Adaptive Gaussian Incremental Expectation Stadium Parameter Estimation Algorithm for Sports Video Analysis

In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) Jg. 2021; H. 1
1. Verfasser: Geng, Lizhi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Hindawi 2021
John Wiley & Sons, Inc
Wiley
Schlagworte:
ISSN:1076-2787, 1099-0526
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L1 regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real-time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in-depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county-level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm.
AbstractList In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L1 regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real-time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in-depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county-level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm.
In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L[sub.1] regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real-time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in-depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county-level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm.
In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L 1 regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real‐time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in‐depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county‐level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm.
Audience Academic
Author Geng, Lizhi
Author_xml – sequence: 1
  givenname: Lizhi
  orcidid: 0000-0002-9827-9403
  surname: Geng
  fullname: Geng, Lizhi
  organization: Department of Physical EducationHeilongjiang Bayi Agricultural UniversityDaqing 163000Chinahlau.cn
BookMark eNp9kVFvFCEUhSemJrbVN38AiY86LTAwMI-TZq2bNNGk6ith4LJlMzOMwFb772WdRqNRwwPk8p1zuZyz6mQOM1TVS4IvCOH8kmJKLruubShrn1SnBHddjTltT45n0dZUSPGsOktpjzEumDit9r3VS_b3gK71ISWvZ7SdTYQJ5qxHtPm2gMk6-zCj26ytP0zog456ggwRbVL203rZj7sQfb6bkAsR3S4h5oQ-ewsB9bMeH5JPz6unTo8JXjzu59Wnt5uPV-_qm_fX26v-pjZM4FwPRDNiJWgLYClYaRlz5dwBNUwyDsC5bVzXGkaoxRQTaAVpBt6wwVJpm_Nqu_raoPdqieWJ8UEF7dWPQog7pWP2ZgTlnMGGWwNCdEwCHwZsGqNd0wyMcODF69XqtcTw5QApq304xDJQUpRT0ZUP5d0vaqeLqZ9dyFGbySejetkQITiVslAXf6HKsjB5U5J0vtR_E7xZBSaGlCK4n8MQrI6Bq2Pg6jHwgtM_cOPX6EofP_5L9HoV3fnZ6q_-_y2-A1DTvPU
CitedBy_id crossref_primary_10_1155_2024_9828194
crossref_primary_10_1155_2022_2334108
crossref_primary_10_1155_2022_4796937
Cites_doi 10.1080/01431161.2018.1519276
10.1109/TAC.2015.2507864
10.1007/s42979-021-00485-z
10.1080/1206212x.2018.1534370
10.1080/13682199.2019.1641316
10.1007/s10462-017-9582-2
10.1007/s00500-019-04238-2
10.1080/21681163.2017.1356751
10.3966/160792642018051903009
10.1080/13658816.2020.1776293
10.1109/msp.2017.2738401
10.1007/s10846-020-01273-2
10.1109/TIM.2019.2925410
10.1109/TAC.2020.3014292
10.3233/ais-190529
10.1080/08839514.2018.1430469
10.1007/s11263-019-01212-1
10.1080/01691864.2019.1610061
10.1016/j.ins.2020.07.069
10.1109/TNNLS.2017.2757497
10.1109/TCSVT.2018.2886277
10.1109/TFUZZ.2020.3012393
10.1080/01621459.2017.1345742
10.1145/3330138
ContentType Journal Article
Copyright Copyright © 2021 Lizhi Geng.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Lizhi Geng. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Lizhi Geng.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Lizhi Geng. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2021/9963246
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList


Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Lv, Zhihan
Editor_xml – sequence: 1
  givenname: Zhihan
  surname: Lv
  fullname: Lv, Zhihan
ExternalDocumentID oai_doaj_org_article_ffc0c5dce77948e5bb0c3caf33b415e5
A831775288
10_1155_2021_9963246
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
24P
31~
3R3
5VS
AAEVG
AAMMB
AANHP
AAYXX
ACBWZ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
AEFGJ
AEIMD
AFFHD
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
ALUQN
AMVHM
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
H13
HF~
HVGLF
ICD
LH4
LW6
O8X
PHGZM
PHGZT
PQGLB
ROL
WYUIH
7XB
8FK
JQ2
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c470t-b1a41d8eadeed2ed8d44fdee9e2c4845ee55d3f96c412d0201e6713b534bd28d3
IEDL.DBID RHX
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687139800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-2787
IngestDate Fri Oct 03 12:53:50 EDT 2025
Fri Jul 25 21:00:49 EDT 2025
Sat Nov 29 13:49:33 EST 2025
Sat Nov 29 10:31:36 EST 2025
Tue Nov 18 22:32:12 EST 2025
Sat Nov 29 03:24:39 EST 2025
Sun Jun 02 19:17:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-b1a41d8eadeed2ed8d44fdee9e2c4845ee55d3f96c412d0201e6713b534bd28d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9827-9403
OpenAccessLink https://dx.doi.org/10.1155/2021/9963246
PQID 2527978759
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_ffc0c5dce77948e5bb0c3caf33b415e5
proquest_journals_2527978759
gale_infotracmisc_A831775288
gale_infotracacademiconefile_A831775288
crossref_primary_10_1155_2021_9963246
crossref_citationtrail_10_1155_2021_9963246
hindawi_primary_10_1155_2021_9963246
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_23_2
e_1_2_8_13_2
e_1_2_8_24_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_10_2
e_1_2_8_21_2
e_1_2_8_11_2
e_1_2_8_22_2
References_xml – ident: e_1_2_8_12_2
  doi: 10.1080/01431161.2018.1519276
– ident: e_1_2_8_22_2
  doi: 10.1109/TAC.2015.2507864
– ident: e_1_2_8_2_2
  doi: 10.1007/s42979-021-00485-z
– ident: e_1_2_8_3_2
  doi: 10.1080/1206212x.2018.1534370
– ident: e_1_2_8_13_2
  doi: 10.1080/13682199.2019.1641316
– ident: e_1_2_8_4_2
  doi: 10.1007/s10462-017-9582-2
– ident: e_1_2_8_5_2
  doi: 10.1007/s00500-019-04238-2
– ident: e_1_2_8_7_2
  doi: 10.1080/21681163.2017.1356751
– ident: e_1_2_8_10_2
  doi: 10.3966/160792642018051903009
– ident: e_1_2_8_1_2
  doi: 10.1080/13658816.2020.1776293
– ident: e_1_2_8_19_2
  doi: 10.1109/msp.2017.2738401
– ident: e_1_2_8_16_2
  doi: 10.1007/s10846-020-01273-2
– ident: e_1_2_8_18_2
  doi: 10.1109/TIM.2019.2925410
– ident: e_1_2_8_23_2
  doi: 10.1109/TAC.2020.3014292
– ident: e_1_2_8_15_2
  doi: 10.3233/ais-190529
– ident: e_1_2_8_8_2
  doi: 10.1080/08839514.2018.1430469
– ident: e_1_2_8_6_2
  doi: 10.1007/s11263-019-01212-1
– ident: e_1_2_8_11_2
  doi: 10.1080/01691864.2019.1610061
– ident: e_1_2_8_21_2
  doi: 10.1016/j.ins.2020.07.069
– ident: e_1_2_8_20_2
  doi: 10.1109/TNNLS.2017.2757497
– ident: e_1_2_8_9_2
  doi: 10.1109/TCSVT.2018.2886277
– ident: e_1_2_8_24_2
  doi: 10.1109/TFUZZ.2020.3012393
– ident: e_1_2_8_17_2
  doi: 10.1080/01621459.2017.1345742
– ident: e_1_2_8_14_2
  doi: 10.1145/3330138
SSID ssj0009637
Score 2.2193775
SecondaryResourceType retracted_publication
Snippet In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Cameras
Central processing units
CPUs
Euclidean geometry
Human body
Mathematical models
Microprocessors
Optical tracking
Outliers (statistics)
Parameter estimation
Principal components analysis
Regularization
Robustness
Sports
Stadiums
Surveillance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqikpwqGgBsWVBPhQBQlE3jh07x6Vq6aVVD4B6sya2Q1O1u9VmF_4-M46zYlWhXrhFiZXYng-_ccZvGDv0CjXFVy4rnaky2WiZmTo0mQHQwUiXT5yPxSb0xYW5uqou_yr1RTlhPT1wP3FHTeMmTnkXNGqOCaquJ65w0BRFjWtPiOyliHqGYGqg2y0jWybGNmUmUCeHlHelKNrPjxDlI5IoNxajyNm_9sw71xQT_24f-Oi48Jw-Z7sJMfJp39M9thVm--zZ-Zputdtne8lCO_4x0Uh_esFuph7uyZnxr7Dq6KwkR2fQbwfi-4jj2PX_4TkiTt-u7vglUKoWzjQ_QcvvDzXy6e3P-aJdXt9xxLc8VkXv-I_WhzkfGE1esu-nJ9-Oz7JUWSFzUk-WWZ2DzL2hZOngRfDGS9ngdRWEk0aqEJTyRVOVTubCI6LMQ4nRbK0KWXthfPGKbc_ms_CacRCgEeSgkKGRCGdAegAQAuiPoYRqxD4PU2xdoh2n6he3NoYfSlkSiE0CGbH369b3Pd3GP9p9IWmt2xBJdryBqmOT6tjHVGfEPpCsLZkydslBOpGAAyNSLDs1CK60EsaM2HijJZqg23h8mLTlkU6PB1WyyVN0ViihMZLXqjr4H2N6w57SJ_tNojHbXi5W4S174n4t227xLhrJH8H3FJs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZggDQOwMbQCgX5MAQIWWscO3ZOqKANJMS0A6DdLOfZ2Yq2tjQt_Pu8lzidKgQcuEWxYzl6z5-_5x_fY-wgaPSUUIIowJZC1UYJW8VaWO9NtAqyEYQ22YQ5ObFnZ-VpWnBr0rHKHhNboA4zoDXyQ6mlwYjH6PLN_LugrFG0u5pSaNxktzIpM_Lzj0Zci-4WrWYmRjiFkPhtf_Bda4r5s0Pk-sgnio0pqVXuX-PznQuKjH9OfkPqdvo5vv-_HX_A7iXiycedp-ywG3G6y-5-Wqu2NrtsJw30hr9MatSvHrJv4-DnhIn8vV81dOWSI6Z0q4rYHkklQ7edz5G4hsnqip96OvGFBuNHCCDd3Ug-vjzHXi0vrjjSZN4mV2_410mIM94Lo-yxL8dHn999EClBgwBlRktRZV5lwdKZ6xhkDDYoVeNzGSUoq3SMWoe8LgtQmQxITLNYYFBc6VxVQdqQP2Jb09k07jPupTfIldBXfK2QFXkVvPdSetp4VL4csNe9jRwk9XJKonHp2ihGa0cWdcmiA_Z8XXveqXb8od5bMve6Dmltty9mi3OXhq6raxiBDhANYpeNuqpGkIOv87xC9hP1gL0gZ3GECNgl8OliA_4YaWu5sUWOZrS0dsCGGzVxJMNG8UFyt390etg7mkuA07hrL3v89-InbJsa61aRhmxruVjFp-w2_FhOmsWzdvz8AmhDIQw
  priority: 102
  providerName: ProQuest
Title Adaptive Gaussian Incremental Expectation Stadium Parameter Estimation Algorithm for Sports Video Analysis
URI https://dx.doi.org/10.1155/2021/9963246
https://www.proquest.com/docview/2527978759
https://doaj.org/article/ffc0c5dce77948e5bb0c3caf33b415e5
Volume 2021
WOSCitedRecordID wos000687139800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: K7-
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: M2O
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5iA6TxgNgA0dFVfhgChKI1jh07j93UMQmtVBOgihfLsR0WtLVT07K_v2PHLSoTghcrF8dyfC7-ji-fAQ4tR02xhUlyI4uEVYIlsnRVIrUWTjKT9o0Nh02I0UhOJsU4kiQ196fwsbfz4Xl6hLAcu_58C7Yk98p7cTb5za2bB2pMDGTyhKICrta3__HtRs8TCPrXbvjxpQ-Ab-t7Djn0MqfP4GmEh2TQynMXHrjpHjw5X3OrNnuwG82xIe8iZ_T75_BzYPWN91zko142fmMkQctvx_6wPE9obNpJd4Lw0tbLazLWfl0WNisZopm3OxjJ4OrHbF4vLq8JglkSjkBvyLfauhlZ0Ze8gK-nwy8nZ0k8RiExTPQXSZlqllrpV0Y7S52VlrEKrwtHDZOMO8e5zaoiNyylFuFj6nIMXUuesdJSabOXsD2dTd0rIJpqgYgGJaorhthFM6u1plT76UGmiw58WDWxMpFj3B91caVCrMG58gJRUSAdeLPOfdNya_wl37GX1jqPZ8QOD1BLVDQwVVWmb7g1TqCHkY6XZd9kRldZViJGcbwDb72slbdbrJLRcfsB_phnwFIDiUhKcCplB7obOdHezMbrw6gt_6h0d6VKKrqFRlFOBYbtghf7_1fKa9jxt-2YTxe2F_OlO4BH5teibuY9eHg8HI0vemEgAdNPIsH0nH7GdMy_94KZ3AEazQWn
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFLbGAA0OwMYQhQI-bAKEojWOHTsHhApsbOpW7TCm3YxjO1vR1pamZeJP8Rt5L3E6VQg47cAtii3LcT5_fs9-_h4hG04AUlxmo9SqLOKF5JHKfREpY6RX3MYd66pkE7LfVycn2eES-dnchcGwyoYTK6J2I4t75FtMMAkejxTZu_G3CLNG4elqk0KjhkXP_7gEl618u_cR_u8mYzvbRx92o5BVILJcdqZRHhseO4WBwt4x75TjvIDnzDPLFRfeC-GSIkstj5kDayr2KXhyuUh47phyCbR7g9zkiZKo1d-T0ZXIb1ppdIJHlUYM-toE2guBewzxFvgWYL-kC0tglSlgvh7cPkNP_HLw28pQLXc79_-3gXpA7gXDmnbrmbBKlvxwjdw9mKvSlmtkNRBZSV8Fte3XD8nXrjNj5Hz6ycxKvFJKgTPrXVNoD6WgbR2uQMEwd4PZBT00GNEGgKTbQJD13U_aPT-FUZieXVBwA2iVPL6kxwPnR7QRflknn69lBB6R5eFo6B8TapiRYAvCXDAFB6vPcGeMYczgwSo3WYu8aTChbVBnxyQh57ry0oTQiCAdENQim_Pa41qV5A_13iO85nVQS7x6MZqc6kBNuihsxwpnvQRuVl7keccm1hRJkoN150WLvERwamQ86JI14eIGfBhqh-muAhtUCqZUi7QXagJT2YXijQDvf3S63QBbB0It9RWqn_y9-AVZ2T062Nf7e_3eU3IHG653zNpkeTqZ-Wfklv0-HZST59XcpeTLdc-BXy8rgHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%5BRetracted%5D+Adaptive+Gaussian+Incremental+Expectation+Stadium+Parameter+Estimation+Algorithm+for+Sports+Video+Analysis&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Geng%2C+Lizhi&rft.date=2021&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1155%2F2021%2F9963246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_9963246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon