Stochastic binary problems with simple penalties for capacity constraints violations
This paper studies stochastic programs with first-stage binary variables and capacity constraints, using simple penalties for capacities violations. In particular, we take a closer look at the knapsack problem with weights and capacity following independent random variables and prove that the proble...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 138; číslo 1-2; s. 199 - 221 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer-Verlag
01.04.2013
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper studies stochastic programs with first-stage binary variables and capacity constraints, using simple penalties for capacities violations. In particular, we take a closer look at the knapsack problem with weights and capacity following independent random variables and prove that the problem is weakly
-hard in general. We provide pseudo-polynomial algorithms for three special cases of the problem: constant weights and capacity uniformly distributed, subset sum with Gaussian weights and strictly positively distributed random capacity, and subset sum with constant weights and arbitrary random capacity. We then turn to a branch-and-cut algorithm based on the outer approximation of the objective function. We provide computational results for the stochastic knapsack problem (i) with Gaussian weights and constant capacity and (ii) with constant weights and capacity uniformly distributed, on randomly generated instances inspired by computational results for the knapsack problem. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 scopus-id:2-s2.0-84875435973 |
| ISSN: | 0025-5610 1436-4646 1436-4646 |
| DOI: | 10.1007/s10107-012-0520-4 |