Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India
This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990–2000 & 2000–2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, no...
Uložené v:
| Vydané v: | The Science of the total environment Ročník 628-629; s. 1557 - 1566 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.07.2018
|
| Predmet: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990–2000 & 2000–2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990–2000 and 24.5% during 2000–2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990–2000 and 66.9% during 2000–2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management.
[Display omitted]
•Sprawl matrix was used to analyze urban patterns and growth in an urban agglomeration.•Suburban fringe has increased within the municipalities located away from the river.•Urban primary and secondary cores have increased in newly developed municipalities.•The methodology adopted has proved instrumental for urban planning and management. |
|---|---|
| AbstractList | This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990–2000 & 2000–2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990–2000 and 24.5% during 2000–2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990–2000 and 66.9% during 2000–2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management.
[Display omitted]
•Sprawl matrix was used to analyze urban patterns and growth in an urban agglomeration.•Suburban fringe has increased within the municipalities located away from the river.•Urban primary and secondary cores have increased in newly developed municipalities.•The methodology adopted has proved instrumental for urban planning and management. This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990-2000 & 2000-2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990-2000 and 24.5% during 2000-2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990-2000 and 66.9% during 2000-2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management. This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990-2000 & 2000-2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990-2000 and 24.5% during 2000-2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990-2000 and 66.9% during 2000-2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management.This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990-2000 & 2000-2015. Seven urban classes viz. urban primary core, urban secondary core, sub urban fringe, scatter settlement, urban open space, non-urban area and water body were chosen for analyzing the magnitude and direction of urban expansion. Landsat TM and Landsat 8 OLI satellite data for 1990, 2000 and 2015 were used for assessing land use land cover change, urban land transformation, urban spatial pattern and trend in urban growth. The study revealed that the built up area has increased drastically. This increase in built up area is attributed to decrease in prime agricultural land and open space. The land use/land cover change matrix showed that built up area has expanded by 16.6% during 1990-2000 and 24.5% during 2000-2015. The urban expansion is a result of large share of land transformation from agricultural land at the rate of 153.1% during 1990-2000 and 66.9% during 2000-2015. Analysis of trend of urban growth in 38 municipalities and 3 municipal corporations of Kolkata urban agglomeration revealed that municipalities located along the east bank of river Hooghly and surrounded by Kolkata Municipal Corporation have experienced a very fast urban growth. Urban primary and secondary cores have increased in newly developed municipalities. Sub urban fringe has increased in the municipalities located away from river Hooghly while open space has decreased in all the old municipalities. Pattern of land transformation and trend of urban growth of Kolkata urban agglomeration for the last 25years may help in guiding future planning and policy-making for the urban agglomeration. Integrated approach of remote sensing, GIS and urban sprawl matrix has proved instrumental in analyzing urban expansion and identifying priority areas for effectives planning and management. |
| Author | Hong, Haoyuan Sahana, Mehebub Sajjad, Haroon |
| Author_xml | – sequence: 1 givenname: Mehebub surname: Sahana fullname: Sahana, Mehebub organization: Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India – sequence: 2 givenname: Haoyuan orcidid: 0000-0001-6224-069X surname: Hong fullname: Hong, Haoyuan email: hong_haoyuan@outlook.com organization: Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China – sequence: 3 givenname: Haroon surname: Sajjad fullname: Sajjad, Haroon email: haroon.geog@gmail.com organization: Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30045573$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFv1DAQhS1URLeFvwA-ciDBziZxgsRhVUGpqMQFztbEGS9eHHuxnZblyh-vl90ixKX44DnM9-Zp5p2RE-cdEvKCs5Iz3r7elFGZ5BO6m7JivCtZVXLBHpEF70RfcFa1J2TBWN0VfduLU3IW44blJzr-hJwuc6dpxHJBfq0c2N1P49Z0DgM4GreQDFiaS8LgIgU30hQw_14fmXXwt-krnePfsgC3lk6Qgvnxhq5oTPO4o97Rj95-gwRHDtZr6ycM2cS7V_TKjQaekscabMRnx3pOvrx_9_niQ3H96fLqYnVdqFqwVAyibQCUwgGYElXPetGoFute9X3eWmum-IgVAmN6EKCgBt7VrdZL3gitquU5eXmYuw3--4wxyclEhdaCQz9HWTHRdl0-1_-gdSP2rl1Gnx_ReZhwlNtgJgg7eX_jDLw9ACr4GANqmaP7vX8KYKzkTO4zlRv5J1O5z1SySuZMs178o7-3eFi5OigxX_XGYNhz6BSOJqBKcvTmwRl3RH_D4w |
| CitedBy_id | crossref_primary_10_1007_s10708_021_10374_w crossref_primary_10_1088_2631_8695_adf27c crossref_primary_10_1016_j_jenvman_2024_122469 crossref_primary_10_3390_rs11030332 crossref_primary_10_1016_j_ecolind_2021_107584 crossref_primary_10_1080_10095020_2025_2505550 crossref_primary_10_1016_j_scs_2022_104295 crossref_primary_10_1016_j_ocecoaman_2022_106201 crossref_primary_10_1016_j_ecolind_2020_107178 crossref_primary_10_1016_j_rsase_2018_10_008 crossref_primary_10_1016_j_scs_2021_102715 crossref_primary_10_1080_10106049_2022_2091161 crossref_primary_10_3390_w16152153 crossref_primary_10_1007_s10661_021_08890_w crossref_primary_10_1007_s11356_022_21902_7 crossref_primary_10_1080_10106049_2022_2142957 crossref_primary_10_1007_s00024_021_02660_y crossref_primary_10_1007_s10708_022_10617_4 crossref_primary_10_1007_s10708_021_10554_8 crossref_primary_10_1007_s10661_025_14388_6 crossref_primary_10_1007_s11252_022_01220_z crossref_primary_10_1016_j_cities_2020_102611 crossref_primary_10_1007_s12517_020_05693_0 crossref_primary_10_1016_j_jclepro_2019_03_276 crossref_primary_10_3390_rs17061082 crossref_primary_10_1002_ldr_5225 crossref_primary_10_1007_s10668_022_02641_8 crossref_primary_10_1111_grow_12534 crossref_primary_10_1016_j_gsd_2020_100500 crossref_primary_10_1080_1573062X_2025_2531256 crossref_primary_10_1061__ASCE_UP_1943_5444_0000652 crossref_primary_10_1108_SRJ_01_2018_0012 crossref_primary_10_1016_j_rsase_2024_101386 crossref_primary_10_1007_s12524_023_01729_6 crossref_primary_10_1007_s12524_021_01420_8 crossref_primary_10_1051_e3sconf_202346803006 crossref_primary_10_2478_jlecol_2024_0007 crossref_primary_10_1007_s10708_022_10606_7 crossref_primary_10_1007_s10708_024_11236_x crossref_primary_10_1007_s11356_022_21225_7 crossref_primary_10_1177_2399808319895272 crossref_primary_10_3390_rs13091801 crossref_primary_10_1016_j_scitotenv_2019_02_178 crossref_primary_10_1007_s12524_022_01546_3 crossref_primary_10_1007_s13762_023_05305_w crossref_primary_10_1080_10106049_2022_2136259 crossref_primary_10_1007_s40808_018_0535_9 crossref_primary_10_1016_j_gsf_2022_101489 crossref_primary_10_1007_s11442_020_1744_5 crossref_primary_10_3390_land10030263 crossref_primary_10_1080_00330124_2024_2341074 crossref_primary_10_1016_j_apgeog_2023_103097 crossref_primary_10_1007_s11356_023_25854_4 crossref_primary_10_1016_j_envres_2019_03_018 crossref_primary_10_1007_s12524_020_01123_6 crossref_primary_10_3390_rs15030843 crossref_primary_10_1016_j_cities_2025_105850 crossref_primary_10_1371_journal_pone_0275241 crossref_primary_10_1016_j_scs_2020_102326 crossref_primary_10_1080_27658511_2024_2366556 crossref_primary_10_1016_j_habitatint_2022_102695 crossref_primary_10_1007_s12524_021_01401_x crossref_primary_10_1016_j_ufug_2020_126877 crossref_primary_10_1088_1748_9326_abb4ff crossref_primary_10_1007_s10668_025_06568_8 crossref_primary_10_1007_s10653_025_02744_x crossref_primary_10_1007_s11356_023_28841_x crossref_primary_10_1007_s10668_024_04563_z crossref_primary_10_1016_j_compenvurbsys_2020_101475 crossref_primary_10_1007_s12524_022_01543_6 crossref_primary_10_1080_10106049_2021_1980617 crossref_primary_10_1016_j_envres_2023_115967 crossref_primary_10_1371_journal_pone_0296496 crossref_primary_10_1016_j_scitotenv_2020_136763 crossref_primary_10_3390_su11216174 crossref_primary_10_3390_su11102973 crossref_primary_10_1007_s42974_023_00169_z crossref_primary_10_1007_s10661_023_11709_5 crossref_primary_10_1016_j_compenvurbsys_2020_101586 crossref_primary_10_1007_s41064_024_00278_y crossref_primary_10_1016_j_uclim_2021_101052 crossref_primary_10_1080_10106049_2021_2002424 crossref_primary_10_1016_j_compenvurbsys_2022_101867 crossref_primary_10_1016_j_scitotenv_2019_135828 crossref_primary_10_3390_su14116862 crossref_primary_10_1007_s12524_020_01212_6 crossref_primary_10_1007_s10668_023_03378_8 crossref_primary_10_1007_s12040_024_02321_3 crossref_primary_10_3390_w14193017 crossref_primary_10_3390_ijgi11080442 crossref_primary_10_1016_j_geogeo_2022_100163 crossref_primary_10_1007_s10668_023_03998_0 crossref_primary_10_3389_frsc_2025_1538006 crossref_primary_10_3390_rs13214423 crossref_primary_10_3390_rs15040959 crossref_primary_10_3390_land12081548 crossref_primary_10_1016_j_habitatint_2025_103573 crossref_primary_10_1016_j_cities_2024_104818 crossref_primary_10_1007_s40823_022_00083_6 crossref_primary_10_3390_ijerph17155535 crossref_primary_10_1061_JUPDDM_UPENG_5460 crossref_primary_10_1155_2022_7898871 crossref_primary_10_1016_j_jclepro_2020_123333 crossref_primary_10_1016_j_scs_2022_104062 crossref_primary_10_1007_s11356_024_35756_8 crossref_primary_10_3390_land11101799 crossref_primary_10_1016_j_scitotenv_2023_165855 crossref_primary_10_1007_s10668_023_03987_3 crossref_primary_10_1080_10106049_2022_2129817 crossref_primary_10_1016_j_ecolind_2023_110407 crossref_primary_10_1111_sjtg_12317 crossref_primary_10_1007_s12517_024_12074_4 crossref_primary_10_1016_j_scitotenv_2019_03_486 crossref_primary_10_3390_land11081319 crossref_primary_10_1007_s12665_025_12244_x crossref_primary_10_1016_j_scs_2023_104970 crossref_primary_10_1007_s10708_020_10359_1 crossref_primary_10_1080_24749508_2024_2392377 crossref_primary_10_1016_j_cities_2019_102434 crossref_primary_10_3390_rs14143257 crossref_primary_10_1111_grow_12489 crossref_primary_10_1007_s12524_022_01493_z crossref_primary_10_3390_land11111968 crossref_primary_10_1680_jtran_24_00115 crossref_primary_10_1016_j_ecolind_2023_111204 crossref_primary_10_1016_j_heliyon_2024_e36901 crossref_primary_10_1016_j_jfca_2023_105212 crossref_primary_10_1007_s40808_020_00858_y crossref_primary_10_1007_s12524_022_01602_y crossref_primary_10_1007_s10708_021_10381_x crossref_primary_10_1016_j_cities_2019_102415 crossref_primary_10_1007_s11252_022_01246_3 crossref_primary_10_1080_12265934_2018_1488604 crossref_primary_10_1016_j_ecolind_2020_107326 crossref_primary_10_1016_j_habitatint_2021_102459 crossref_primary_10_3390_su131910805 crossref_primary_10_1016_j_habitatint_2024_103129 crossref_primary_10_1080_10106049_2021_2022018 crossref_primary_10_1016_j_landusepol_2025_107769 crossref_primary_10_1007_s12665_019_8225_0 crossref_primary_10_1080_10106049_2022_2120637 crossref_primary_10_3390_land12030630 crossref_primary_10_1016_j_scitotenv_2019_135399 crossref_primary_10_1080_10095020_2023_2202201 crossref_primary_10_3390_su11020485 crossref_primary_10_1016_j_asr_2024_01_057 crossref_primary_10_1016_j_uclim_2021_101002 crossref_primary_10_1061__ASCE_UP_1943_5444_0000825 crossref_primary_10_1016_j_geosus_2023_05_003 crossref_primary_10_1080_10106049_2022_2109759 crossref_primary_10_3390_su12031235 crossref_primary_10_1007_s10708_021_10452_z crossref_primary_10_1007_s10668_024_04859_0 crossref_primary_10_3390_su12030809 crossref_primary_10_32604_cmes_2021_016640 crossref_primary_10_1080_10106049_2021_1952315 crossref_primary_10_1080_24749508_2022_2132010 crossref_primary_10_1080_10106049_2021_1985174 crossref_primary_10_1007_s40808_020_00990_9 crossref_primary_10_3390_rs13214484 crossref_primary_10_3390_s22134716 crossref_primary_10_1007_s12524_023_01679_z crossref_primary_10_1007_s40808_018_0474_5 crossref_primary_10_1080_27658511_2024_2331269 crossref_primary_10_3390_rs15051316 crossref_primary_10_1007_s10668_020_01149_3 crossref_primary_10_1016_j_scitotenv_2019_01_039 crossref_primary_10_1016_j_rsase_2019_01_001 crossref_primary_10_1111_tgis_12896 crossref_primary_10_3390_su15032188 crossref_primary_10_1016_j_ecoinf_2023_102283 crossref_primary_10_3390_ijerph19095039 crossref_primary_10_1016_j_jag_2021_102460 crossref_primary_10_1016_j_landusepol_2021_105700 crossref_primary_10_1007_s12061_024_09596_5 crossref_primary_10_1016_j_foar_2024_12_006 crossref_primary_10_3389_fenvs_2023_1279712 crossref_primary_10_3390_land13111943 crossref_primary_10_1007_s10661_023_12004_z crossref_primary_10_1016_j_landusepol_2023_106594 crossref_primary_10_1007_s44288_025_00155_0 crossref_primary_10_3390_rs13122373 crossref_primary_10_2478_rgg_2020_0009 crossref_primary_10_1007_s10708_025_11317_5 crossref_primary_10_1007_s10661_019_7389_0 crossref_primary_10_1016_j_scs_2021_102773 crossref_primary_10_1016_j_landurbplan_2020_103938 crossref_primary_10_3390_land13111735 crossref_primary_10_3390_su17010227 crossref_primary_10_3390_land10020127 crossref_primary_10_1007_s12517_021_08251_4 crossref_primary_10_1016_j_scs_2019_101502 crossref_primary_10_3390_rs13081531 crossref_primary_10_1016_j_ecolind_2024_111989 crossref_primary_10_2478_jlecol_2022_0020 crossref_primary_10_1088_1755_1315_1019_1_012032 crossref_primary_10_1038_s41598_025_03009_4 crossref_primary_10_1007_s10668_021_01782_6 crossref_primary_10_1007_s10653_019_00377_5 crossref_primary_10_3389_fenvs_2023_1115553 crossref_primary_10_1016_j_scs_2024_105231 crossref_primary_10_1111_tgis_12543 crossref_primary_10_3390_su11205598 crossref_primary_10_1007_s10708_025_11394_6 crossref_primary_10_1007_s40808_020_00985_6 |
| Cites_doi | 10.1080/01431160304987 10.1016/j.scitotenv.2018.01.124 10.1080/00420980701471927 10.1016/j.geomorph.2006.04.013 10.1080/136588198241617 10.1016/j.compenvurbsys.2006.11.001 10.1080/13604813.2013.827854 10.1080/01431160802651967 10.1080/01431169308904333 10.1007/s11355-010-0137-9 10.1016/j.compenvurbsys.2010.07.005 10.1007/s10668-015-9744-9 10.1016/j.catena.2017.05.034 10.14358/PERS.74.4.473 10.11648/j.ijepp.20140202.13 10.1080/13658816.2015.1084510 10.1177/030913339501900403 10.1016/j.worlddev.2003.04.008 10.1016/j.scitotenv.2017.12.256 10.1007/s11252-015-0503-3 10.1177/0956247806069628 10.1016/j.cities.2013.01.005 10.1080/13658810410001713416 10.1016/j.catena.2018.01.005 10.1080/17441730902790024 10.1007/s12665-012-2137-6 10.1007/s00477-015-1128-z 10.1007/s12524-012-0248-x 10.1007/s10584-012-0516-3 10.1080/01431160701280983 10.1007/s00477-014-0942-z 10.1007/s12061-014-9128-9 10.1016/j.compenvurbsys.2008.09.003 10.1016/j.rse.2006.09.005 10.1007/s12518-014-0135-y 10.1080/1369183X.2015.1100067 10.1016/j.rse.2007.08.025 10.1080/19475705.2017.1401560 10.1016/j.geomorph.2017.09.007 10.1080/19475705.2017.1289250 10.1007/s12061-016-9190-6 10.1080/01431160600962749 10.1080/1365881031000086965 10.1016/j.scitotenv.2017.10.114 10.1007/s12524-014-0402-8 10.1007/s40808-015-0026-1 10.1080/19475683.2014.992369 10.1016/j.landusepol.2018.01.004 10.1109/LGRS.2005.853929 10.1016/j.geoderma.2017.06.020 10.1080/13658816.2014.883079 10.1080/0143116031000150077 10.2307/3147108 10.1080/12265934.2017.1284607 10.1007/s12524-009-0041-7 10.1016/S0034-4257(02)00136-0 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7S9 L.6 7X8 |
| DOI | 10.1016/j.scitotenv.2018.02.170 |
| DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| EndPage | 1566 |
| ExternalDocumentID | 30045573 10_1016_j_scitotenv_2018_02_170 S0048969718305631 |
| Genre | Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD NPM 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c470t-b765aacceba0c7290975c6e49c99187ff0c1de2ea00fb7aca4a1846ff3157fc23 |
| ISICitedReferencesCount | 224 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432462000150&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sat Sep 27 17:53:57 EDT 2025 Sun Sep 28 00:53:47 EDT 2025 Wed Feb 19 02:40:19 EST 2025 Sat Nov 29 07:28:29 EST 2025 Tue Nov 18 21:11:22 EST 2025 Fri Feb 23 02:46:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Urban growth Kolkata urban agglomeration Urban sprawl matrix Urban spatial pattern |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c470t-b765aacceba0c7290975c6e49c99187ff0c1de2ea00fb7aca4a1846ff3157fc23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6224-069X |
| PMID | 30045573 |
| PQID | 2045791878 |
| PQPubID | 24069 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2076886972 proquest_miscellaneous_2045791878 pubmed_primary_30045573 crossref_citationtrail_10_1016_j_scitotenv_2018_02_170 crossref_primary_10_1016_j_scitotenv_2018_02_170 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_02_170 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 2018-07-00 2018-Jul-01 20180701 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | The Science of the total environment |
| PublicationTitleAlternate | Sci Total Environ |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Al-shalabi, Billa, Pradhan, Mansor, Abubakr, Al-Sharif (bb0010) 2012; 70 Ramachandra, Aithal, Sowmyashree (bb0255) 2014; 6 Franklin (bb0120) 1995; 19 Chen, Pourghasemi, Naghibi (bb9015) 2017 Castle, Crooks (bb0045) 2006 Sugiyama (bb0300) 2008 Drăguţ, Blaschke (bb0110) 2006; 81 Pandey, Joshi (bb0230) 2015; 1 Pijanowski, Pithadia, Shellito, Alexandridis (bb0245) 2005; 19 Sakieh, Salmanmahiny, Mirkarimi, Saeidi (bb0265) 2016 Jat, Garg, Khare (bb0150) 2008; 29 Hong, Panahi, Shirzadi, Ma, Liu, Zhu, Chen, Kougias, Kazakis (bb9055) 2018; 621 Zhang, Jin, Wang, Zhou, Shu (bb0370) 2015; 29 Cohen (bb0090) 2004; 32 Soja (bb0295) 2013; 17 Li, Liu, Le (bb0175) 2014; 28 Bihamta, Soffianian, Fakheran, Gholamalifard (bb0035) 2015; 43 Chan, Chan, Yeh (bb0060) 2001; 67 Chen, Xie, Peng, Wang, Duan, Hong (bb9005) 2017; 8 Thapa, Murayama (bb0315) 2011; 35 Bhagat, Mohanty (bb0025) 2009; 5 Chen, Pourghasemi, Panahi, Kornejady, Wang, Xie, Cao (bb0075) 2017; 297 Mondal, Das, Dolui (bb0200) 2015; 1 Taubenböck, Wegmann, Roth, Mehl, Dech (bb0310) 2009; 33 Gomarasca, Brivio, Pagnoni, Galli (bb0125) 1993; 14 Iqbal, Rashid, Sajjad, Siddiqui, Siddiqui (bb0145) 2012; 2 Seto, Kaufmann (bb0280) 2003; 79 Hu, Lo (bb0140) 2007; 31 Dadashpoor, Nateghi (bb0095) 2017; 19 Maithani (bb0190) 2009; 37 Chen, Shirzadi, Shahabi, Ahmad, Zhang, Hong, Zhang (bb9020) 2017; 8 Chen, Peng, Hong, Shahabi, Pradhan, Liu, Zhu, Pei, Duan (bb9035) 2018; 626 Sharma, Joshi (bb0285) 2012; 41 Chen, Panahi, Pourghasemi (bb0065) 2017; 157 Bununu (bb0040) 2017 Dasgupta, Asvani, Gosain, Rao, Roy, Sarraf (bb0105) 2013; 116 Jokar, Helbich, De-Noronha (bb0155) 2013; 32 Abbas (bb0005) 2016; 42 Park, Jeon, Choi (bb0240) 2012; 8 Velmurugan, Sajjad (bb0335) 2009; 48 Mukherjee (bb0210) 2012; 2 KMDA (bb0165) 2011 Debbage, Bereitschaft, Shepherd (bb9040) 2017; 10 Angel, Parent, Civco (bb0020) 2007 Dahal, Benner, Eric Lindquist (bb0100) 2016 Chen, Pourghasemi, Naghibi (bb9010) 2017 Census of India (bb0055) 2011 Tang, Wang, Yao (bb0305) 2007; 28 Nourqolipour, Shariff, Balasundram, Ahmad, Sood, Buyong (bb0220) 2016; 9 Pal (bb0225) 2006; 18 Hong, Liu, Bui, Pradhan, Acharya, Pham, Zhu, Chen, Ahmad (bb9050) 2018; 163 Yang (bb0355) 2006; 3 Harris, Ventura (bb0130) 1995; 61 Metzger, McHale, Hess, Steelman (bb0195) 2016; 19 Sesnie, Gessler, Finegan, Thessler (bb0275) 2008; 112 Xinli, Qi, Chen (bb0350) 2016; 30 Chen, Shahabi, Shirzadi, Li, Guo, Hong, Li, Pan, Hui, Ma, Xi, Ahmad (bb9025) 2018 Nandy (bb0215) 2007 Feng, Liu, Batty (bb9045) 2016; 30 CLEAR (bb0085) 2008 Census of India (bb0050) 2001 Hashem, Balakrishnan (bb0135) 2014; 21 Sengupta, Tipple (bb0270) 2007; 44 Mondal, Das, Bhatta (bb0205) 2016 UN (bb0325) 2007 Liu, Fan, Yue, Song (bb0185) 2018; 72 Hong, Tsangaratos, Ilia, Liu, Zhu, Wei (bb9060) 2018; 625 Landis (bb0170) 2001 Chen, Xie, Peng, Shahabi, Hong, Tien Bui, Duan, Li, Zhu (bb9030) 2018 Erbek, Özkan, Taberner (bb0115) 2004; 25 Zha, Gao, Ni (bb0365) 2003; 24 Chen, Pourghasemi, Kornejady, Zhang (bb0070) 2017; 305 Liu (bb0180) 2011; 26(1) Powell, Roberts, Dennison, Hess (bb0250) 2007; 106 Yang, Lo (bb0360) 2003; 17 Al-sharif, Pradhan (bb0015) 2015 Parent, Civco, Angel (bb0235) 2008 KMC (bb0160) 2015 Bhatta (bb0030) 2009; 30 Clarke, Gaydos (bb0080) 1997; 12 Xian, Crane, McMahon (bb0345) 2008; 74 Sajjad (bb0260) 2014; 2 Wu, Murray (bb0340) 2003; 84 Toll (bb0320) 1985; 51 UN (bb0330) 2011 Shaw (bb0290) 1999; 34 Mukherjee (10.1016/j.scitotenv.2018.02.170_bb0210) 2012; 2 Zha (10.1016/j.scitotenv.2018.02.170_bb0365) 2003; 24 Liu (10.1016/j.scitotenv.2018.02.170_bb0180) 2011; 26(1) UN (10.1016/j.scitotenv.2018.02.170_bb0330) 2011 Census of India (10.1016/j.scitotenv.2018.02.170_bb0055) 2011 Chen (10.1016/j.scitotenv.2018.02.170_bb9025) 2018 Chen (10.1016/j.scitotenv.2018.02.170_bb9015) 2017 Thapa (10.1016/j.scitotenv.2018.02.170_bb0315) 2011; 35 Dasgupta (10.1016/j.scitotenv.2018.02.170_bb0105) 2013; 116 Maithani (10.1016/j.scitotenv.2018.02.170_bb0190) 2009; 37 Xinli (10.1016/j.scitotenv.2018.02.170_bb0350) 2016; 30 Chen (10.1016/j.scitotenv.2018.02.170_bb9035) 2018; 626 Metzger (10.1016/j.scitotenv.2018.02.170_bb0195) 2016; 19 Sakieh (10.1016/j.scitotenv.2018.02.170_bb0265) 2016 Pal (10.1016/j.scitotenv.2018.02.170_bb0225) 2006; 18 Chen (10.1016/j.scitotenv.2018.02.170_bb0070) 2017; 305 Castle (10.1016/j.scitotenv.2018.02.170_bb0045) 2006 Harris (10.1016/j.scitotenv.2018.02.170_bb0130) 1995; 61 Shaw (10.1016/j.scitotenv.2018.02.170_bb0290) 1999; 34 Toll (10.1016/j.scitotenv.2018.02.170_bb0320) 1985; 51 Bhatta (10.1016/j.scitotenv.2018.02.170_bb0030) 2009; 30 Liu (10.1016/j.scitotenv.2018.02.170_bb0185) 2018; 72 Xian (10.1016/j.scitotenv.2018.02.170_bb0345) 2008; 74 Hu (10.1016/j.scitotenv.2018.02.170_bb0140) 2007; 31 Clarke (10.1016/j.scitotenv.2018.02.170_bb0080) 1997; 12 Census of India (10.1016/j.scitotenv.2018.02.170_bb0050) 2001 Dahal (10.1016/j.scitotenv.2018.02.170_bb0100) 2016 Iqbal (10.1016/j.scitotenv.2018.02.170_bb0145) 2012; 2 Bununu (10.1016/j.scitotenv.2018.02.170_bb0040) 2017 Wu (10.1016/j.scitotenv.2018.02.170_bb0340) 2003; 84 KMC (10.1016/j.scitotenv.2018.02.170_bb0160) Chan (10.1016/j.scitotenv.2018.02.170_bb0060) 2001; 67 Angel (10.1016/j.scitotenv.2018.02.170_bb0020) Al-shalabi (10.1016/j.scitotenv.2018.02.170_bb0010) 2012; 70 UN (10.1016/j.scitotenv.2018.02.170_bb0325) Chen (10.1016/j.scitotenv.2018.02.170_bb9030) 2018 Sesnie (10.1016/j.scitotenv.2018.02.170_bb0275) 2008; 112 Sharma (10.1016/j.scitotenv.2018.02.170_bb0285) 2012; 41 Chen (10.1016/j.scitotenv.2018.02.170_bb9005) 2017; 8 Hong (10.1016/j.scitotenv.2018.02.170_bb9055) 2018; 621 Chen (10.1016/j.scitotenv.2018.02.170_bb0075) 2017; 297 Debbage (10.1016/j.scitotenv.2018.02.170_bb9040) 2017; 10 Nourqolipour (10.1016/j.scitotenv.2018.02.170_bb0220) 2016; 9 Sugiyama (10.1016/j.scitotenv.2018.02.170_bb0300) 2008 Nandy (10.1016/j.scitotenv.2018.02.170_bb0215) 2007 Parent (10.1016/j.scitotenv.2018.02.170_bb0235) 2008 Sajjad (10.1016/j.scitotenv.2018.02.170_bb0260) 2014; 2 Sengupta (10.1016/j.scitotenv.2018.02.170_bb0270) 2007; 44 CLEAR (10.1016/j.scitotenv.2018.02.170_bb0085) Jat (10.1016/j.scitotenv.2018.02.170_bb0150) 2008; 29 Hong (10.1016/j.scitotenv.2018.02.170_bb9050) 2018; 163 Cohen (10.1016/j.scitotenv.2018.02.170_bb0090) 2004; 32 Chen (10.1016/j.scitotenv.2018.02.170_bb9010) 2017 Taubenböck (10.1016/j.scitotenv.2018.02.170_bb0310) 2009; 33 Tang (10.1016/j.scitotenv.2018.02.170_bb0305) 2007; 28 Soja (10.1016/j.scitotenv.2018.02.170_bb0295) 2013; 17 Bihamta (10.1016/j.scitotenv.2018.02.170_bb0035) 2015; 43 Al-sharif (10.1016/j.scitotenv.2018.02.170_bb0015) 2015 Mondal (10.1016/j.scitotenv.2018.02.170_bb0205) 2016 Hashem (10.1016/j.scitotenv.2018.02.170_bb0135) 2014; 21 Yang (10.1016/j.scitotenv.2018.02.170_bb0355) 2006; 3 Bhagat (10.1016/j.scitotenv.2018.02.170_bb0025) 2009; 5 KMDA (10.1016/j.scitotenv.2018.02.170_bb0165) Mondal (10.1016/j.scitotenv.2018.02.170_bb0200) 2015; 1 Erbek (10.1016/j.scitotenv.2018.02.170_bb0115) 2004; 25 Drăguţ (10.1016/j.scitotenv.2018.02.170_bb0110) 2006; 81 Feng (10.1016/j.scitotenv.2018.02.170_bb9045) 2016; 30 Yang (10.1016/j.scitotenv.2018.02.170_bb0360) 2003; 17 Franklin (10.1016/j.scitotenv.2018.02.170_bb0120) 1995; 19 Jokar (10.1016/j.scitotenv.2018.02.170_bb0155) 2013; 32 Gomarasca (10.1016/j.scitotenv.2018.02.170_bb0125) 1993; 14 Chen (10.1016/j.scitotenv.2018.02.170_bb9020) 2017; 8 Dadashpoor (10.1016/j.scitotenv.2018.02.170_bb0095) 2017; 19 Li (10.1016/j.scitotenv.2018.02.170_bb0175) 2014; 28 Seto (10.1016/j.scitotenv.2018.02.170_bb0280) 2003; 79 Pijanowski (10.1016/j.scitotenv.2018.02.170_bb0245) 2005; 19 Velmurugan (10.1016/j.scitotenv.2018.02.170_bb0335) 2009; 48 Landis (10.1016/j.scitotenv.2018.02.170_bb0170) 2001 Zhang (10.1016/j.scitotenv.2018.02.170_bb0370) 2015; 29 Ramachandra (10.1016/j.scitotenv.2018.02.170_bb0255) 2014; 6 Pandey (10.1016/j.scitotenv.2018.02.170_bb0230) 2015; 1 Park (10.1016/j.scitotenv.2018.02.170_bb0240) 2012; 8 Powell (10.1016/j.scitotenv.2018.02.170_bb0250) 2007; 106 Chen (10.1016/j.scitotenv.2018.02.170_bb0065) 2017; 157 Hong (10.1016/j.scitotenv.2018.02.170_bb9060) 2018; 625 Abbas (10.1016/j.scitotenv.2018.02.170_bb0005) 2016; 42 |
| References_xml | – start-page: 1 year: 2017 end-page: 18 ident: bb9010 article-title: A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China publication-title: Bull. Eng. Geol. Environ. – year: 2017 ident: bb0040 article-title: Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion publication-title: International Journal of Urban Sciences – volume: 61 start-page: 993 year: 1995 end-page: 998 ident: bb0130 article-title: The integration of geographic data with remotely sensed imagery to improve classification in an urban area publication-title: Photogramm. Eng. Remote. Sens. – volume: 163 start-page: 399 year: 2018 end-page: 413 ident: bb9050 article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China) publication-title: Catena – volume: 29 start-page: 543 year: 2008 end-page: 567 ident: bb0150 article-title: Modelling of urban growth using spatial analysis techniques: a case study of Ajmer city (India) publication-title: Int. J. Remote Sens. – volume: 2 start-page: 54 year: 2014 end-page: 63 ident: bb0260 article-title: Living standards and health problems of lesser fortunate slum dwellers: evidence from an Indian City publication-title: International Journal of Environmental Protection and Policy. – start-page: 1 year: 2018 end-page: 17 ident: bb9030 article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method publication-title: Catena – volume: 8 start-page: 17 year: 2012 end-page: 31 ident: bb0240 article-title: Mapping urban growth probability in South Korea: comparison of frequency ratio, analytic hierarchy process, and logistic regression models and use of the environmental conservation value assessment publication-title: Landscape Ecol Eng – year: 2007 ident: bb0020 article-title: Urban sprawl metris: an analysis of global urban expansion using GIS ASPRS 2007 Annual Conference Tampa, Florida May 7–11, 2007 – volume: 33 start-page: 179 year: 2009 end-page: 188 ident: bb0310 article-title: Urbanization in India – spatiotemporal analysis using remote sensing data publication-title: Comput. Environ. Urban. Syst. – year: 2015 ident: bb0015 article-title: Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models publication-title: Appl. Spatial Analysis – volume: 2 start-page: 365 year: 2012 end-page: 380 ident: bb0210 article-title: Urban growth and spatial transformation of Kolkata metropolis: a continuation of colonial legacy publication-title: ARPN Journal of Science and Technology – volume: 116 start-page: 747 year: 2013 end-page: 766 ident: bb0105 article-title: A megacity in a changing climate: the case of Kolkata publication-title: Clim. Chang. – volume: 3 start-page: 6 year: 2006 end-page: 9 ident: bb0355 article-title: Estimating landscape imperviousness index from satellite imagery publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 8 start-page: 1955 year: 2017 end-page: 1977 ident: bb9020 article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China publication-title: Geomat. Nat. Haz. Risk – volume: 29 start-page: 63 year: 2015 end-page: 78 ident: bb0370 article-title: Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China publication-title: Stoch Environ Res Risk Assess – year: 2007 ident: bb0215 article-title: Need for seismic micro zonation of Kolkata megacity publication-title: Proceedings of Workshop on Micro Zonation – volume: 37 start-page: 363 year: 2009 end-page: 376 ident: bb0190 article-title: A neural network based urban growth model of an Indian City publication-title: J. Indian Soc. Remote Sens. – volume: 6 start-page: 229 year: 2014 end-page: 244 ident: bb0255 article-title: Urban structure in Kolkata: metrics and modelling through geo-informatics publication-title: Appl Geomat – volume: 74 start-page: 473 year: 2008 end-page: 481 ident: bb0345 article-title: Quantifying multi-temporal urban development characteristics in Las Vegas from Landsat and ASTER data publication-title: Photogramm. Eng. Remote. Sens. – volume: 25 start-page: 1733 year: 2004 end-page: 1748 ident: bb0115 article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities publication-title: Int. J. Remote Sens. – volume: 79 start-page: 106 year: 2003 end-page: 121 ident: bb0280 article-title: Modeling the drivers of urban land use change in the Pearl River Delta, China: integrating remote sensing with socioeconomic data publication-title: Land Econ. – year: 2016 ident: bb0205 article-title: Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration publication-title: Geocarto International – year: 2008 ident: bb0235 article-title: Urban growth analysis: calculating metrics to quantify urban sprawl (Online) – year: 2006 ident: bb0045 article-title: Principles and concepts of agent-based modeling for developing geospatial simulations publication-title: Working Papers Series, 110, UCL Center for Advanced Spatial Analysis – volume: 625 start-page: 575 year: 2018 end-page: 588 ident: bb9060 article-title: Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China publication-title: Sci. Total Environ. – year: 2011 ident: bb0055 article-title: Primary Census Abstract, Census of India – year: 2016 ident: bb0265 article-title: Measuring the relationships between landscape aesthetics suitability and spatial patterns of urbanized lands: an informed modelling framework for developing urban growth scenarios publication-title: Geocarto International – volume: 81 start-page: 330 year: 2006 end-page: 344 ident: bb0110 article-title: Automated classification of landform elements using object-based image analysis publication-title: Geomorphology – volume: 14 start-page: 211 year: 1993 end-page: 223 ident: bb0125 article-title: One century of land use changes in the metropolitan area of Milan (Italy) publication-title: Int. J. Remote Sens. – volume: 1 start-page: 29 year: 2015 ident: bb0200 article-title: Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach publication-title: Model. Earth Syst. Environ. – volume: 51 start-page: 1471 year: 1985 end-page: 1482 ident: bb0320 article-title: Landsat-4 thematic mapper scene characteristics of a suburban and rural area publication-title: Photogramm. Eng. Remote. Sens. – volume: 5 start-page: 5 year: 2009 end-page: 20 ident: bb0025 article-title: Emerging patterne of urbanization and the contribution of migration in urban growth in India publication-title: Asian Population Studies – volume: 9 start-page: 1 year: 2016 end-page: 19 ident: bb0220 article-title: Predicting the effects of urban development on land transition and spatial patterns of land use in western peninsular Malaysia publication-title: Appl. Spatial Analysis – volume: 42 start-page: 150 year: 2016 end-page: 168 ident: bb0005 article-title: Internal migration and citizenship in India publication-title: J. Ethn. Migr. Stud. – volume: 67 start-page: 213 year: 2001 end-page: 225 ident: bb0060 article-title: Detecting the nature of change in an urban environment: a comparison of machine learning algorithms publication-title: Photogramm. Eng. Remote. Sens. – volume: 30 start-page: 1387 year: 2016 end-page: 1400 ident: bb9045 article-title: Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China publication-title: Stoch. Env. Res. Risk A. – volume: 19 start-page: 1 year: 2016 end-page: 18 ident: bb0195 article-title: Same time, same place: analyzing temporal and spatial trends in urban metabolism using proximate counties in the North Carolina Triangle publication-title: Urban Ecosyst – year: 2011 ident: bb0165 article-title: Kolkata Metropolitan Development Authority – start-page: 157 year: 2001 end-page: 200 ident: bb0170 article-title: CUF, CUF II, and CURBA: A family of spatially explicit urban growth and land-use policy simulation models publication-title: Planning Support Systems: Integrating Geographic Information Systems, Models and Visualization Tools – volume: 21 start-page: 233 year: 2014 end-page: 247 ident: bb0135 article-title: Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar publication-title: Ann. GIS – year: 2007 ident: bb0325 article-title: World Urbanization Prospects: Database – volume: 43 start-page: 407 year: 2015 end-page: 414 ident: bb0035 article-title: Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran publication-title: J Indian Soc Remote Sens – volume: 28 start-page: 3255 year: 2007 end-page: 3271 ident: bb0305 article-title: Spatio- temporal urban landcape change analysis using the Markov chain model and a modified genetic algorithm publication-title: Int. J. Remote Sens. – volume: 34 start-page: 969 year: 1999 end-page: 978 ident: bb0290 article-title: Emerging patterns of urban growth in India publication-title: Econ Political Weekly. – volume: 1 start-page: 2 year: 2015 end-page: 14 ident: bb0230 article-title: Numerical modelling spatial patterns of urban growth in Chandigarh and surrounding region (India) using multi-agent systems model publication-title: Earth Syst. Environ. – volume: 17 start-page: 463 year: 2003 end-page: 488 ident: bb0360 article-title: Modelling urban growth and landscape changes in the Atlanta metropolitan area publication-title: Int. J. Geogr. Inf. Sci. – volume: 28 start-page: 1317 year: 2014 end-page: 1335 ident: bb0175 article-title: A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules publication-title: Int. J. Geogr. Inf. Sci. – start-page: 1 year: 2018 end-page: 32 ident: bb9025 article-title: A Novel Ensemble Approach of Bivariate Statistical Based Logistic Model Tree Classifier for Landslide Susceptibility Assessment publication-title: Geocarto Int. – year: 2011 ident: bb0330 article-title: World Urbanization Prospects: The 2011 Revision – volume: 32 start-page: 23 year: 2004 end-page: 51 ident: bb0090 article-title: Urban growth in developing countries: a review of current trends and a caution regarding existing forecasts publication-title: World Dev. – volume: 305 start-page: 314 year: 2017 end-page: 327 ident: bb0070 article-title: Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques publication-title: Geoderma – volume: 19 start-page: 494 year: 1995 end-page: 519 ident: bb0120 article-title: Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients publication-title: Prog. Phys. Geogr. – volume: 106 start-page: 253 year: 2007 end-page: 267 ident: bb0250 article-title: Sub-pixel mapping of urban land cover using multiple end member spectral mixture analysis: Manaus, Brazil publication-title: Remote Sens. Environ. – volume: 44 start-page: 2009 year: 2007 end-page: 2027 ident: bb0270 article-title: The performance of public-sector housing in Kolkata, India, in the post-reform milieu publication-title: Urban Stud. – volume: 19 start-page: 197 year: 2005 end-page: 215 ident: bb0245 article-title: Calibrating a neural network- based urban change model for two metropolitan areas of the upper Midwest of the United States publication-title: Int. J. Geogr. Inf. Sci. – volume: 35 start-page: 25 year: 2011 end-page: 34 ident: bb0315 article-title: Urban growth modeling of Kathmandu metropolitan region, Nepal publication-title: Comput. Environ. Urban. Syst. – volume: 30 start-page: 4733 year: 2009 end-page: 4746 ident: bb0030 article-title: Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India publication-title: Int. J. Remote Sens. – volume: 2 start-page: 892 year: 2012 end-page: 900 ident: bb0145 article-title: Anthropogenic impact on land use/land cover in Dudhganga Watershed of Kashmir Valley, India publication-title: International Journal of Geomatics and Geosciences – volume: 18 start-page: 501 year: 2006 end-page: 521 ident: bb0225 article-title: Scope for bottom-up planning in Kolkata: rhetoric vs reality publication-title: Environ Urbanization. – volume: 17 start-page: 688 year: 2013 end-page: 694 ident: bb0295 article-title: Regional urbanization and third wave cities publication-title: City – volume: 297 start-page: 69 year: 2017 end-page: 85 ident: bb0075 article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques publication-title: Geomorphology – volume: 24 start-page: 583 year: 2003 end-page: 594 ident: bb0365 article-title: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery publication-title: Int. J. Remote Sens. – volume: 32 start-page: 33 year: 2013 end-page: 42 ident: bb0155 article-title: Spatio-temporal simulation of urban growth patterns using agent-based modeling: the case of Tehran publication-title: Cities – volume: 112 start-page: 2145 year: 2008 end-page: 2159 ident: bb0275 article-title: Integrating Landsat TM and SRTMDEM derived variables with decision trees for habitat classification and change detection in complex Neotropical environments publication-title: Remote Sens. Environ. – volume: 70 start-page: 425 year: 2012 end-page: 437 ident: bb0010 article-title: Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana'a Metropolitan city, Yemen publication-title: Environ. Earth Sci. – volume: 8 start-page: 950 year: 2017 end-page: 973 ident: bb9005 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naive-Bayes tree, and alternating decision tree models publication-title: Geomat. Nat. Haz. Risk – volume: 12 start-page: 699 year: 1997 end-page: 714 ident: bb0080 article-title: Loose-coupling a CA model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore publication-title: Int. J. Geogr. Inf. Sci. – volume: 26(1) start-page: 151 year: 2011 end-page: 167 ident: bb0180 article-title: Modelling Sustainable Urban Growth in a Rapidly Urbanising Region Using a Fuzzy-Constrained Cellular Automata Approach International Journal of Geographical Information Science – year: 2001 ident: bb0050 article-title: Primary Census Abstract, Census of India – volume: 621 start-page: 1124 year: 2018 end-page: 1141 ident: bb9055 article-title: Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution publication-title: Sci. Total Environ. – volume: 30 start-page: 637 year: 2016 end-page: 659 ident: bb0350 article-title: A partitioned and asynchronous cellular automata model for urban growth simulation publication-title: Int. J. Geogr. Inf. Sci. – volume: 157 start-page: 310 year: 2017 end-page: 324 ident: bb0065 article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling publication-title: Catena – start-page: 1 year: 2017 end-page: 19 ident: bb9015 article-title: Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms publication-title: Bull. Eng. Geol. Environ. – year: 2016 ident: bb0100 article-title: Analyzing spatiotemporal patterns of urbanization in Treasure Valley, Idaho, USA publication-title: Appl. Spatial Analysis – volume: 41 start-page: 641 year: 2012 end-page: 650 ident: bb0285 article-title: Monitoring urban landscape dynamics over Delhi (India) using remote sensing (1998–2011) inputs publication-title: J Indian Soc Remote Sens – volume: 48 year: 2009 ident: bb0335 article-title: The study of land transformation and land degradation in Dehradun District, Uttrakhand publication-title: The Deccan Geographer – volume: 31 start-page: 667 year: 2007 end-page: 688 ident: bb0140 article-title: Modeling urban growth in Atlanta using logistic regression publication-title: Comput. Environ. Urban. Syst. – year: 2008 ident: bb0300 article-title: The study on climate impact adaptation and mitigation in Asian coastal mega cities of integrated research system for sustainability science – volume: 72 start-page: 420 year: 2018 end-page: 432 ident: bb0185 article-title: Impacts of land finance on urban sprawl in China: the case of Chongqing publication-title: Land Use Policy – year: 2015 ident: bb0160 article-title: Basic Statistics of Kolkata – volume: 10 start-page: 317 year: 2017 end-page: 345 ident: bb9040 article-title: Quantifying the Spatiotemporal Trends of Urban Sprawl Among Large U.S. Metropolitan Areas Via Spatial Metrics publication-title: Appl. Spat. Anal. Policy – year: 2008 ident: bb0085 article-title: Urban Landscape Analysis Tool – volume: 84 start-page: 493 year: 2003 end-page: 505 ident: bb0340 article-title: Estimating impervious surface distribution by spectral mixture analysis publication-title: Remote Sens. Environ. – volume: 19 start-page: 527 year: 2017 end-page: 547 ident: bb0095 article-title: Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region publication-title: Iran Environ Dev Sustain – volume: 626 start-page: 1121 year: 2018 end-page: 1135 ident: bb9035 article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China publication-title: Sci. Total Environ. – year: 2011 ident: 10.1016/j.scitotenv.2018.02.170_bb0055 – volume: 24 start-page: 583 year: 2003 ident: 10.1016/j.scitotenv.2018.02.170_bb0365 article-title: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160304987 – volume: 626 start-page: 1121 year: 2018 ident: 10.1016/j.scitotenv.2018.02.170_bb9035 article-title: Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.124 – volume: 44 start-page: 2009 year: 2007 ident: 10.1016/j.scitotenv.2018.02.170_bb0270 article-title: The performance of public-sector housing in Kolkata, India, in the post-reform milieu publication-title: Urban Stud. doi: 10.1080/00420980701471927 – volume: 81 start-page: 330 issue: 3–4 year: 2006 ident: 10.1016/j.scitotenv.2018.02.170_bb0110 article-title: Automated classification of landform elements using object-based image analysis publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.04.013 – volume: 12 start-page: 699 year: 1997 ident: 10.1016/j.scitotenv.2018.02.170_bb0080 article-title: Loose-coupling a CA model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/136588198241617 – volume: 31 start-page: 667 year: 2007 ident: 10.1016/j.scitotenv.2018.02.170_bb0140 article-title: Modeling urban growth in Atlanta using logistic regression publication-title: Comput. Environ. Urban. Syst. doi: 10.1016/j.compenvurbsys.2006.11.001 – volume: 17 start-page: 688 issue: 5 year: 2013 ident: 10.1016/j.scitotenv.2018.02.170_bb0295 article-title: Regional urbanization and third wave cities publication-title: City doi: 10.1080/13604813.2013.827854 – volume: 2 start-page: 365 year: 2012 ident: 10.1016/j.scitotenv.2018.02.170_bb0210 article-title: Urban growth and spatial transformation of Kolkata metropolis: a continuation of colonial legacy publication-title: ARPN Journal of Science and Technology – volume: 34 start-page: 969 year: 1999 ident: 10.1016/j.scitotenv.2018.02.170_bb0290 article-title: Emerging patterns of urban growth in India publication-title: Econ Political Weekly. – year: 2008 ident: 10.1016/j.scitotenv.2018.02.170_bb0300 – year: 2016 ident: 10.1016/j.scitotenv.2018.02.170_bb0205 article-title: Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration publication-title: Geocarto International – volume: 30 start-page: 4733 issue: 18:20 year: 2009 ident: 10.1016/j.scitotenv.2018.02.170_bb0030 article-title: Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802651967 – volume: 14 start-page: 211 year: 1993 ident: 10.1016/j.scitotenv.2018.02.170_bb0125 article-title: One century of land use changes in the metropolitan area of Milan (Italy) publication-title: Int. J. Remote Sens. doi: 10.1080/01431169308904333 – volume: 8 start-page: 17 year: 2012 ident: 10.1016/j.scitotenv.2018.02.170_bb0240 article-title: Mapping urban growth probability in South Korea: comparison of frequency ratio, analytic hierarchy process, and logistic regression models and use of the environmental conservation value assessment publication-title: Landscape Ecol Eng doi: 10.1007/s11355-010-0137-9 – volume: 35 start-page: 25 year: 2011 ident: 10.1016/j.scitotenv.2018.02.170_bb0315 article-title: Urban growth modeling of Kathmandu metropolitan region, Nepal publication-title: Comput. Environ. Urban. Syst. doi: 10.1016/j.compenvurbsys.2010.07.005 – volume: 19 start-page: 527 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb0095 article-title: Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region publication-title: Iran Environ Dev Sustain doi: 10.1007/s10668-015-9744-9 – volume: 157 start-page: 310 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb0065 article-title: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling publication-title: Catena doi: 10.1016/j.catena.2017.05.034 – volume: 74 start-page: 473 year: 2008 ident: 10.1016/j.scitotenv.2018.02.170_bb0345 article-title: Quantifying multi-temporal urban development characteristics in Las Vegas from Landsat and ASTER data publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.74.4.473 – year: 2011 ident: 10.1016/j.scitotenv.2018.02.170_bb0330 – volume: 2 start-page: 54 issue: 2 year: 2014 ident: 10.1016/j.scitotenv.2018.02.170_bb0260 article-title: Living standards and health problems of lesser fortunate slum dwellers: evidence from an Indian City publication-title: International Journal of Environmental Protection and Policy. doi: 10.11648/j.ijepp.20140202.13 – year: 2006 ident: 10.1016/j.scitotenv.2018.02.170_bb0045 article-title: Principles and concepts of agent-based modeling for developing geospatial simulations – year: 2015 ident: 10.1016/j.scitotenv.2018.02.170_bb0015 article-title: Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models publication-title: Appl. Spatial Analysis – ident: 10.1016/j.scitotenv.2018.02.170_bb0160 – volume: 30 start-page: 637 issue: 4 year: 2016 ident: 10.1016/j.scitotenv.2018.02.170_bb0350 article-title: A partitioned and asynchronous cellular automata model for urban growth simulation publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2015.1084510 – volume: 19 start-page: 494 year: 1995 ident: 10.1016/j.scitotenv.2018.02.170_bb0120 article-title: Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients publication-title: Prog. Phys. Geogr. doi: 10.1177/030913339501900403 – year: 2001 ident: 10.1016/j.scitotenv.2018.02.170_bb0050 – volume: 48 year: 2009 ident: 10.1016/j.scitotenv.2018.02.170_bb0335 article-title: The study of land transformation and land degradation in Dehradun District, Uttrakhand – volume: 32 start-page: 23 issue: 1 year: 2004 ident: 10.1016/j.scitotenv.2018.02.170_bb0090 article-title: Urban growth in developing countries: a review of current trends and a caution regarding existing forecasts publication-title: World Dev. doi: 10.1016/j.worlddev.2003.04.008 – volume: 625 start-page: 575 year: 2018 ident: 10.1016/j.scitotenv.2018.02.170_bb9060 article-title: Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.256 – volume: 19 start-page: 1 year: 2016 ident: 10.1016/j.scitotenv.2018.02.170_bb0195 article-title: Same time, same place: analyzing temporal and spatial trends in urban metabolism using proximate counties in the North Carolina Triangle publication-title: Urban Ecosyst doi: 10.1007/s11252-015-0503-3 – volume: 18 start-page: 501 year: 2006 ident: 10.1016/j.scitotenv.2018.02.170_bb0225 article-title: Scope for bottom-up planning in Kolkata: rhetoric vs reality publication-title: Environ Urbanization. doi: 10.1177/0956247806069628 – volume: 32 start-page: 33 year: 2013 ident: 10.1016/j.scitotenv.2018.02.170_bb0155 article-title: Spatio-temporal simulation of urban growth patterns using agent-based modeling: the case of Tehran publication-title: Cities doi: 10.1016/j.cities.2013.01.005 – volume: 19 start-page: 197 year: 2005 ident: 10.1016/j.scitotenv.2018.02.170_bb0245 article-title: Calibrating a neural network- based urban change model for two metropolitan areas of the upper Midwest of the United States publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810410001713416 – volume: 163 start-page: 399 year: 2018 ident: 10.1016/j.scitotenv.2018.02.170_bb9050 article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China) publication-title: Catena doi: 10.1016/j.catena.2018.01.005 – volume: 5 start-page: 5 issue: 1 year: 2009 ident: 10.1016/j.scitotenv.2018.02.170_bb0025 article-title: Emerging patterne of urbanization and the contribution of migration in urban growth in India publication-title: Asian Population Studies doi: 10.1080/17441730902790024 – volume: 70 start-page: 425 year: 2012 ident: 10.1016/j.scitotenv.2018.02.170_bb0010 article-title: Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana'a Metropolitan city, Yemen publication-title: Environ. Earth Sci. doi: 10.1007/s12665-012-2137-6 – ident: 10.1016/j.scitotenv.2018.02.170_bb0020 – volume: 30 start-page: 1387 year: 2016 ident: 10.1016/j.scitotenv.2018.02.170_bb9045 article-title: Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-015-1128-z – volume: 41 start-page: 641 year: 2012 ident: 10.1016/j.scitotenv.2018.02.170_bb0285 article-title: Monitoring urban landscape dynamics over Delhi (India) using remote sensing (1998–2011) inputs publication-title: J Indian Soc Remote Sens doi: 10.1007/s12524-012-0248-x – start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2018.02.170_bb9025 article-title: A Novel Ensemble Approach of Bivariate Statistical Based Logistic Model Tree Classifier for Landslide Susceptibility Assessment publication-title: Geocarto Int. – volume: 116 start-page: 747 year: 2013 ident: 10.1016/j.scitotenv.2018.02.170_bb0105 article-title: A megacity in a changing climate: the case of Kolkata publication-title: Clim. Chang. doi: 10.1007/s10584-012-0516-3 – volume: 29 start-page: 543 issue: 2 year: 2008 ident: 10.1016/j.scitotenv.2018.02.170_bb0150 article-title: Modelling of urban growth using spatial analysis techniques: a case study of Ajmer city (India) publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701280983 – volume: 26(1) start-page: 151 year: 2011 ident: 10.1016/j.scitotenv.2018.02.170_bb0180 – year: 2008 ident: 10.1016/j.scitotenv.2018.02.170_bb0235 – year: 2016 ident: 10.1016/j.scitotenv.2018.02.170_bb0265 article-title: Measuring the relationships between landscape aesthetics suitability and spatial patterns of urbanized lands: an informed modelling framework for developing urban growth scenarios publication-title: Geocarto International – volume: 29 start-page: 63 year: 2015 ident: 10.1016/j.scitotenv.2018.02.170_bb0370 article-title: Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-014-0942-z – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.scitotenv.2018.02.170_bb0220 article-title: Predicting the effects of urban development on land transition and spatial patterns of land use in western peninsular Malaysia publication-title: Appl. Spatial Analysis doi: 10.1007/s12061-014-9128-9 – volume: 33 start-page: 179 year: 2009 ident: 10.1016/j.scitotenv.2018.02.170_bb0310 article-title: Urbanization in India – spatiotemporal analysis using remote sensing data publication-title: Comput. Environ. Urban. Syst. doi: 10.1016/j.compenvurbsys.2008.09.003 – volume: 106 start-page: 253 year: 2007 ident: 10.1016/j.scitotenv.2018.02.170_bb0250 article-title: Sub-pixel mapping of urban land cover using multiple end member spectral mixture analysis: Manaus, Brazil publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.005 – ident: 10.1016/j.scitotenv.2018.02.170_bb0325 – volume: 6 start-page: 229 year: 2014 ident: 10.1016/j.scitotenv.2018.02.170_bb0255 article-title: Urban structure in Kolkata: metrics and modelling through geo-informatics publication-title: Appl Geomat doi: 10.1007/s12518-014-0135-y – volume: 42 start-page: 150 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2018.02.170_bb0005 article-title: Internal migration and citizenship in India publication-title: J. Ethn. Migr. Stud. doi: 10.1080/1369183X.2015.1100067 – volume: 112 start-page: 2145 year: 2008 ident: 10.1016/j.scitotenv.2018.02.170_bb0275 article-title: Integrating Landsat TM and SRTMDEM derived variables with decision trees for habitat classification and change detection in complex Neotropical environments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.08.025 – volume: 61 start-page: 993 year: 1995 ident: 10.1016/j.scitotenv.2018.02.170_bb0130 article-title: The integration of geographic data with remotely sensed imagery to improve classification in an urban area publication-title: Photogramm. Eng. Remote. Sens. – start-page: 157 year: 2001 ident: 10.1016/j.scitotenv.2018.02.170_bb0170 article-title: CUF, CUF II, and CURBA: A family of spatially explicit urban growth and land-use policy simulation models – start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb9010 article-title: A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China publication-title: Bull. Eng. Geol. Environ. – start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2018.02.170_bb9030 article-title: GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method publication-title: Catena – volume: 8 start-page: 1955 issue: 2 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb9020 article-title: A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China publication-title: Geomat. Nat. Haz. Risk doi: 10.1080/19475705.2017.1401560 – volume: 297 start-page: 69 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb0075 article-title: Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.09.007 – volume: 51 start-page: 1471 year: 1985 ident: 10.1016/j.scitotenv.2018.02.170_bb0320 article-title: Landsat-4 thematic mapper scene characteristics of a suburban and rural area publication-title: Photogramm. Eng. Remote. Sens. – ident: 10.1016/j.scitotenv.2018.02.170_bb0165 – volume: 8 start-page: 950 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb9005 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naive-Bayes tree, and alternating decision tree models publication-title: Geomat. Nat. Haz. Risk doi: 10.1080/19475705.2017.1289250 – volume: 10 start-page: 317 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb9040 article-title: Quantifying the Spatiotemporal Trends of Urban Sprawl Among Large U.S. Metropolitan Areas Via Spatial Metrics publication-title: Appl. Spat. Anal. Policy doi: 10.1007/s12061-016-9190-6 – volume: 28 start-page: 3255 year: 2007 ident: 10.1016/j.scitotenv.2018.02.170_bb0305 article-title: Spatio- temporal urban landcape change analysis using the Markov chain model and a modified genetic algorithm publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600962749 – volume: 17 start-page: 463 issue: 5 year: 2003 ident: 10.1016/j.scitotenv.2018.02.170_bb0360 article-title: Modelling urban growth and landscape changes in the Atlanta metropolitan area publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/1365881031000086965 – volume: 621 start-page: 1124 year: 2018 ident: 10.1016/j.scitotenv.2018.02.170_bb9055 article-title: Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.114 – year: 2016 ident: 10.1016/j.scitotenv.2018.02.170_bb0100 article-title: Analyzing spatiotemporal patterns of urbanization in Treasure Valley, Idaho, USA publication-title: Appl. Spatial Analysis – volume: 43 start-page: 407 issue: 2 year: 2015 ident: 10.1016/j.scitotenv.2018.02.170_bb0035 article-title: Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran publication-title: J Indian Soc Remote Sens doi: 10.1007/s12524-014-0402-8 – volume: 1 start-page: 29 year: 2015 ident: 10.1016/j.scitotenv.2018.02.170_bb0200 article-title: Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-015-0026-1 – volume: 1 start-page: 2 issue: 14 year: 2015 ident: 10.1016/j.scitotenv.2018.02.170_bb0230 article-title: Numerical modelling spatial patterns of urban growth in Chandigarh and surrounding region (India) using multi-agent systems model publication-title: Earth Syst. Environ. – volume: 21 start-page: 233 issue: 3 year: 2014 ident: 10.1016/j.scitotenv.2018.02.170_bb0135 article-title: Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar publication-title: Ann. GIS doi: 10.1080/19475683.2014.992369 – volume: 72 start-page: 420 year: 2018 ident: 10.1016/j.scitotenv.2018.02.170_bb0185 article-title: Impacts of land finance on urban sprawl in China: the case of Chongqing publication-title: Land Use Policy doi: 10.1016/j.landusepol.2018.01.004 – year: 2007 ident: 10.1016/j.scitotenv.2018.02.170_bb0215 article-title: Need for seismic micro zonation of Kolkata megacity – volume: 2 start-page: 892 issue: 3 year: 2012 ident: 10.1016/j.scitotenv.2018.02.170_bb0145 article-title: Anthropogenic impact on land use/land cover in Dudhganga Watershed of Kashmir Valley, India publication-title: International Journal of Geomatics and Geosciences – volume: 3 start-page: 6 year: 2006 ident: 10.1016/j.scitotenv.2018.02.170_bb0355 article-title: Estimating landscape imperviousness index from satellite imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.853929 – volume: 305 start-page: 314 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb0070 article-title: Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2017.06.020 – volume: 28 start-page: 1317 issue: 7 year: 2014 ident: 10.1016/j.scitotenv.2018.02.170_bb0175 article-title: A systematic sensitivity analysis of constrained cellular automata model for urban growth simulation based on different transition rules publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2014.883079 – start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb9015 article-title: Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms publication-title: Bull. Eng. Geol. Environ. – ident: 10.1016/j.scitotenv.2018.02.170_bb0085 – volume: 25 start-page: 1733 issue: 9 year: 2004 ident: 10.1016/j.scitotenv.2018.02.170_bb0115 article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000150077 – volume: 79 start-page: 106 year: 2003 ident: 10.1016/j.scitotenv.2018.02.170_bb0280 article-title: Modeling the drivers of urban land use change in the Pearl River Delta, China: integrating remote sensing with socioeconomic data publication-title: Land Econ. doi: 10.2307/3147108 – year: 2017 ident: 10.1016/j.scitotenv.2018.02.170_bb0040 article-title: Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion publication-title: International Journal of Urban Sciences doi: 10.1080/12265934.2017.1284607 – volume: 37 start-page: 363 year: 2009 ident: 10.1016/j.scitotenv.2018.02.170_bb0190 article-title: A neural network based urban growth model of an Indian City publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-009-0041-7 – volume: 67 start-page: 213 year: 2001 ident: 10.1016/j.scitotenv.2018.02.170_bb0060 article-title: Detecting the nature of change in an urban environment: a comparison of machine learning algorithms publication-title: Photogramm. Eng. Remote. Sens. – volume: 84 start-page: 493 year: 2003 ident: 10.1016/j.scitotenv.2018.02.170_bb0340 article-title: Estimating impervious surface distribution by spectral mixture analysis publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00136-0 |
| SSID | ssj0000781 |
| Score | 2.643429 |
| Snippet | This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990–2000 &... This research paper analyzed urban spatial pattern and trend of urban growth in Kolkata urban agglomeration, India using urban sprawl matrix during 1990-2000 &... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1557 |
| SubjectTerms | agricultural land corporations geographic information systems India Kolkata urban agglomeration land cover land use and land cover maps land use change Landsat open space planning remote sensing rivers surface water Urban growth Urban spatial pattern Urban sprawl matrix urbanization |
| Title | Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2018.02.170 https://www.ncbi.nlm.nih.gov/pubmed/30045573 https://www.proquest.com/docview/2045791878 https://www.proquest.com/docview/2076886972 |
| Volume | 628-629 |
| WOSCitedRecordID | wos000432462000150&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6DtAkhKAwKD8mI_FWguKkiZ29VaiogJiQGFLfItuN25UuqZpkdLzyT_Dnco6dtJNWBg-8RFVyTtJ-n89317szQq98Jd1AUOkwQYTTVzxwxCTiDuOgCt1IypCparMJenLCxuPoc6v1q66FuVjQNGXrdbT8r1DDOQBbl87-A9zNTeEEfAbQ4Qiww_GvgK_ajPzQEYByJWD25jpnWtdbVZ00U9OTudCpsNpQNDJTcMaLWa_Mt4et-PdF71y38F-b-vXcNKBOex-zxTdecCvJp9NFpmNbVZ5IpXMmZ3zb6tVcrJWIzUkoMl2FuVVm14R6-IybOrVPySwRpWiIZ5OHRzy7LDec_sLnc0PTEQcvIN0OYxDWpLzCKmRUL6MRLAqmfr7WzaHHnNCGRIyGBfuHXqv6TRRi_gYsB_gK8P46b4_phqzEbE2yhf3yvAJfdxuD2_mbtbDJUKwv7aF9jwYRa6P9wfvh-MNmlaeMXMkXvPa5B-hOfaddhs8ux6YycE7vo3vWM8EDw6gHqJWkHXTb7FV62UGHww1WIGbhzDvoron8YlPQ9hD9bAiIK35gS0BcExADAXFFQJwpK2MIiCsCNsM0AbEh4DEe4Ip-OEuxpZ-Vu0K_17gi3yP09d3w9O3IsVt9OBJUQuEIGgacS5kI7krw99yIBjJM-pEE_4VRpVxJJomXcNdVgnLJ-5yA5ayUTwKqpOcfonaapckThCn1CREumZDQ6zNOIqZ45Cqfe2Li9gntorDGIZa2D77ejmUR1wmP87jBMtZYxq4XA5Zd5DYDl6YVzM1DjmugY2vRGks1BtbePPhlTY0YdL7-I4-nSVbmsd5Cgurfhf1JhoaMhRH1uuix4VXz1jUln-688gwdbCbpc9QuVmXyAt2SF8VZvjpCe3TMjuyM-A3HBuUT |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+urban+spatial+patterns+and+trend+of+urban+growth+using+urban+sprawl+matrix%3A+A+study+on+Kolkata+urban+agglomeration%2C+India&rft.jtitle=The+Science+of+the+total+environment&rft.au=Sahana%2C+Mehebub&rft.au=Hong%2C+Haoyuan&rft.au=Sajjad%2C+Haroon&rft.date=2018-07-01&rft.eissn=1879-1026&rft.volume=628-629&rft.spage=1557&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.02.170&rft_id=info%3Apmid%2F30045573&rft.externalDocID=30045573 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |