Adaptive Gaussian Incremental Expectation Stadium Parameter Estimation Algorithm for Sports Video Analysis
In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templ...
Gespeichert in:
| Veröffentlicht in: | Complexity (New York, N.Y.) Jg. 2021; H. 1 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Hindawi
2021
John Wiley & Sons, Inc Wiley |
| Schlagworte: | |
| ISSN: | 1076-2787, 1099-0526 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L1 regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real-time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in-depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county-level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm. |
|---|---|
| AbstractList | In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L1 regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real-time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in-depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county-level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm. In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L[sub.1] regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real-time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in-depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county-level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm. In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L 1 regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real‐time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in‐depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county‐level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm. |
| Audience | Academic |
| Author | Geng, Lizhi |
| Author_xml | – sequence: 1 givenname: Lizhi orcidid: 0000-0002-9827-9403 surname: Geng fullname: Geng, Lizhi organization: Department of Physical EducationHeilongjiang Bayi Agricultural UniversityDaqing 163000Chinahlau.cn |
| BookMark | eNp9kVFvFCEUhSemJrbVN38AiY86LTAwMI-TZq2bNNGk6ith4LJlMzOMwFb772WdRqNRwwPk8p1zuZyz6mQOM1TVS4IvCOH8kmJKLruubShrn1SnBHddjTltT45n0dZUSPGsOktpjzEumDit9r3VS_b3gK71ISWvZ7SdTYQJ5qxHtPm2gMk6-zCj26ytP0zog456ggwRbVL203rZj7sQfb6bkAsR3S4h5oQ-ewsB9bMeH5JPz6unTo8JXjzu59Wnt5uPV-_qm_fX26v-pjZM4FwPRDNiJWgLYClYaRlz5dwBNUwyDsC5bVzXGkaoxRQTaAVpBt6wwVJpm_Nqu_raoPdqieWJ8UEF7dWPQog7pWP2ZgTlnMGGWwNCdEwCHwZsGqNd0wyMcODF69XqtcTw5QApq304xDJQUpRT0ZUP5d0vaqeLqZ9dyFGbySejetkQITiVslAXf6HKsjB5U5J0vtR_E7xZBSaGlCK4n8MQrI6Bq2Pg6jHwgtM_cOPX6EofP_5L9HoV3fnZ6q_-_y2-A1DTvPU |
| CitedBy_id | crossref_primary_10_1155_2024_9828194 crossref_primary_10_1155_2022_2334108 crossref_primary_10_1155_2022_4796937 |
| Cites_doi | 10.1080/01431161.2018.1519276 10.1109/TAC.2015.2507864 10.1007/s42979-021-00485-z 10.1080/1206212x.2018.1534370 10.1080/13682199.2019.1641316 10.1007/s10462-017-9582-2 10.1007/s00500-019-04238-2 10.1080/21681163.2017.1356751 10.3966/160792642018051903009 10.1080/13658816.2020.1776293 10.1109/msp.2017.2738401 10.1007/s10846-020-01273-2 10.1109/TIM.2019.2925410 10.1109/TAC.2020.3014292 10.3233/ais-190529 10.1080/08839514.2018.1430469 10.1007/s11263-019-01212-1 10.1080/01691864.2019.1610061 10.1016/j.ins.2020.07.069 10.1109/TNNLS.2017.2757497 10.1109/TCSVT.2018.2886277 10.1109/TFUZZ.2020.3012393 10.1080/01621459.2017.1345742 10.1145/3330138 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Lizhi Geng. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Lizhi Geng. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2021 Lizhi Geng. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Lizhi Geng. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1155/2021/9963246 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1099-0526 |
| Editor | Lv, Zhihan |
| Editor_xml | – sequence: 1 givenname: Zhihan surname: Lv fullname: Lv, Zhihan |
| ExternalDocumentID | oai_doaj_org_article_ffc0c5dce77948e5bb0c3caf33b415e5 A831775288 10_1155_2021_9963246 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HBH HCIFZ HHY HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC XBAML XG1 XPP XSW XV2 ~IA ~WT .Y3 24P 31~ 3R3 5VS AAEVG AAMMB AANHP AAYXX ACBWZ ACCMX ACRPL ACXQS ACYXJ ADNMO AEFGJ AEIMD AFFHD AFZJQ AGQPQ AGXDD AIDQK AIDYY ALUQN AMVHM ASPBG AVWKF AZFZN BDRZF BFHJK CITATION DCZOG EJD FEDTE H13 HF~ HVGLF ICD LH4 LW6 O8X PHGZM PHGZT PQGLB ROL WYUIH 7XB 8FK JQ2 MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c470t-b1a41d8eadeed2ed8d44fdee9e2c4845ee55d3f96c412d0201e6713b534bd28d3 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687139800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-2787 |
| IngestDate | Fri Oct 03 12:53:50 EDT 2025 Fri Jul 25 21:00:49 EDT 2025 Sat Nov 29 13:49:33 EST 2025 Sat Nov 29 10:31:36 EST 2025 Tue Nov 18 22:32:12 EST 2025 Sat Nov 29 03:24:39 EST 2025 Sun Jun 02 19:17:22 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-b1a41d8eadeed2ed8d44fdee9e2c4845ee55d3f96c412d0201e6713b534bd28d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9827-9403 |
| OpenAccessLink | https://dx.doi.org/10.1155/2021/9963246 |
| PQID | 2527978759 |
| PQPubID | 2029978 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ffc0c5dce77948e5bb0c3caf33b415e5 proquest_journals_2527978759 gale_infotracmisc_A831775288 gale_infotracacademiconefile_A831775288 crossref_primary_10_1155_2021_9963246 crossref_citationtrail_10_1155_2021_9963246 hindawi_primary_10_1155_2021_9963246 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Complexity (New York, N.Y.) |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_23_2 e_1_2_8_13_2 e_1_2_8_24_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_10_2 e_1_2_8_21_2 e_1_2_8_11_2 e_1_2_8_22_2 |
| References_xml | – ident: e_1_2_8_12_2 doi: 10.1080/01431161.2018.1519276 – ident: e_1_2_8_22_2 doi: 10.1109/TAC.2015.2507864 – ident: e_1_2_8_2_2 doi: 10.1007/s42979-021-00485-z – ident: e_1_2_8_3_2 doi: 10.1080/1206212x.2018.1534370 – ident: e_1_2_8_13_2 doi: 10.1080/13682199.2019.1641316 – ident: e_1_2_8_4_2 doi: 10.1007/s10462-017-9582-2 – ident: e_1_2_8_5_2 doi: 10.1007/s00500-019-04238-2 – ident: e_1_2_8_7_2 doi: 10.1080/21681163.2017.1356751 – ident: e_1_2_8_10_2 doi: 10.3966/160792642018051903009 – ident: e_1_2_8_1_2 doi: 10.1080/13658816.2020.1776293 – ident: e_1_2_8_19_2 doi: 10.1109/msp.2017.2738401 – ident: e_1_2_8_16_2 doi: 10.1007/s10846-020-01273-2 – ident: e_1_2_8_18_2 doi: 10.1109/TIM.2019.2925410 – ident: e_1_2_8_23_2 doi: 10.1109/TAC.2020.3014292 – ident: e_1_2_8_15_2 doi: 10.3233/ais-190529 – ident: e_1_2_8_8_2 doi: 10.1080/08839514.2018.1430469 – ident: e_1_2_8_6_2 doi: 10.1007/s11263-019-01212-1 – ident: e_1_2_8_11_2 doi: 10.1080/01691864.2019.1610061 – ident: e_1_2_8_21_2 doi: 10.1016/j.ins.2020.07.069 – ident: e_1_2_8_20_2 doi: 10.1109/TNNLS.2017.2757497 – ident: e_1_2_8_9_2 doi: 10.1109/TCSVT.2018.2886277 – ident: e_1_2_8_24_2 doi: 10.1109/TFUZZ.2020.3012393 – ident: e_1_2_8_17_2 doi: 10.1080/01621459.2017.1345742 – ident: e_1_2_8_14_2 doi: 10.1145/3330138 |
| SSID | ssj0009637 |
| Score | 2.2193775 |
| SecondaryResourceType | retracted_publication |
| Snippet | In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through... |
| SourceID | doaj proquest gale crossref hindawi |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Cameras Central processing units CPUs Euclidean geometry Human body Mathematical models Microprocessors Optical tracking Outliers (statistics) Parameter estimation Principal components analysis Regularization Robustness Sports Stadiums Surveillance |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqikpwqGgBsWVBPhQBQlE3jh07x6Vq6aVVD4B6sya2Q1O1u9VmF_4-M46zYlWhXrhFiZXYng-_ccZvGDv0CjXFVy4rnaky2WiZmTo0mQHQwUiXT5yPxSb0xYW5uqou_yr1RTlhPT1wP3FHTeMmTnkXNGqOCaquJ65w0BRFjWtPiOyliHqGYGqg2y0jWybGNmUmUCeHlHelKNrPjxDlI5IoNxajyNm_9sw71xQT_24f-Oi48Jw-Z7sJMfJp39M9thVm--zZ-Zputdtne8lCO_4x0Uh_esFuph7uyZnxr7Dq6KwkR2fQbwfi-4jj2PX_4TkiTt-u7vglUKoWzjQ_QcvvDzXy6e3P-aJdXt9xxLc8VkXv-I_WhzkfGE1esu-nJ9-Oz7JUWSFzUk-WWZ2DzL2hZOngRfDGS9ngdRWEk0aqEJTyRVOVTubCI6LMQ4nRbK0KWXthfPGKbc_ms_CacRCgEeSgkKGRCGdAegAQAuiPoYRqxD4PU2xdoh2n6he3NoYfSlkSiE0CGbH369b3Pd3GP9p9IWmt2xBJdryBqmOT6tjHVGfEPpCsLZkydslBOpGAAyNSLDs1CK60EsaM2HijJZqg23h8mLTlkU6PB1WyyVN0ViihMZLXqjr4H2N6w57SJ_tNojHbXi5W4S174n4t227xLhrJH8H3FJs priority: 102 providerName: Directory of Open Access Journals – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZggDQOwMbQCgX5MAQIWWscO3ZOqKANJMS0A6DdLOfZ2Yq2tjQt_Pu8lzidKgQcuEWxYzl6z5-_5x_fY-wgaPSUUIIowJZC1UYJW8VaWO9NtAqyEYQ22YQ5ObFnZ-VpWnBr0rHKHhNboA4zoDXyQ6mlwYjH6PLN_LugrFG0u5pSaNxktzIpM_Lzj0Zci-4WrWYmRjiFkPhtf_Bda4r5s0Pk-sgnio0pqVXuX-PznQuKjH9OfkPqdvo5vv-_HX_A7iXiycedp-ywG3G6y-5-Wqu2NrtsJw30hr9MatSvHrJv4-DnhIn8vV81dOWSI6Z0q4rYHkklQ7edz5G4hsnqip96OvGFBuNHCCDd3Ug-vjzHXi0vrjjSZN4mV2_410mIM94Lo-yxL8dHn999EClBgwBlRktRZV5lwdKZ6xhkDDYoVeNzGSUoq3SMWoe8LgtQmQxITLNYYFBc6VxVQdqQP2Jb09k07jPupTfIldBXfK2QFXkVvPdSetp4VL4csNe9jRwk9XJKonHp2ihGa0cWdcmiA_Z8XXveqXb8od5bMve6Dmltty9mi3OXhq6raxiBDhANYpeNuqpGkIOv87xC9hP1gL0gZ3GECNgl8OliA_4YaWu5sUWOZrS0dsCGGzVxJMNG8UFyt390etg7mkuA07hrL3v89-InbJsa61aRhmxruVjFp-w2_FhOmsWzdvz8AmhDIQw priority: 102 providerName: ProQuest |
| Title | Adaptive Gaussian Incremental Expectation Stadium Parameter Estimation Algorithm for Sports Video Analysis |
| URI | https://dx.doi.org/10.1155/2021/9963246 https://www.proquest.com/docview/2527978759 https://doaj.org/article/ffc0c5dce77948e5bb0c3caf33b415e5 |
| Volume | 2021 |
| WOSCitedRecordID | wos000687139800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: K7- dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: M2O dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5iA6TxgNgA0dFVfhgChKI1jh07j93UMQmtVBOgihfLsR0WtLVT07K_v2PHLSoTghcrF8dyfC7-ji-fAQ4tR02xhUlyI4uEVYIlsnRVIrUWTjKT9o0Nh02I0UhOJsU4kiQ196fwsbfz4Xl6hLAcu_58C7Yk98p7cTb5za2bB2pMDGTyhKICrta3__HtRs8TCPrXbvjxpQ-Ab-t7Djn0MqfP4GmEh2TQynMXHrjpHjw5X3OrNnuwG82xIe8iZ_T75_BzYPWN91zko142fmMkQctvx_6wPE9obNpJd4Lw0tbLazLWfl0WNisZopm3OxjJ4OrHbF4vLq8JglkSjkBvyLfauhlZ0Ze8gK-nwy8nZ0k8RiExTPQXSZlqllrpV0Y7S52VlrEKrwtHDZOMO8e5zaoiNyylFuFj6nIMXUuesdJSabOXsD2dTd0rIJpqgYgGJaorhthFM6u1plT76UGmiw58WDWxMpFj3B91caVCrMG58gJRUSAdeLPOfdNya_wl37GX1jqPZ8QOD1BLVDQwVVWmb7g1TqCHkY6XZd9kRldZViJGcbwDb72slbdbrJLRcfsB_phnwFIDiUhKcCplB7obOdHezMbrw6gt_6h0d6VKKrqFRlFOBYbtghf7_1fKa9jxt-2YTxe2F_OlO4BH5teibuY9eHg8HI0vemEgAdNPIsH0nH7GdMy_94KZ3AEazQWn |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFLbGAA0OwMYQhQI-bAKEojWOHTsHhApsbOpW7TCm3YxjO1vR1pamZeJP8Rt5L3E6VQg47cAtii3LcT5_fs9-_h4hG04AUlxmo9SqLOKF5JHKfREpY6RX3MYd66pkE7LfVycn2eES-dnchcGwyoYTK6J2I4t75FtMMAkejxTZu_G3CLNG4elqk0KjhkXP_7gEl618u_cR_u8mYzvbRx92o5BVILJcdqZRHhseO4WBwt4x75TjvIDnzDPLFRfeC-GSIkstj5kDayr2KXhyuUh47phyCbR7g9zkiZKo1d-T0ZXIb1ppdIJHlUYM-toE2guBewzxFvgWYL-kC0tglSlgvh7cPkNP_HLw28pQLXc79_-3gXpA7gXDmnbrmbBKlvxwjdw9mKvSlmtkNRBZSV8Fte3XD8nXrjNj5Hz6ycxKvFJKgTPrXVNoD6WgbR2uQMEwd4PZBT00GNEGgKTbQJD13U_aPT-FUZieXVBwA2iVPL6kxwPnR7QRflknn69lBB6R5eFo6B8TapiRYAvCXDAFB6vPcGeMYczgwSo3WYu8aTChbVBnxyQh57ry0oTQiCAdENQim_Pa41qV5A_13iO85nVQS7x6MZqc6kBNuihsxwpnvQRuVl7keccm1hRJkoN150WLvERwamQ86JI14eIGfBhqh-muAhtUCqZUi7QXagJT2YXijQDvf3S63QBbB0It9RWqn_y9-AVZ2T062Nf7e_3eU3IHG653zNpkeTqZ-Wfklv0-HZST59XcpeTLdc-BXy8rgHc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5BRetracted%5D+Adaptive+Gaussian+Incremental+Expectation+Stadium+Parameter+Estimation+Algorithm+for+Sports+Video+Analysis&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Geng%2C+Lizhi&rft.date=2021&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1155%2F2021%2F9963246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_9963246 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |