12081548
crossref_primary_10_1016_j_habitatint_2025_103573
crossref_primary_10_1016_j_cities_2024_104818
crossref_primary_10_1007_s40823_022_00083_6
crossref_primary_10_3390_ijerph17155535
crossref_primary_10_1061_JUPDDM_UPENG_5460
crossref_primary_10_1155_2022_7898871
crossref_primary_10_1016_j_jclepro_2020_123333
crossref_primary_10_1016_j_scs_2022_104062
crossref_primary_10_1007_s11356_024_35756_8
crossref_primary_10_3390_land11101799
crossref_primary_10_1016_j_scitotenv_2023_165855
crossref_primary_10_1007_s10668_023_03987_3
crossref_primary_10_1080_10106049_2022_2129817
crossref_primary_10_1016_j_ecolind_2023_110407
crossref_primary_10_1111_sjtg_12317
crossref_primary_10_1007_s12517_024_12074_4
crossref_primary_10_1016_j_scitotenv_2019_03_486
crossref_primary_10_3390_land11081319
crossref_primary_10_1007_s12665_025_12244_x
crossref_primary_10_1016_j_scs_2023_104970
crossref_primary_10_1007_s10708_020_10359_1
crossref_primary_10_1080_24749508_2024_2392377
crossref_primary_10_1016_j_cities_2019_102434
crossref_primary_10_3390_rs14143257
crossref_primary_10_1111_grow_12489
crossref_primary_10_1007_s12524_022_01493_z
crossref_primary_10_3390_land11111968
crossref_primary_10_1680_jtran_24_00115
crossref_primary_10_1016_j_ecolind_2023_111204
crossref_primary_10_1016_j_heliyon_2024_e36901
crossref_primary_10_1016_j_jfca_2023_105212
crossref_primary_10_1007_s40808_020_00858_y
crossref_primary_10_1007_s12524_022_01602_y
crossref_primary_10_1007_s10708_021_10381_x
crossref_primary_10_1016_j_cities_2019_102415
crossref_primary_10_1007_s11252_022_01246_3
crossref_primary_10_1080_12265934_2018_1488604
crossref_primary_10_1016_j_ecolind_2020_107326
crossref_primary_10_1016_j_habitatint_2021_102459
crossref_primary_10_3390_su131910805
crossref_primary_10_1016_j_habitatint_2024_103129
crossref_primary_10_1080_10106049_2021_2022018
crossref_primary_10_1016_j_landusepol_2025_107769
crossref_primary_10_1007_s12665_019_8225_0
crossref_primary_10_1080_10106049_2022_2120637
crossref_primary_10_3390_land12030630
crossref_primary_10_1016_j_scitotenv_2019_135399
crossref_primary_10_1080_10095020_2023_2202201
crossref_primary_10_3390_su11020485
crossref_primary_10_1016_j_asr_2024_01_057
crossref_primary_10_1016_j_uclim_2021_101002
crossref_primary_10_1061__ASCE_UP_1943_5444_0000825
crossref_primary_10_1016_j_geosus_2023_05_003
crossref_primary_10_1080_10106049_2022_2109759
crossref_primary_10_3390_su12031235
crossref_primary_10_1007_s10708_021_10452_z
crossref_primary_10_1007_s10668_024_04859_0
crossref_primary_10_3390_su12030809
crossref_primary_10_32604_cmes_2021_016640
crossref_primary_10_1080_10106049_2021_1952315
crossref_primary_10_1080_24749508_2022_2132010
crossref_primary_10_1080_10106049_2021_1985174
crossref_primary_10_1007_s40808_020_00990_9
crossref_primary_10_3390_rs13214484
crossref_primary_10_3390_s22134716
crossref_primary_10_1007_s12524_023_01679_z
crossref_primary_10_1007_s40808_018_0474_5
crossref_primary_10_1080_27658511_2024_2331269
crossref_primary_10_3390_rs15051316
crossref_primary_10_1007_s10668_020_01149_3
crossref_primary_10_1016_j_scitotenv_2019_01_039
crossref_primary_10_1016_j_rsase_2019_01_001
crossref_primary_10_1111_tgis_12896
crossref_primary_10_3390_su15032188
crossref_primary_10_1016_j_ecoinf_2023_102283
crossref_primary_10_3390_ijerph19095039
crossref_primary_10_1016_j_jag_2021_102460
crossref_primary_10_1016_j_landusepol_2021_105700
crossref_primary_10_1007_s12061_024_09596_5
crossref_primary_10_1016_j_foar_2024_12_006
crossref_primary_10_3389_fenvs_2023_1279712
crossref_primary_10_3390_land13111943
crossref_primary_10_1007_s10661_023_12004_z
crossref_primary_10_1016_j_landusepol_2023_106594
crossref_primary_10_1007_s44288_025_00155_0
crossref_primary_10_3390_rs13122373
crossref_primary_10_2478_rgg_2020_0009
crossref_primary_10_1007_s10708_025_11317_5
crossref_primary_10_1007_s10661_019_7389_0
crossref_primary_10_1016_j_scs_2021_102773
crossref_primary_10_1016_j_landurbplan_2020_103938
crossref_primary_10_3390_land13111735
crossref_primary_10_3390_su17010227
crossref_primary_10_3390_land10020127
crossref_primary_10_1007_s12517_021_08251_4
crossref_primary_10_1016_j_scs_2019_101502
crossref_primary_10_3390_rs13081531
crossref_primary_10_1016_j_ecolind_2024_111989
crossref_primary_10_2478_jlecol_2022_0020
crossref_primary_10_1088_1755_1315_1019_1_012032
crossref_primary_10_1038_s41598_025_03009_4
crossref_primary_10_1007_s10668_021_01782_6
crossref_primary_10_1007_s10653_019_00377_5
crossref_primary_10_3389_fenvs_2023_1115553
crossref_primary_10_1016_j_scs_2024_105231
crossref_primary_10_1111_tgis_12543
crossref_primary_10_3390_su11205598
crossref_primary_10_1007_s10708_025_11394_6
crossref_primary_10_1007_s40808_020_00985_6
Cites_doi 10.1080/01431160304987
10.1016/j.scitotenv.2018.01.124
10.1080/00420980701471927
10.1016/j.geomorph.2006.04.013
10.1080/136588198241617
10.1016/j.compenvurbsys.2006.11.001
10.1080/13604813.2013.827854
10.1080/01431160802651967
10.1080/01431169308904333
10.1007/s11355-010-0137-9
10.1016/j.compenvurbsys.2010.07.005
10.1007/s10668-015-9744-9
10.1016/j.catena.2017.05.034
10.14358/PERS.74.4.473
10.11648/j.ijepp.20140202.13
10.1080/13658816.2015.1084510
10.1177/030913339501900403
10.1016/j.worlddev.2003.04.008
10.1016/j.scitotenv.2017.12.256
10.1007/s11252-015-0503-3
10.1177/0956247806069628
10.1016/j.cities.2013.01.005
10.1080/13658810410001713416
10.1016/j.catena.2018.01.005
10.1080/17441730902790024
10.1007/s12665-012-2137-6
10.1007/s00477-015-1128-z
10.1007/s12524-012-0248-x
10.1007/s10584-012-0516-3
10.1080/01431160701280983
10.1007/s00477-014-0942-z
10.1007/s12061-014-9128-9
10.1016/j.compenvurbsys.2008.09.003
10.1016/j.rse.2006.09.005
10.1007/s12518-014-0135-y
10.1080/1369183X.2015.1100067
10.1016/j.rse.2007.08.025
10.1080/19475705.2017.1401560
10.1016/j.geomorph.2017.09.007
10.1080/19475705.2017.1289250
10.1007/s12061-016-9190-6
10.1080/01431160600962749
10.1080/1365881031000086965
10.1016/j.scitotenv.2017.10.114
10.1007/s12524-014-0402-8
10.1007/s40808-015-0026-1
10.1080/19475683.2014.992369
10.1016/j.landusepol.2018.01.004
10.1109/LGRS.2005.853929
10.1016/j.geoderma.2017.06.020
10.1080/13658816.2014.883079
10.1080/0143116031000150077
10.2307/3147108
10.1080/12265934.2017.1284607
10.1007/s12524-009-0041-7
10.1016/S0034-4257(02)00136-0
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7S9
L.6
7X8
DOI 10.1016/j.scitotenv.2018.02.170
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 1566
ExternalDocumentID 30045573
10_1016_j_scitotenv_2018_02_170
S0048969718305631
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c470t-b765aacceba0c7290975c6e49c99187ff0c1de2ea00fb7aca4a1846ff3157fc23
ISICitedReferencesCount 224
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432462000150&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Sat Sep 27 17:53:57 EDT 2025
Sun Sep 28 00:53:47 EDT 2025
Wed Feb 19 02:40:19 EST 2025
Sat Nov 29 07:28:29 EST 2025
Tue Nov 18 21:11:22 EST 2025
Fri Feb 23 02:46:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Urban growth
Kolkata urban agglomeration
Urban sprawl matrix
Urban spatial pattern
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-b765aacceba0c7290975c6e49c99187ff0c1de2ea00fb7aca4a1846ff3157fc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6224-069X
PMID 30045573
PQID 2045791878
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2076886972
proquest_miscellaneous_2045791878
pubmed_primary_30045573
crossref_citationtrail_10_1016_j_scitotenv_2018_02_170
crossref_primary_10_1016_j_scitotenv_2018_02_170
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_02_170
PublicationCentury 2000
PublicationDate 2018-07-01
2018-07-00
2018-Jul-01
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Al-shalabi, Billa, Pradhan, Mansor, Abubakr, Al-Sharif (bb0010) 2012; 70
Ramachandra, Aithal, Sowmyashree (bb0255) 2014; 6
Franklin (bb0120) 1995; 19
Chen, Pourghasemi, Naghibi (bb9015) 2017
Castle, Crooks (bb0045) 2006
Sugiyama (bb0300) 2008
Drăguţ, Blaschke (bb0110) 2006; 81
Pandey, Joshi (bb0230) 2015; 1
Pijanowski, Pithadia, Shellito, Alexandridis (bb0245) 2005; 19
Sakieh, Salmanmahiny, Mirkarimi, Saeidi (bb0265) 2016
Jat, Garg, Khare (bb0150) 2008; 29
Hong, Panahi, Shirzadi, Ma, Liu, Zhu, Chen, Kougias, Kazakis (bb9055) 2018; 621
Zhang, Jin, Wang, Zhou, Shu (bb0370) 2015; 29
Cohen (bb0090) 2004; 32
Soja (bb0295) 2013; 17
Li, Liu, Le (bb0175) 2014; 28
Bihamta, Soffianian, Fakheran, Gholamalifard (bb0035) 2015; 43
Chan, Chan, Yeh (bb0060) 2001; 67
Chen, Xie, Peng, Wang, Duan, Hong (bb9005) 2017; 8
Thapa, Murayama (bb0315) 2011; 35
Bhagat, Mohanty (bb0025) 2009; 5
Chen, Pourghasemi, Panahi, Kornejady, Wang, Xie, Cao (bb0075) 2017; 297
Mondal, Das, Dolui (bb0200) 2015; 1
Taubenböck, Wegmann, Roth, Mehl, Dech (bb0310) 2009; 33
Gomarasca, Brivio, Pagnoni, Galli (bb0125) 1993; 14
Iqbal, Rashid, Sajjad, Siddiqui, Siddiqui (bb0145) 2012; 2
Seto, Kaufmann (bb0280) 2003; 79
Hu, Lo (bb0140) 2007; 31
Dadashpoor, Nateghi (bb0095) 2017; 19
Maithani (bb0190) 2009; 37
Chen, Shirzadi, Shahabi, Ahmad, Zhang, Hong, Zhang (bb9020) 2017; 8
Chen, Peng, Hong, Shahabi, Pradhan, Liu, Zhu, Pei, Duan (bb9035) 2018; 626
Sharma, Joshi (bb0285) 2012; 41
Chen, Panahi, Pourghasemi (bb0065) 2017; 157
Bununu (bb0040) 2017
Dasgupta, Asvani, Gosain, Rao, Roy, Sarraf (bb0105) 2013; 116
Jokar, Helbich, De-Noronha (bb0155) 2013; 32
Abbas (bb0005) 2016; 42
Park, Jeon, Choi (bb0240) 2012; 8
Velmurugan, Sajjad (bb0335) 2009; 48
Mukherjee (bb0210) 2012; 2
KMDA (bb0165) 2011
Debbage, Bereitschaft, Shepherd (bb9040) 2017; 10
Angel, Parent, Civco (bb0020) 2007
Dahal, Benner, Eric Lindquist (bb0100) 2016
Chen, Pourghasemi, Naghibi (bb9010) 2017
Census of India (bb0055) 2011
Tang, Wang, Yao (bb0305) 2007; 28
Nourqolipour, Shariff, Balasundram, Ahmad, Sood, Buyong (bb0220) 2016; 9
Pal (bb0225) 2006; 18
Hong, Liu, Bui, Pradhan, Acharya, Pham, Zhu, Chen, Ahmad (bb9050) 2018; 163
Yang (bb0355) 2006; 3
Harris, Ventura (bb0130) 1995; 61
Metzger, McHale, Hess, Steelman (bb0195) 2016; 19
Sesnie, Gessler, Finegan, Thessler (bb0275) 2008; 112
Xinli, Qi, Chen (bb0350) 2016; 30
Chen, Shahabi, Shirzadi, Li, Guo, Hong, Li, Pan, Hui, Ma, Xi, Ahmad (bb9025) 2018
Nandy (bb0215) 2007
Feng, Liu, Batty (bb9045) 2016; 30
CLEAR (bb0085) 2008
Census of India (bb0050) 2001
Hashem, Balakrishnan (bb0135) 2014; 21
Sengupta, Tipple (bb0270) 2007; 44
Mondal, Das, Bhatta (bb0205) 2016
UN (bb0325) 2007
Liu, Fan, Yue, Song (bb0185) 2018; 72
Hong, Tsangaratos, Ilia, Liu, Zhu, Wei (bb9060) 2018; 625
Landis (bb0170) 2001
Chen, Xie, Peng, Shahabi, Hong, Tien Bui, Duan, Li, Zhu (bb9030) 2018
Erbek, Özkan, Taberner (bb0115) 2004; 25
Zha, Gao, Ni (bb0365) 2003; 24
Chen, Pourghasemi, Kornejady, Zhang (bb0070) 2017; 305
Liu (bb0180) 2011; 26(1)
Powell, Roberts, Dennison, Hess (bb0250) 2007; 106
Yang, Lo (bb0360) 2003; 17
Al-sharif, Pradhan (bb0015) 2015
Parent, Civco, Angel (bb0235) 2008
KMC (bb0160) 2015
Bhatta (bb0030) 2009; 30
Clarke, Gaydos (bb0080) 1997; 12
Xian, Crane, McMahon (bb0345) 2008; 74
Sajjad (bb0260) 2014; 2
Wu, Murray (bb0340) 2003; 84
Toll (bb0320) 1985; 51
UN (bb0330) 2011
Shaw (bb0290) 1999; 34
Mukherjee (10.1016/j.scitotenv.2018.02.170_bb0210) 2012; 2
Zha (10.1016/j.scitotenv.2018.02.170_bb0365) 2003; 24
Liu (10.1016/j.scitotenv.2018.02.170_bb0180) 2011; 26(1)
UN (10.1016/j.scitotenv.2018.02.170_bb0330) 2011
Census of India (10.1016/j.scitotenv.2018.02.170_bb0055) 2011
Chen (10.1016/j.scitotenv.2018.02.170_bb9025) 2018
Chen (10.1016/j.scitotenv.2018.02.170_bb9015) 2017
Thapa (10.1016/j.scitotenv.2018.02.170_bb0315) 2011; 35
Dasgupta (10.1016/j.scitotenv.2018.02.170_bb0105) 2013; 116
Maithani (10.1016/j.scitotenv.2018.02.170_bb0190) 2009; 37
Xinli (10.1016/j.scitotenv.2018.02.170_bb0350) 2016; 30
Chen (10.1016/j.scitotenv.2018.02.170_bb9035) 2018; 626
Metzger (10.1016/j.scitotenv.2018.02.170_bb0195) 2016; 19
Sakieh (10.1016/j.scitotenv.2018.02.170_bb0265) 2016
Pal (10.1016/j.scitotenv.2018.02.170_bb0225) 2006; 18
Chen (10.1016/j.scitotenv.2018.02.170_bb0070) 2017; 305
Castle (10.1016/j.scitotenv.2018.02.170_bb0045) 2006
Harris (10.1016/j.scitotenv.2018.02.170_bb0130) 1995; 61
Shaw (10.1016/j.scitotenv.2018.02.170_bb0290) 1999; 34
Toll (10.1016/j.scitotenv.2018.02.170_bb0320) 1985; 51
Bhatta (10.1016/j.scitotenv.2018.02.170_bb0030) 2009; 30
Liu (10.1016/j.scitotenv.2018.02.170_bb0185) 2018; 72
Xian (10.1016/j.scitotenv.2018.02.170_bb0345) 2008; 74
Hu (10.1016/j.scitotenv.2018.02.170_bb0140) 2007; 31
Clarke (10.1016/j.scitotenv.2018.02.170_bb0080) 1997; 12
Census of India (10.1016/j.scitotenv.2018.02.170_bb0050) 2001
Dahal (10.1016/j.scitotenv.2018.02.170_bb0100) 2016
Iqbal (10.1016/j.scitotenv.2018.02.170_bb0145) 2012; 2
Bununu (10.1016/j.scitotenv.2018.02.170_bb0040) 2017
Wu (10.1016/j.scitotenv.2018.02.170_bb0340) 2003; 84
KMC (10.1016/j.scitotenv.2018.02.170_bb0160)
Chan (10.1016/j.scitotenv.2018.02.170_bb0060) 2001; 67
Angel (10.1016/j.scitotenv.2018.02.170_bb0020)
Al-shalabi (10.1016/j.scitotenv.2018.02.170_bb0010) 2012; 70
UN (10.1016/j.scitotenv.2018.02.170_bb0325)
Chen (10.1016/j.scitotenv.2018.02.170_bb9030) 2018
Sesnie (10.1016/j.scitotenv.2018.02.170_bb0275) 2008; 112
Sharma (10.1016/j.scitotenv.2018.02.170_bb0285) 2012; 41
Chen (10.1016/j.scitotenv.2018.02.170_bb9005) 2017; 8
Hong (10.1016/j.scitotenv.2018.02.170_bb9055) 2018; 621
Chen (10.1016/j.scitotenv.2018.02.170_bb0075) 2017; 297
Debbage (10.1016/j.scitotenv.2018.02.170_bb9040) 2017; 10
Nourqolipour (10.1016/j.scitotenv.2018.02.170_bb0220) 2016; 9
Sugiyama (10.1016/j.scitotenv.2018.02.170_bb0300) 2008
Nandy (10.1016/j.scitotenv.2018.02.170_bb0215) 2007
Parent (10.1016/j.scitotenv.2018.02.170_bb0235) 2008
Sajjad (10.1016/j.scitotenv.2018.02.170_bb0260) 2014; 2
Sengupta (10.1016/j.scitotenv.2018.02.170_bb0270) 2007; 44
CLEAR (10.1016/j.scitotenv.2018.02.170_bb0085)
Jat (10.1016/j.scitotenv.2018.02.170_bb0150) 2008; 29
Hong (10.1016/j.scitotenv.2018.02.170_bb9050) 2018; 163
Cohen (10.1016/j.scitotenv.2018.02.170_bb0090) 2004; 32
Chen (10.1016/j.scitotenv.2018.02.170_bb9010) 2017
Taubenböck (10.1016/j.scitotenv.2018.02.170_bb0310) 2009; 33
Tang (10.1016/j.scitotenv.2018.02.170_bb0305) 2007; 28
Soja (10.1016/j.scitotenv.2018.02.170_bb0295) 2013; 17
Bihamta (10.1016/j.scitotenv.2018.02.170_bb0035) 2015; 43
Al-sharif (10.1016/j.scitotenv.2018.02.170_bb0015) 2015
Mondal (10.1016/j.scitotenv.2018.02.170_bb0205) 2016
Hashem (10.1016/j.scitotenv.2018.02.170_bb0135) 2014; 21
Yang (10.1016/j.scitotenv.2018.02.170_bb0355) 2006; 3
Bhagat (10.1016/j.scitotenv.2018.02.170_bb0025) 2009; 5
KMDA (10.1016/j.scitotenv.2018.02.170_bb0165)
Mondal (10.1016/j.scitotenv.2018.02.170_bb0200) 2015; 1
Erbek (10.1016/j.scitotenv.2018.02.170_bb0115) 2004; 25
Drăguţ (10.1016/j.scitotenv.2018.02.170_bb0110) 2006; 81
Feng (10.1016/j.scitotenv.2018.02.170_bb9045) 2016; 30
Yang (10.1016/j.scitotenv.2018.02.170_bb0360) 2003; 17
Franklin (10.1016/j.scitotenv.2018.02.170_bb0120) 1995; 19
Jokar (10.1016/j.scitotenv.2018.02.170_bb0155) 2013; 32
Gomarasca (10.1016/j.scitotenv.2018.02.170_bb0125) 1993; 14
Chen (10.1016/j.scitotenv.2018.02.170_bb9020) 2017; 8
Dadashpoor (10.1016/j.scitotenv.2018.02.170_bb0095) 2017; 19
Li (10.1016/j.scitotenv.2018.02.170_bb0175) 2014; 28
Seto (10.1016/j.scitotenv.2018.02.170_bb0280) 2003; 79
Pijanowski (10.1016/j.scitotenv.2018.02.170_bb0245) 2005; 19
Velmurugan (10.1016/j.scitotenv.2018.02.170_bb0335) 2009; 48
Landis (10.1016/j.scitotenv.2018.02.170_bb0170) 2001
Zhang (10.1016/j.scitotenv.2018.02.170_bb0370) 2015; 29
Ramachandra (10.1016/j.scitotenv.2018.02.170_bb0255) 2014; 6
Pandey (10.1016/j.scitotenv.2018.02.170_bb0230) 2015; 1
Park (10.1016/j.scitotenv.2018.02.170_bb0240) 2012; 8
Powell (10.1016/j.scitotenv.2018.02.170_bb0250) 2007; 106
Chen (10.1016/j.scitotenv.2018.02.170_bb0065) 2017; 157
Hong (10.1016/j.scitotenv.2018.02.170_bb9060) 2018; 625
Abbas (10.1016/j.scitotenv.2018.02.170_bb0005) 2016; 42
References_xml – start-page: 1
  year: 2017
  end-page: 18
  ident: bb9010
  article-title: A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China
  publication-title: Bull. Eng. Geol. Environ.
– year: 2017
  ident: bb0040
  article-title: Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion
  publication-title: International Journal of Urban Sciences
– volume: 61
  start-page: 993
  year: 1995
  end-page: 998
  ident: bb0130
  article-title: The integration of geographic data with remotely sensed imagery to improve classification in an urban area
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 163
  start-page: 399
  year: 2018
  end-page: 413
  ident: bb9050
  article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)
  publication-title: Catena
– volume: 29
  start-page: 543
  year: 2008
  end-page: 567
  ident: bb0150
  article-title: Modelling of urban growth using spatial analysis techniques: a case study of Ajmer city (India)
  publication-title: Int. J. Remote Sens.
– volume: 2
  start-page: 54
  year: 2014
  end-page: 63
  ident: bb0260
  article-title: Living standards and health problems of lesser fortunate slum dwellers: evidence from an Indian City
  publication-title: International Journal of Environmental Protection and Policy.
– start-page: 1
  year: 2018
  end-page: 17
  ident: bb9030
  article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method
  publication-title: Catena
– volume: 8
  start-page: 17
  year: 2012
  end-page: 31
  ident: bb0240
  article-title: Mapping urban growth probability in South Korea: comparison of frequency ratio, analytic hierarchy process, and logistic regression models and use of the environmental conservation value assessment
  publication-title: Landscape Ecol Eng
– year: 2007
  ident: bb0020
  article-title: Urban sprawl metris: an analysis of global urban expansion using GIS ASPRS 2007 Annual Conference Tampa, Florida May 7–11, 2007
– volume: 33
  start-page: 179
  year: 2009
  end-page: 188
  ident: bb0310
  article-title: Urbanization in India – spatiotemporal analysis using remote sensing data
  publication-title: Comput. Environ. Urban. Syst.
– year: 2015
  ident: bb0015
  article-title: Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models
  publication-title: Appl. Spatial Analysis
– volume: 2
  start-page: 365
  year: 2012
  end-page: 380
  ident: bb0210
  article-title: Urban growth and spatial transformation of Kolkata metropolis: a continuation of colonial legacy
  publication-title: ARPN Journal of Science and Technology
– volume: 116
  start-page: 747
  year: 2013
  end-page: 766
  ident: bb0105
  article-title: A megacity in a changing climate: the case of Kolkata
  publication-title: Clim. Chang.
– volume: 3
  start-page: 6
  year: 2006
  end-page: 9
  ident: bb0355
  article-title: Estimating landscape imperviousness index from satellite imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 8
  start-page: 1955
  year: 2017
  end-page: 1977
  ident: bb9020
  article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China
  publication-title: Geomat. Nat. Haz. Risk
– volume: 29
  start-page: 63
  year: 2015
  end-page: 78
  ident: bb0370
  article-title: Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China
  publication-title: Stoch Environ Res Risk Assess
– year: 2007
  ident: bb0215
  article-title: Need for seismic micro zonation of Kolkata megacity
  publication-title: Proceedings of Workshop on Micro Zonation
– volume: 37
  start-page: 363
  year: 2009
  end-page: 376
  ident: bb0190
  article-title: A neural network based urban growth model of an Indian City
  publication-title: J. Indian Soc. Remote Sens.
– volume: 6
  start-page: 229
  year: 2014
  end-page: 244
  ident: bb0255
  article-title: Urban structure in Kolkata: metrics and modelling through geo-informatics
  publication-title: Appl Geomat
– volume: 74
  start-page: 473
  year: 2008
  end-page: 481
  ident: bb0345
  article-title: Quantifying multi-temporal urban development characteristics in Las Vegas from Landsat and ASTER data
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 25
  start-page: 1733
  year: 2004
  end-page: 1748
  ident: bb0115
  article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities
  publication-title: Int. J. Remote Sens.
– volume: 79
  start-page: 106
  year: 2003
  end-page: 121
  ident: bb0280
  article-title: Modeling the drivers of urban land use change in the Pearl River Delta, China: integrating remote sensing with socioeconomic data
  publication-title: Land Econ.
– year: 2016
  ident: bb0205
  article-title: Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration
  publication-title: Geocarto International
– year: 2008
  ident: bb0235
  article-title: Urban growth analysis: calculating metrics to quantify urban sprawl (Online)
– year: 2006
  ident: bb0045
  article-title: Principles and concepts of agent-based modeling for developing geospatial simulations
  publication-title: Working Papers Series, 110, UCL Center for Advanced Spatial Analysis
– volume: 625
  start-page: 575
  year: 2018
  end-page: 588
  ident: bb9060
  article-title: Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China
  publication-title: Sci. Total Environ.
– year: 2011
  ident: bb0055
  article-title: Primary Census Abstract, Census of India
– year: 2016
  ident: bb0265
  article-title: Measuring the relationships between landscape aesthetics suitability and spatial patterns of urbanized lands: an informed modelling framework for developing urban growth scenarios
  publication-title: Geocarto International
– volume: 81
  start-page: 330
  year: 2006
  end-page: 344
  ident: bb0110
  article-title: Automated classification of landform elements using object-based image analysis
  publication-title: Geomorphology
– volume: 14
  start-page: 211
  year: 1993
  end-page: 223
  ident: bb0125
  article-title: One century of land use changes in the metropolitan area of Milan (Italy)
  publication-title: Int. J. Remote Sens.
– volume: 1
  start-page: 29
  year: 2015
  ident: bb0200
  article-title: Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach
  publication-title: Model. Earth Syst. Environ.
– volume: 51
  start-page: 1471
  year: 1985
  end-page: 1482
  ident: bb0320
  article-title: Landsat-4 thematic mapper scene characteristics of a suburban and rural area
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 5
  start-page: 5
  year: 2009
  end-page: 20
  ident: bb0025
  article-title: Emerging patterne of urbanization and the contribution of migration in urban growth in India
  publication-title: Asian Population Studies
– volume: 9
  start-page: 1
  year: 2016
  end-page: 19
  ident: bb0220
  article-title: Predicting the effects of urban development on land transition and spatial patterns of land use in western peninsular Malaysia
  publication-title: Appl. Spatial Analysis
– volume: 42
  start-page: 150
  year: 2016
  end-page: 168
  ident: bb0005
  article-title: Internal migration and citizenship in India
  publication-title: J. Ethn. Migr. Stud.
– volume: 67
  start-page: 213
  year: 2001
  end-page: 225
  ident: bb0060
  article-title: Detecting the nature of change in an urban environment: a comparison of machine learning algorithms
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 30
  start-page: 1387
  year: 2016
  end-page: 1400
  ident: bb9045
  article-title: Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China
  publication-title: Stoch. Env. Res. Risk A.
– volume: 19
  start-page: 1
  year: 2016
  end-page: 18
  ident: bb0195
  article-title: Same time, same place: analyzing temporal and spatial trends in urban metabolism using proximate counties in the North Carolina Triangle
  publication-title: Urban Ecosyst
– year: 2011
  ident: bb0165
  article-title: Kolkata Metropolitan Development Authority
– start-page: 157
  year: 2001
  end-page: 200
  ident: bb0170
  article-title: CUF, CUF II, and CURBA: A family of spatially explicit urban growth and land-use policy simulation models
  publication-title: Planning Support Systems: Integrating Geographic Information Systems, Models and Visualization Tools
– volume: 21
  start-page: 233
  year: 2014
  end-page: 247
  ident: bb0135
  article-title: Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar
  publication-title: Ann. GIS
– year: 2007
  ident: bb0325
  article-title: World Urbanization Prospects: Database
– volume: 43
  start-page: 407
  year: 2015
  end-page: 414
  ident: bb0035
  article-title: Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran
  publication-title: J Indian Soc Remote Sens
– volume: 28
  start-page: 3255
  year: 2007
  end-page: 3271
  ident: bb0305
  article-title: Spatio- temporal urban landcape change analysis using the Markov chain model and a modified genetic algorithm
  publication-title: Int. J. Remote Sens.
– volume: 34
  start-page: 969
  year: 1999
  end-page: 978
  ident: bb0290
  article-title: Emerging patterns of urban growth in India
  publication-title: Econ Political Weekly.
– volume: 1
  start-page: 2
  year: 2015
  end-page: 14
  ident: bb0230
  article-title: Numerical modelling spatial patterns of urban growth in Chandigarh and surrounding region (India) using multi-agent systems model
  publication-title: Earth Syst. Environ.
– volume: 17
  start-page: 463
  year: 2003
  end-page: 488
  ident: bb0360
  article-title: Modelling urban growth and landscape changes in the Atlanta metropolitan area
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 28
  start-page: 1317
  year: 2014
  end-page: 1335
  ident: bb0175
  article-title: A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules
  publication-title: Int. J. Geogr. Inf. Sci.
– start-page: 1
  year: 2018
  end-page: 32
  ident: bb9025
  article-title: A Novel Ensemble Approach of Bivariate Statistical Based Logistic Model Tree Classifier for Landslide Susceptibility Assessment
  publication-title: Geocarto Int.
– year: 2011
  ident: bb0330
  article-title: World Urbanization Prospects: The 2011 Revision
– volume: 32
  start-page: 23
  year: 2004
  end-page: 51
  ident: bb0090
  article-title: Urban growth in developing countries: a review of current trends and a caution regarding existing forecasts
  publication-title: World Dev.
– volume: 305
  start-page: 314
  year: 2017
  end-page: 327
  ident: bb0070
  article-title: Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques
  publication-title: Geoderma
– volume: 19
  start-page: 494
  year: 1995
  end-page: 519
  ident: bb0120
  article-title: Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients
  publication-title: Prog. Phys. Geogr.
– volume: 106
  start-page: 253
  year: 2007
  end-page: 267
  ident: bb0250
  article-title: Sub-pixel mapping of urban land cover using multiple end member spectral mixture analysis: Manaus, Brazil
  publication-title: Remote Sens. Environ.
– volume: 44
  start-page: 2009
  year: 2007
  end-page: 2027
  ident: bb0270
  article-title: The performance of public-sector housing in Kolkata, India, in the post-reform milieu
  publication-title: Urban Stud.
– volume: 19
  start-page: 197
  year: 2005
  end-page: 215
  ident: bb0245
  article-title: Calibrating a neural network- based urban change model for two metropolitan areas of the upper Midwest of the United States
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 35
  start-page: 25
  year: 2011
  end-page: 34
  ident: bb0315
  article-title: Urban growth modeling of Kathmandu metropolitan region, Nepal
  publication-title: Comput. Environ. Urban. Syst.
– volume: 30
  start-page: 4733
  year: 2009
  end-page: 4746
  ident: bb0030
  article-title: Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India
  publication-title: Int. J. Remote Sens.
– volume: 2
  start-page: 892
  year: 2012
  end-page: 900
  ident: bb0145
  article-title: Anthropogenic impact on land use/land cover in Dudhganga Watershed of Kashmir Valley, India
  publication-title: International Journal of Geomatics and Geosciences
– volume: 18
  start-page: 501
  year: 2006
  end-page: 521
  ident: bb0225
  article-title: Scope for bottom-up planning in Kolkata: rhetoric vs reality
  publication-title: Environ Urbanization.
– volume: 17
  start-page: 688
  year: 2013
  end-page: 694
  ident: bb0295
  article-title: Regional urbanization and third wave cities
  publication-title: City
– volume: 297
  start-page: 69
  year: 2017
  end-page: 85
  ident: bb0075
  article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques
  publication-title: Geomorphology
– volume: 24
  start-page: 583
  year: 2003
  end-page: 594
  ident: bb0365
  article-title: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery
  publication-title: Int. J. Remote Sens.
– volume: 32
  start-page: 33
  year: 2013
  end-page: 42
  ident: bb0155
  article-title: Spatio-temporal simulation of urban growth patterns using agent-based modeling: the case of Tehran
  publication-title: Cities
– volume: 112
  start-page: 2145
  year: 2008
  end-page: 2159
  ident: bb0275
  article-title: Integrating Landsat TM and SRTMDEM derived variables with decision trees for habitat classification and change detection in complex Neotropical environments
  publication-title: Remote Sens. Environ.
– volume: 70
  start-page: 425
  year: 2012
  end-page: 437
  ident: bb0010
  article-title: Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana'a Metropolitan city, Yemen
  publication-title: Environ. Earth Sci.
– volume: 8
  start-page: 950
  year: 2017
  end-page: 973
  ident: bb9005
  article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naive-Bayes tree, and alternating decision tree models
  publication-title: Geomat. Nat. Haz. Risk
– volume: 12
  start-page: 699
  year: 1997
  end-page: 714
  ident: bb0080
  article-title: Loose-coupling a CA model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 26(1)
  start-page: 151
  year: 2011
  end-page: 167
  ident: bb0180
  article-title: Modelling Sustainable Urban Growth in a Rapidly Urbanising Region Using a Fuzzy-Constrained Cellular Automata Approach International Journal of Geographical Information Science
– year: 2001
  ident: bb0050
  article-title: Primary Census Abstract, Census of India
– volume: 621
  start-page: 1124
  year: 2018
  end-page: 1141
  ident: bb9055
  article-title: Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution
  publication-title: Sci. Total Environ.
– volume: 30
  start-page: 637
  year: 2016
  end-page: 659
  ident: bb0350
  article-title: A partitioned and asynchronous cellular automata model for urban growth simulation
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 157
  start-page: 310
  year: 2017
  end-page: 324
  ident: bb0065
  article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling
  publication-title: Catena
– start-page: 1
  year: 2017
  end-page: 19
  ident: bb9015
  article-title: Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms
  publication-title: Bull. Eng. Geol. Environ.
– year: 2016
  ident: bb0100
  article-title: Analyzing spatiotemporal patterns of urbanization in Treasure Valley, Idaho, USA
  publication-title: Appl. Spatial Analysis
– volume: 41
  start-page: 641
  year: 2012
  end-page: 650
  ident: bb0285
  article-title: Monitoring urban landscape dynamics over Delhi (India) using remote sensing (1998–2011) inputs
  publication-title: J Indian Soc Remote Sens
– volume: 48
  year: 2009
  ident: bb0335
  article-title: The study of land transformation and land degradation in Dehradun District, Uttrakhand
  publication-title: The Deccan Geographer
– volume: 31
  start-page: 667
  year: 2007
  end-page: 688
  ident: bb0140
  article-title: Modeling urban growth in Atlanta using logistic regression
  publication-title: Comput. Environ. Urban. Syst.
– year: 2008
  ident: bb0300
  article-title: The study on climate impact adaptation and mitigation in Asian coastal mega cities of integrated research system for sustainability science
– volume: 72
  start-page: 420
  year: 2018
  end-page: 432
  ident: bb0185
  article-title: Impacts of land finance on urban sprawl in China: the case of Chongqing
  publication-title: Land Use Policy
– year: 2015
  ident: bb0160
  article-title: Basic Statistics of Kolkata
– volume: 10
  start-page: 317
  year: 2017
  end-page: 345
  ident: bb9040
  article-title: Quantifying the Spatiotemporal Trends of Urban Sprawl Among Large U.S. Metropolitan Areas Via Spatial Metrics
  publication-title: Appl. Spat. Anal. Policy
– year: 2008
  ident: bb0085
  article-title: Urban Landscape Analysis Tool
– volume: 84
  start-page: 493
  year: 2003
  end-page: 505
  ident: bb0340
  article-title: Estimating impervious surface distribution by spectral mixture analysis
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 527
  year: 2017
  end-page: 547
  ident: bb0095
  article-title: Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region
  publication-title: Iran Environ Dev Sustain
– volume: 626
  start-page: 1121
  year: 2018
  end-page: 1135
  ident: bb9035
  article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China
  publication-title: Sci. Total Environ.
– year: 2011
  ident: 10.1016/j.scitotenv.2018.02.170_bb0055
– volume: 24
  start-page: 583
  year: 2003
  ident: 10.1016/j.scitotenv.2018.02.170_bb0365
  article-title: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160304987
– volume: 626
  start-page: 1121
  year: 2018
  ident: 10.1016/j.scitotenv.2018.02.170_bb9035
  article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.124
– volume: 44
  start-page: 2009
  year: 2007
  ident: 10.1016/j.scitotenv.2018.02.170_bb0270
  article-title: The performance of public-sector housing in Kolkata, India, in the post-reform milieu
  publication-title: Urban Stud.
  doi: 10.1080/00420980701471927
– volume: 81
  start-page: 330
  issue: 3–4
  year: 2006
  ident: 10.1016/j.scitotenv.2018.02.170_bb0110
  article-title: Automated classification of landform elements using object-based image analysis
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.04.013
– volume: 12
  start-page: 699
  year: 1997
  ident: 10.1016/j.scitotenv.2018.02.170_bb0080
  article-title: Loose-coupling a CA model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/136588198241617
– volume: 31
  start-page: 667
  year: 2007
  ident: 10.1016/j.scitotenv.2018.02.170_bb0140
  article-title: Modeling urban growth in Atlanta using logistic regression
  publication-title: Comput. Environ. Urban. Syst.
  doi: 10.1016/j.compenvurbsys.2006.11.001
– volume: 17
  start-page: 688
  issue: 5
  year: 2013
  ident: 10.1016/j.scitotenv.2018.02.170_bb0295
  article-title: Regional urbanization and third wave cities
  publication-title: City
  doi: 10.1080/13604813.2013.827854
– volume: 2
  start-page: 365
  year: 2012
  ident: 10.1016/j.scitotenv.2018.02.170_bb0210
  article-title: Urban growth and spatial transformation of Kolkata metropolis: a continuation of colonial legacy
  publication-title: ARPN Journal of Science and Technology
– volume: 34
  start-page: 969
  year: 1999
  ident: 10.1016/j.scitotenv.2018.02.170_bb0290
  article-title: Emerging patterns of urban growth in India
  publication-title: Econ Political Weekly.
– year: 2008
  ident: 10.1016/j.scitotenv.2018.02.170_bb0300
– year: 2016
  ident: 10.1016/j.scitotenv.2018.02.170_bb0205
  article-title: Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration
  publication-title: Geocarto International
– volume: 30
  start-page: 4733
  issue: 18:20
  year: 2009
  ident: 10.1016/j.scitotenv.2018.02.170_bb0030
  article-title: Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802651967
– volume: 14
  start-page: 211
  year: 1993
  ident: 10.1016/j.scitotenv.2018.02.170_bb0125
  article-title: One century of land use changes in the metropolitan area of Milan (Italy)
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169308904333
– volume: 8
  start-page: 17
  year: 2012
  ident: 10.1016/j.scitotenv.2018.02.170_bb0240
  article-title: Mapping urban growth probability in South Korea: comparison of frequency ratio, analytic hierarchy process, and logistic regression models and use of the environmental conservation value assessment
  publication-title: Landscape Ecol Eng
  doi: 10.1007/s11355-010-0137-9
– volume: 35
  start-page: 25
  year: 2011
  ident: 10.1016/j.scitotenv.2018.02.170_bb0315
  article-title: Urban growth modeling of Kathmandu metropolitan region, Nepal
  publication-title: Comput. Environ. Urban. Syst.
  doi: 10.1016/j.compenvurbsys.2010.07.005
– volume: 19
  start-page: 527
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb0095
  article-title: Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region
  publication-title: Iran Environ Dev Sustain
  doi: 10.1007/s10668-015-9744-9
– volume: 157
  start-page: 310
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb0065
  article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling
  publication-title: Catena
  doi: 10.1016/j.catena.2017.05.034
– volume: 74
  start-page: 473
  year: 2008
  ident: 10.1016/j.scitotenv.2018.02.170_bb0345
  article-title: Quantifying multi-temporal urban development characteristics in Las Vegas from Landsat and ASTER data
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.74.4.473
– year: 2011
  ident: 10.1016/j.scitotenv.2018.02.170_bb0330
– volume: 2
  start-page: 54
  issue: 2
  year: 2014
  ident: 10.1016/j.scitotenv.2018.02.170_bb0260
  article-title: Living standards and health problems of lesser fortunate slum dwellers: evidence from an Indian City
  publication-title: International Journal of Environmental Protection and Policy.
  doi: 10.11648/j.ijepp.20140202.13
– year: 2006
  ident: 10.1016/j.scitotenv.2018.02.170_bb0045
  article-title: Principles and concepts of agent-based modeling for developing geospatial simulations
– year: 2015
  ident: 10.1016/j.scitotenv.2018.02.170_bb0015
  article-title: Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models
  publication-title: Appl. Spatial Analysis
– ident: 10.1016/j.scitotenv.2018.02.170_bb0160
– volume: 30
  start-page: 637
  issue: 4
  year: 2016
  ident: 10.1016/j.scitotenv.2018.02.170_bb0350
  article-title: A partitioned and asynchronous cellular automata model for urban growth simulation
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2015.1084510
– volume: 19
  start-page: 494
  year: 1995
  ident: 10.1016/j.scitotenv.2018.02.170_bb0120
  article-title: Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/030913339501900403
– year: 2001
  ident: 10.1016/j.scitotenv.2018.02.170_bb0050
– volume: 48
  year: 2009
  ident: 10.1016/j.scitotenv.2018.02.170_bb0335
  article-title: The study of land transformation and land degradation in Dehradun District, Uttrakhand
– volume: 32
  start-page: 23
  issue: 1
  year: 2004
  ident: 10.1016/j.scitotenv.2018.02.170_bb0090
  article-title: Urban growth in developing countries: a review of current trends and a caution regarding existing forecasts
  publication-title: World Dev.
  doi: 10.1016/j.worlddev.2003.04.008
– volume: 625
  start-page: 575
  year: 2018
  ident: 10.1016/j.scitotenv.2018.02.170_bb9060
  article-title: Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.256
– volume: 19
  start-page: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2018.02.170_bb0195
  article-title: Same time, same place: analyzing temporal and spatial trends in urban metabolism using proximate counties in the North Carolina Triangle
  publication-title: Urban Ecosyst
  doi: 10.1007/s11252-015-0503-3
– volume: 18
  start-page: 501
  year: 2006
  ident: 10.1016/j.scitotenv.2018.02.170_bb0225
  article-title: Scope for bottom-up planning in Kolkata: rhetoric vs reality
  publication-title: Environ Urbanization.
  doi: 10.1177/0956247806069628
– volume: 32
  start-page: 33
  year: 2013
  ident: 10.1016/j.scitotenv.2018.02.170_bb0155
  article-title: Spatio-temporal simulation of urban growth patterns using agent-based modeling: the case of Tehran
  publication-title: Cities
  doi: 10.1016/j.cities.2013.01.005
– volume: 19
  start-page: 197
  year: 2005
  ident: 10.1016/j.scitotenv.2018.02.170_bb0245
  article-title: Calibrating a neural network- based urban change model for two metropolitan areas of the upper Midwest of the United States
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810410001713416
– volume: 163
  start-page: 399
  year: 2018
  ident: 10.1016/j.scitotenv.2018.02.170_bb9050
  article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)
  publication-title: Catena
  doi: 10.1016/j.catena.2018.01.005
– volume: 5
  start-page: 5
  issue: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2018.02.170_bb0025
  article-title: Emerging patterne of urbanization and the contribution of migration in urban growth in India
  publication-title: Asian Population Studies
  doi: 10.1080/17441730902790024
– volume: 70
  start-page: 425
  year: 2012
  ident: 10.1016/j.scitotenv.2018.02.170_bb0010
  article-title: Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana'a Metropolitan city, Yemen
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-2137-6
– ident: 10.1016/j.scitotenv.2018.02.170_bb0020
– volume: 30
  start-page: 1387
  year: 2016
  ident: 10.1016/j.scitotenv.2018.02.170_bb9045
  article-title: Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-015-1128-z
– volume: 41
  start-page: 641
  year: 2012
  ident: 10.1016/j.scitotenv.2018.02.170_bb0285
  article-title: Monitoring urban landscape dynamics over Delhi (India) using remote sensing (1998–2011) inputs
  publication-title: J Indian Soc Remote Sens
  doi: 10.1007/s12524-012-0248-x
– start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2018.02.170_bb9025
  article-title: A Novel Ensemble Approach of Bivariate Statistical Based Logistic Model Tree Classifier for Landslide Susceptibility Assessment
  publication-title: Geocarto Int.
– volume: 116
  start-page: 747
  year: 2013
  ident: 10.1016/j.scitotenv.2018.02.170_bb0105
  article-title: A megacity in a changing climate: the case of Kolkata
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-012-0516-3
– volume: 29
  start-page: 543
  issue: 2
  year: 2008
  ident: 10.1016/j.scitotenv.2018.02.170_bb0150
  article-title: Modelling of urban growth using spatial analysis techniques: a case study of Ajmer city (India)
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701280983
– volume: 26(1)
  start-page: 151
  year: 2011
  ident: 10.1016/j.scitotenv.2018.02.170_bb0180
– year: 2008
  ident: 10.1016/j.scitotenv.2018.02.170_bb0235
– year: 2016
  ident: 10.1016/j.scitotenv.2018.02.170_bb0265
  article-title: Measuring the relationships between landscape aesthetics suitability and spatial patterns of urbanized lands: an informed modelling framework for developing urban growth scenarios
  publication-title: Geocarto International
– volume: 29
  start-page: 63
  year: 2015
  ident: 10.1016/j.scitotenv.2018.02.170_bb0370
  article-title: Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-014-0942-z
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2018.02.170_bb0220
  article-title: Predicting the effects of urban development on land transition and spatial patterns of land use in western peninsular Malaysia
  publication-title: Appl. Spatial Analysis
  doi: 10.1007/s12061-014-9128-9
– volume: 33
  start-page: 179
  year: 2009
  ident: 10.1016/j.scitotenv.2018.02.170_bb0310
  article-title: Urbanization in India – spatiotemporal analysis using remote sensing data
  publication-title: Comput. Environ. Urban. Syst.
  doi: 10.1016/j.compenvurbsys.2008.09.003
– volume: 106
  start-page: 253
  year: 2007
  ident: 10.1016/j.scitotenv.2018.02.170_bb0250
  article-title: Sub-pixel mapping of urban land cover using multiple end member spectral mixture analysis: Manaus, Brazil
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.005
– ident: 10.1016/j.scitotenv.2018.02.170_bb0325
– volume: 6
  start-page: 229
  year: 2014
  ident: 10.1016/j.scitotenv.2018.02.170_bb0255
  article-title: Urban structure in Kolkata: metrics and modelling through geo-informatics
  publication-title: Appl Geomat
  doi: 10.1007/s12518-014-0135-y
– volume: 42
  start-page: 150
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2018.02.170_bb0005
  article-title: Internal migration and citizenship in India
  publication-title: J. Ethn. Migr. Stud.
  doi: 10.1080/1369183X.2015.1100067
– volume: 112
  start-page: 2145
  year: 2008
  ident: 10.1016/j.scitotenv.2018.02.170_bb0275
  article-title: Integrating Landsat TM and SRTMDEM derived variables with decision trees for habitat classification and change detection in complex Neotropical environments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.08.025
– volume: 61
  start-page: 993
  year: 1995
  ident: 10.1016/j.scitotenv.2018.02.170_bb0130
  article-title: The integration of geographic data with remotely sensed imagery to improve classification in an urban area
  publication-title: Photogramm. Eng. Remote. Sens.
– start-page: 157
  year: 2001
  ident: 10.1016/j.scitotenv.2018.02.170_bb0170
  article-title: CUF, CUF II, and CURBA: A family of spatially explicit urban growth and land-use policy simulation models
– start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb9010
  article-title: A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China
  publication-title: Bull. Eng. Geol. Environ.
– start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2018.02.170_bb9030
  article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method
  publication-title: Catena
– volume: 8
  start-page: 1955
  issue: 2
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb9020
  article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China
  publication-title: Geomat. Nat. Haz. Risk
  doi: 10.1080/19475705.2017.1401560
– volume: 297
  start-page: 69
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb0075
  article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.09.007
– volume: 51
  start-page: 1471
  year: 1985
  ident: 10.1016/j.scitotenv.2018.02.170_bb0320
  article-title: Landsat-4 thematic mapper scene characteristics of a suburban and rural area
  publication-title: Photogramm. Eng. Remote. Sens.
– ident: 10.1016/j.scitotenv.2018.02.170_bb0165
– volume: 8
  start-page: 950
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb9005
  article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naive-Bayes tree, and alternating decision tree models
  publication-title: Geomat. Nat. Haz. Risk
  doi: 10.1080/19475705.2017.1289250
– volume: 10
  start-page: 317
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb9040
  article-title: Quantifying the Spatiotemporal Trends of Urban Sprawl Among Large U.S. Metropolitan Areas Via Spatial Metrics
  publication-title: Appl. Spat. Anal. Policy
  doi: 10.1007/s12061-016-9190-6
– volume: 28
  start-page: 3255
  year: 2007
  ident: 10.1016/j.scitotenv.2018.02.170_bb0305
  article-title: Spatio- temporal urban landcape change analysis using the Markov chain model and a modified genetic algorithm
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600962749
– volume: 17
  start-page: 463
  issue: 5
  year: 2003
  ident: 10.1016/j.scitotenv.2018.02.170_bb0360
  article-title: Modelling urban growth and landscape changes in the Atlanta metropolitan area
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/1365881031000086965
– volume: 621
  start-page: 1124
  year: 2018
  ident: 10.1016/j.scitotenv.2018.02.170_bb9055
  article-title: Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.114
– year: 2016
  ident: 10.1016/j.scitotenv.2018.02.170_bb0100
  article-title: Analyzing spatiotemporal patterns of urbanization in Treasure Valley, Idaho, USA
  publication-title: Appl. Spatial Analysis
– volume: 43
  start-page: 407
  issue: 2
  year: 2015
  ident: 10.1016/j.scitotenv.2018.02.170_bb0035
  article-title: Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran
  publication-title: J Indian Soc Remote Sens
  doi: 10.1007/s12524-014-0402-8
– volume: 1
  start-page: 29
  year: 2015
  ident: 10.1016/j.scitotenv.2018.02.170_bb0200
  article-title: Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-015-0026-1
– volume: 1
  start-page: 2
  issue: 14
  year: 2015
  ident: 10.1016/j.scitotenv.2018.02.170_bb0230
  article-title: Numerical modelling spatial patterns of urban growth in Chandigarh and surrounding region (India) using multi-agent systems model
  publication-title: Earth Syst. Environ.
– volume: 21
  start-page: 233
  issue: 3
  year: 2014
  ident: 10.1016/j.scitotenv.2018.02.170_bb0135
  article-title: Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar
  publication-title: Ann. GIS
  doi: 10.1080/19475683.2014.992369
– volume: 72
  start-page: 420
  year: 2018
  ident: 10.1016/j.scitotenv.2018.02.170_bb0185
  article-title: Impacts of land finance on urban sprawl in China: the case of Chongqing
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2018.01.004
– year: 2007
  ident: 10.1016/j.scitotenv.2018.02.170_bb0215
  article-title: Need for seismic micro zonation of Kolkata megacity
– volume: 2
  start-page: 892
  issue: 3
  year: 2012
  ident: 10.1016/j.scitotenv.2018.02.170_bb0145
  article-title: Anthropogenic impact on land use/land cover in Dudhganga Watershed of Kashmir Valley, India
  publication-title: International Journal of Geomatics and Geosciences
– volume: 3
  start-page: 6
  year: 2006
  ident: 10.1016/j.scitotenv.2018.02.170_bb0355
  article-title: Estimating landscape imperviousness index from satellite imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.853929
– volume: 305
  start-page: 314
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb0070
  article-title: Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.06.020
– volume: 28
  start-page: 1317
  issue: 7
  year: 2014
  ident: 10.1016/j.scitotenv.2018.02.170_bb0175
  article-title: A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2014.883079
– start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb9015
  article-title: Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms
  publication-title: Bull. Eng. Geol. Environ.
– ident: 10.1016/j.scitotenv.2018.02.170_bb0085
– volume: 25
  start-page: 1733
  issue: 9
  year: 2004
  ident: 10.1016/j.scitotenv.2018.02.170_bb0115
  article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000150077
– volume: 79
  start-page: 106
  year: 2003
  ident: 10.1016/j.scitotenv.2018.02.170_bb0280
  article-title: Modeling the drivers of urban land use change in the Pearl River Delta, China: integrating remote sensing with socioeconomic data
  publication-title: Land Econ.
  doi: 10.2307/3147108
– year: 2017
  ident: 10.1016/j.scitotenv.2018.02.170_bb0040
  article-title: Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion
  publication-title: International Journal of Urban Sciences
  doi: 10.1080/12265934.2017.1284607
– volume: 37
  start-page: 363
  year: 2009
  ident: 10.1016/j.scitotenv.2018.02.170_bb0190
  article-title: A neural network based urban growth model of an Indian City
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-009-0041-7
– volume: 67
  start-page: 213
  year: 2001
  ident: 10.1016/j.scitotenv.2018.02.170_bb0060
  article-title: Detecting the nature of change in an urban environment: a comparison of machine learning algorithms
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 84
  start-page: 493
  year: 2003
  ident: 10.1016/j.scitotenv.2018.02.170_bb0340
  article-title: Estimating impervious surface distribution by spectral mixture analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00136-0
SSID ssj0000781
Score 2.6434784
Snippet This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990–2000 &...
This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990-2000 &...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1557
SubjectTerms agricultural land
corporations
geographic information systems
India
Kolkata urban agglomeration
land cover
land use and land cover maps
land use change
Landsat
open space
planning
remote sensing
rivers
surface water
Urban growth
Urban spatial pattern
Urban sprawl matrix
urbanization
Title Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India
URI https://dx.doi.org/10.1016/j.scitotenv.2018.02.170
https://www.ncbi.nlm.nih.gov/pubmed/30045573
https://www.proquest.com/docview/2045791878
https://www.proquest.com/docview/2076886972
Volume 628-629
WOSCitedRecordID wos000432462000150&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiQkhKAwKJfJSLyVoCRNYmdvFSoqICYkhtS3yHGddl1IpiYZHa_8J34fx7Hjpmij7IGXqKpsK-75fPyd03NB6BVImSdJwC24_aSBEguLeTNixcT2hnHgOZSoZhPk-JhOp-HnTudXkwtzkZIso-t1eP5fRQ3fgbBl6uwNxG0WhS_gMwgdniB2eP6T4OsyIz-kB6BaxXB6CxkzLfOt6kqamarJXMpQWEkU1Zg5GOPlYlAV7Wkr9j0dfJMl_Ncqf71QBaizwcc8PWMl0yPZfJ7m0rdVx4nUOmd2ytqsV2KxUSI6JqHMZRZmK83OuHrYgqk8tU9iIeIqNsDTwcMTll9WG0x_YculgumEgRWQtd0YDjUhr0Y1e6B5AxWs26jmwKVWoD0iSsEC_SGty1pan1deBMonsXwDPAI2BLuRUXxUlmd1VKOS7dLbf1yJJlCxiYFbRmahSC4U2W4EC-2hfZf4Ie2i_dH78fTDhgMQqno16k1tRRZe-U7X8aLr7J6a_5zcR_e04YJHCnAPUEdkPXRbtTK97KGD8UaUMExLu-ihu8oxjFW-20P00-AT1_DBGp-4wScGfOIanzhP9BiFT1zj00yT-MQKn0d4hGt04jzDGp163BY6X-Mam4_Q13fjk7cTS3cCsbhH7BI0R-AzxrmImc3BHLRD4vNAeCEH84aSJLG5MxOuYLadxIRx5jEHiHWSDB2fJNwdHqBulmfiCcKExDRxGPF9RryZA3KiwFqJC1yXe66w-yho5BBxXSZfdmtJox1Y6CPbTDxXlWJ2TzlqBB1pwquIbAQw3j35ZQONCK4E-T8fy0ReFZHsMEHk70L_NoYElAIy3T56rHBl3loW4YNjNnx68x09Q3c2h_s56parSrxAt_hFeVqsDtEemdJDfVZ-A3Wp99k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+urban+spatial+patterns+and+trend+of+urban+growth+using+urban+sprawl+matrix%3A+A+study+on+Kolkata+urban+agglomeration%2C+India&rft.jtitle=The+Science+of+the+total+environment&rft.au=Sahana%2C+Mehebub&rft.au=Hong%2C+Haoyuan&rft.au=Sajjad%2C+Haroon&rft.date=2018-07-01&rft.issn=0048-9697&rft.volume=628-629&rft.spage=1557&rft.epage=1566&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.02.170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2018_02_170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon