Uniformity and the Taylor expansion of ordinary lambda-terms

We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 403; číslo 2; s. 347 - 372
Hlavní autori: Ehrhard, Thomas, Regnier, Laurent
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 28.08.2008
Elsevier
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in the algebraic sense, i.e. commute with linear combinations of the function or the argument. We study the collective behaviour of the beta-reducts of the terms occurring in the Taylor expansion of any ordinary lambda-term, using, in a surprisingly crucial way, a uniformity property that they enjoy. As a corollary, we obtain (the main part of) a proof that this Taylor expansion commutes with Böhm tree computation, syntactically.
AbstractList We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in the algebraic sense, i.e. commute with linear combinations of the function or the argument. We study the collective behaviour of the beta-reducts of the terms occurring in the Taylor expansion of any ordinary lambda-term, using, in a surprisingly crucial way, a uniformity property that they enjoy. As a corollary, we obtain (the main part of) a proof that this Taylor expansion commutes with Böhm tree computation, syntactically.
We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination --- with rational coefficients --- of terms of a resource calculus similar to Boudol's resource lambda-calculus. In this calculus, all applications are (multi-)linear in the algebraic sense, i.e. commute with linear combination of the function or the argument. We study the collective behaviour of the beta-reducts of the terms occurring in the Taylor expansion of any ordinary lambda-term, using a uniformity property that they enjoy.
Author Regnier, Laurent
Ehrhard, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Ehrhard
  fullname: Ehrhard, Thomas
  email: thomas.ehrhard@pps.jussieu.fr
  organization: Laboratoire PPS (UMR 7126), Université Paris Diderot–Paris 7, Case 7014, 75205 Paris Cedex 13, France
– sequence: 2
  givenname: Laurent
  surname: Regnier
  fullname: Regnier, Laurent
  email: regnier@iml.univ-mrs.fr
  organization: Institut de Mathématiques de Luminy (UMR 6206), Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20611129$$DView record in Pascal Francis
https://hal.science/hal-00150275$$DView record in HAL
BookMark eNp9kEFLJDEQhYO44OjuD9hbXzx46N5K0unY6EXEXYUBL3oONUk1ZuhJhiSI8-_NMOphD9aloHhfVb13yo5DDMTYbw4dBz78WXfF5k4AXHYwdAD8iC34pR5bIcb-mC1AQt_KUasTdprzGmopPSzY9XPwU0wbX3YNBteUF2qecDfH1NDbFkP2MTRxamJyPmDaNTNuVg7bQmmTf7IfE86Zfn30M_b89-7p9r5dPv57uL1ZtrbXUNpxRVqDWnHBB9cLIKmc470dNU3CKewloUIaFPFermjggDA60pJ6K0c5yTN2cdj7grPZJr-pj5iI3tzfLM1-Vv0qEFq98qo9P2i3mC3OU8Jgff6iBAycczFWnT7obIo5J5qM9QVLtVsS-tlwMPtgzdrUYM0-WAPD_lAl-X_k5_LvmKsDQzWmV0_JZOspWHI-kS3GRf8N_Q5ejJGq
CODEN TCSCDI
CitedBy_id crossref_primary_10_1016_j_ic_2012_10_015
crossref_primary_10_1017_S0960129511000594
crossref_primary_10_1017_S0960129516000372
crossref_primary_10_1017_S0960129525000040
crossref_primary_10_1016_j_tcs_2011_11_027
crossref_primary_10_1093_logcom_exs020
crossref_primary_10_1016_j_entcs_2014_10_014
crossref_primary_10_1017_S0960129523000129
crossref_primary_10_1017_S0960129516000311
crossref_primary_10_1016_j_entcs_2010_08_013
crossref_primary_10_1016_j_ic_2015_12_010
crossref_primary_10_1016_j_ic_2023_105047
crossref_primary_10_1145_3632855
crossref_primary_10_1145_3371069
crossref_primary_10_1145_3434309
crossref_primary_10_1016_j_tcs_2010_12_022
crossref_primary_10_1016_j_tcs_2010_12_017
crossref_primary_10_1016_j_entcs_2019_09_005
crossref_primary_10_1145_3158094
crossref_primary_10_1145_3571201
crossref_primary_10_1017_S0960129515000298
crossref_primary_10_1017_S0960129520000249
Cites_doi 10.1016/j.tcs.2007.02.028
10.1016/S0168-0072(00)00056-7
10.1016/S0304-3975(03)00392-X
10.1007/s10990-007-9018-9
10.1016/j.tcs.2006.08.003
10.1017/S096012950100336X
10.1017/S0960129599002893
10.1017/S0960129504004645
10.1007/3-540-57208-2_1
10.1093/logcom/10.3.411
10.1016/0304-3975(86)90044-7
10.1016/0304-3975(87)90045-4
ContentType Journal Article
Copyright 2008 Elsevier B.V.
2008 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2008 Elsevier B.V.
– notice: 2008 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
1XC
VOOES
DOI 10.1016/j.tcs.2008.06.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Applied Sciences
EISSN 1879-2294
EndPage 372
ExternalDocumentID oai:HAL:hal-00150275v1
20611129
10_1016_j_tcs_2008_06_001
S0304397508004064
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
1XC
VOOES
ID FETCH-LOGICAL-c470t-9be7705b1216d420e35dd14c97ef2d5a43ea5ae65e143be610a09de73e4c393f3
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259044800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Oct 14 20:08:47 EDT 2025
Mon Jul 21 09:15:51 EDT 2025
Sat Nov 29 05:14:56 EST 2025
Tue Nov 18 21:59:53 EST 2025
Fri Feb 23 02:16:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Differential lambda-calculus
Linear logic
Lambda-calculus with resources
Denotational semantics
Lambda-calculus
Lambda-calculus with multiplicities
Linear combination
Computer theory
Semantics
Lambda calculus
Multiplicity
Proof
Resource
Tree
Application
Expansion
Uniformity
Lambda-calculus;Linear logic;Differential lambda-calculus;Lambda-calculus with resources;Lambda-calculus with multiplicities;Denotational semantics
lambda-calculus
differential lambda-calculus
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-9be7705b1216d420e35dd14c97ef2d5a43ea5ae65e143be610a09de73e4c393f3
ORCID 0000-0001-5231-5504
0009-0005-5142-5484
OpenAccessLink https://hal.science/hal-00150275
PageCount 26
ParticipantIDs hal_primary_oai_HAL_hal_00150275v1
pascalfrancis_primary_20611129
crossref_citationtrail_10_1016_j_tcs_2008_06_001
crossref_primary_10_1016_j_tcs_2008_06_001
elsevier_sciencedirect_doi_10_1016_j_tcs_2008_06_001
PublicationCentury 2000
PublicationDate 2008-08-28
PublicationDateYYYYMMDD 2008-08-28
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-28
  day: 28
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Theoretical computer science
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Vaux (b19) 2007; 379
Danos, Regnier (b7) 1999; 227
Ehrhard, Regnier (b10) 2006; vol. 3988
Boudol, Curien, Lavatelli (b1) 1999; 9
Girard (b14) 2001; 11
Girard (b13) 1987; 50
Girard, Lafont, Taylor (b15) 1989; vol. 7
Ehrhard, Regnier (b9) 2003; 309
Bucciarelli, Ehrhard (b2) 2001; 109
Krivine (b18) 2007; 20
Gérard Boudol, The lambda calculus with multiplicities, Technical Report 2025, INRIA Sophia-Antipolis, 1993
Berry (b3) 1978; vol. 62
Ehrhard, Regnier (b11) 2006; 364
Girard (b12) 1986; 45
De Bruijn (b5) 1987
De Bruijn (b6) 1995; vol. 133
Kfoury (b16) 2000; 10
Jean-Louis Krivine, Un interpréteur du lambda-calcul. Unpublished note, 1985
Ehrhard (b8) 2005; 15
Berry (10.1016/j.tcs.2008.06.001_b3) 1978; vol. 62
Girard (10.1016/j.tcs.2008.06.001_b13) 1987; 50
Krivine (10.1016/j.tcs.2008.06.001_b18) 2007; 20
Ehrhard (10.1016/j.tcs.2008.06.001_b9) 2003; 309
Danos (10.1016/j.tcs.2008.06.001_b7) 1999; 227
Bucciarelli (10.1016/j.tcs.2008.06.001_b2) 2001; 109
Ehrhard (10.1016/j.tcs.2008.06.001_b10) 2006; vol. 3988
De Bruijn (10.1016/j.tcs.2008.06.001_b5) 1987
Girard (10.1016/j.tcs.2008.06.001_b12) 1986; 45
Kfoury (10.1016/j.tcs.2008.06.001_b16) 2000; 10
Ehrhard (10.1016/j.tcs.2008.06.001_b11) 2006; 364
Vaux (10.1016/j.tcs.2008.06.001_b19) 2007; 379
Boudol (10.1016/j.tcs.2008.06.001_b1) 1999; 9
Girard (10.1016/j.tcs.2008.06.001_b14) 2001; 11
Girard (10.1016/j.tcs.2008.06.001_b15) 1989; vol. 7
10.1016/j.tcs.2008.06.001_b17
De Bruijn (10.1016/j.tcs.2008.06.001_b6) 1995; vol. 133
Ehrhard (10.1016/j.tcs.2008.06.001_b8) 2005; 15
10.1016/j.tcs.2008.06.001_b4
References_xml – volume: 9
  start-page: 437
  year: 1999
  end-page: 482
  ident: b1
  article-title: A semantics for lambda calculi with resource
  publication-title: Mathematical Structures in Computer Science
– volume: vol. 133
  start-page: 313
  year: 1995
  end-page: 337
  ident: b6
  article-title: Generalizing automath by means of a lambda-typed lambda calculus
  publication-title: Selected Papers on Automath
– volume: 364
  start-page: 166
  year: 2006
  end-page: 195
  ident: b11
  article-title: Differential interaction nets
  publication-title: Theoretical Computer Science
– volume: 227
  start-page: 273
  year: 1999
  end-page: 291
  ident: b7
  article-title: Reversible, irreversible and optimal lambda-machines
  publication-title: Theoretical Computer Science
– volume: 20
  start-page: 199
  year: 2007
  end-page: 207
  ident: b18
  article-title: A call-by-name lambda-calculus machine
  publication-title: Higher-Order and Symbolic Computation
– volume: 50
  start-page: 1
  year: 1987
  end-page: 102
  ident: b13
  article-title: Linear logic
  publication-title: Theoretical Computer Science
– volume: 109
  start-page: 205
  year: 2001
  end-page: 241
  ident: b2
  article-title: On phase semantics and denotational semantics: The exponentials
  publication-title: Annals of Pure and Applied Logic
– volume: vol. 62
  year: 1978
  ident: b3
  article-title: Stable models of typed lambda-calculi
  publication-title: Proceedings of the 5th International Colloquium on Automata, Languages and Programming
– reference: Jean-Louis Krivine, Un interpréteur du lambda-calcul. Unpublished note, 1985
– volume: 15
  start-page: 615
  year: 2005
  end-page: 646
  ident: b8
  article-title: Finiteness spaces
  publication-title: Mathematical Structures in Computer Science
– volume: 309
  start-page: 1
  year: 2003
  end-page: 41
  ident: b9
  article-title: The differential lambda-calculus
  publication-title: Theoretical Computer Science
– reference: Gérard Boudol, The lambda calculus with multiplicities, Technical Report 2025, INRIA Sophia-Antipolis, 1993
– volume: 11
  start-page: 301
  year: 2001
  end-page: 506
  ident: b14
  article-title: Locus Solum
  publication-title: Mathematical Structures in Computer Science
– volume: 10
  start-page: 411
  year: 2000
  end-page: 436
  ident: b16
  article-title: A linearization of the lambda-calculus
  publication-title: Journal of Logic and Computation
– volume: 379
  start-page: 166
  year: 2007
  end-page: 209
  ident: b19
  article-title: The differential lambda-mu calculus
  publication-title: Theoretical Computer Science
– volume: 45
  start-page: 159
  year: 1986
  end-page: 192
  ident: b12
  article-title: The system F of variable types, fifteen years later
  publication-title: Theoretical Computer Science
– volume: vol. 7
  year: 1989
  ident: b15
  article-title: Proofs and types
  publication-title: Cambridge Tracts in Theoretical Computer Science
– start-page: 71
  year: 1987
  end-page: 92
  ident: b5
  article-title: Generalizing Automath by means of a lambda-typed lambda calculus
  publication-title: Mathematical Logic and Theoretical Computer Science
– volume: vol. 3988
  start-page: 186
  year: 2006
  end-page: 197
  ident: b10
  article-title: Böhm trees, Krivine machine and the Taylor expansion of ordinary lambda-terms
  publication-title: Logical Approaches to Computational Barriers
– volume: 379
  start-page: 166
  issue: 1–2
  year: 2007
  ident: 10.1016/j.tcs.2008.06.001_b19
  article-title: The differential lambda-mu calculus
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2007.02.028
– volume: 109
  start-page: 205
  issue: 3
  year: 2001
  ident: 10.1016/j.tcs.2008.06.001_b2
  article-title: On phase semantics and denotational semantics: The exponentials
  publication-title: Annals of Pure and Applied Logic
  doi: 10.1016/S0168-0072(00)00056-7
– volume: 309
  start-page: 1
  issue: 1–3
  year: 2003
  ident: 10.1016/j.tcs.2008.06.001_b9
  article-title: The differential lambda-calculus
  publication-title: Theoretical Computer Science
  doi: 10.1016/S0304-3975(03)00392-X
– volume: vol. 62
  year: 1978
  ident: 10.1016/j.tcs.2008.06.001_b3
  article-title: Stable models of typed lambda-calculi
– volume: 227
  start-page: 273
  issue: 1–2
  year: 1999
  ident: 10.1016/j.tcs.2008.06.001_b7
  article-title: Reversible, irreversible and optimal lambda-machines
  publication-title: Theoretical Computer Science
– volume: vol. 7
  year: 1989
  ident: 10.1016/j.tcs.2008.06.001_b15
  article-title: Proofs and types
– volume: 20
  start-page: 199
  issue: 2
  year: 2007
  ident: 10.1016/j.tcs.2008.06.001_b18
  article-title: A call-by-name lambda-calculus machine
  publication-title: Higher-Order and Symbolic Computation
  doi: 10.1007/s10990-007-9018-9
– volume: 364
  start-page: 166
  issue: 2
  year: 2006
  ident: 10.1016/j.tcs.2008.06.001_b11
  article-title: Differential interaction nets
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2006.08.003
– ident: 10.1016/j.tcs.2008.06.001_b17
– volume: 11
  start-page: 301
  issue: 3
  year: 2001
  ident: 10.1016/j.tcs.2008.06.001_b14
  article-title: Locus Solum
  publication-title: Mathematical Structures in Computer Science
  doi: 10.1017/S096012950100336X
– volume: 9
  start-page: 437
  issue: 4
  year: 1999
  ident: 10.1016/j.tcs.2008.06.001_b1
  article-title: A semantics for lambda calculi with resource
  publication-title: Mathematical Structures in Computer Science
  doi: 10.1017/S0960129599002893
– volume: 15
  start-page: 615
  issue: 4
  year: 2005
  ident: 10.1016/j.tcs.2008.06.001_b8
  article-title: Finiteness spaces
  publication-title: Mathematical Structures in Computer Science
  doi: 10.1017/S0960129504004645
– ident: 10.1016/j.tcs.2008.06.001_b4
  doi: 10.1007/3-540-57208-2_1
– volume: vol. 3988
  start-page: 186
  year: 2006
  ident: 10.1016/j.tcs.2008.06.001_b10
  article-title: Böhm trees, Krivine machine and the Taylor expansion of ordinary lambda-terms
– volume: vol. 133
  start-page: 313
  year: 1995
  ident: 10.1016/j.tcs.2008.06.001_b6
  article-title: Generalizing automath by means of a lambda-typed lambda calculus
– volume: 10
  start-page: 411
  issue: 3
  year: 2000
  ident: 10.1016/j.tcs.2008.06.001_b16
  article-title: A linearization of the lambda-calculus
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/10.3.411
– volume: 45
  start-page: 159
  year: 1986
  ident: 10.1016/j.tcs.2008.06.001_b12
  article-title: The system F of variable types, fifteen years later
  publication-title: Theoretical Computer Science
  doi: 10.1016/0304-3975(86)90044-7
– volume: 50
  start-page: 1
  year: 1987
  ident: 10.1016/j.tcs.2008.06.001_b13
  article-title: Linear logic
  publication-title: Theoretical Computer Science
  doi: 10.1016/0304-3975(87)90045-4
– start-page: 71
  year: 1987
  ident: 10.1016/j.tcs.2008.06.001_b5
  article-title: Generalizing Automath by means of a lambda-typed lambda calculus
SSID ssj0000576
Score 2.2482743
Snippet We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus...
We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination --- with rational coefficients --- of terms of a resource...
SourceID hal
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 347
SubjectTerms Algebra
Applied sciences
Commutative rings and algebras
Computer Science
Computer science; control theory; systems
Denotational semantics
Differential lambda-calculus
Exact sciences and technology
General logic
Lambda-calculus
Lambda-calculus with multiplicities
Lambda-calculus with resources
Linear logic
Logic and foundations
Logic in Computer Science
Mathematical logic, foundations, set theory
Mathematics
Miscellaneous
Programming theory
Sciences and techniques of general use
Theoretical computing
Title Uniformity and the Taylor expansion of ordinary lambda-terms
URI https://dx.doi.org/10.1016/j.tcs.2008.06.001
https://hal.science/hal-00150275
Volume 403
WOSCitedRecordID wos000259044800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgcQ4jJAG5fJQjyBjFxf6lripYJCN0GFpiL1LbITR2Oasmrpqv18jmM7DUUMeOAlqlwnqXy-nvPZ54bQK6Mkc5xpkjNliShLSrSillgnrQNlCJAWTbMJNZuNFgv9tdc7Trkw63NVVaPra738r6KGMRC2T539B3G3D4UB-AxChyuIHa5_JXhgkZ6IenadoiPDttxX8wfDFBkibDpDKi5AwhaGeBVdd6nqvJPimMfeD2-iwWx5-PRkOj75sBVp5P03k0-zoxBk4TOvU3RNOl7w5apTunZz5hUNdEctce9L0aHfSdKhgvIOWBjhHZ3IQ0nNaF556NTzi-YOhwhnb1d5HSNcGy_Rxkwl1_yW9WpjChkwE08ed9AuU1KP-mh3fDRZHG_sslTBcx1_f_JxN9F-W6_9HUvZOfXhsneXpobFL0Prkw4fmT9A9-JGAo8DAB6inqv20P24qcBRZdcwlPp2pLE9dOdLW6u3foTebQCDATAYvsIBMLgFDL4ocQIM7gLmMfr2cTJ_PyWxpwbJhaIroq1Tiko7YINhIRh1XBbFQORauZIV0gjujDRuKB0QaeuAXBuqC6e4EznXvORPUL-6qNw-whpuN0C4GbVAcYb5SAjPplUhrSoMdweIpjXM8lhw3vc9Oc9SZOFZBsseG6E20ZUH6HV7yzJUW7lpskiCySL6Aw3MAFM33fYShNg-3pdXn44_Z36sqbcJ4FnDpMOfZNxOTyh7-qcJz9Dtzd_pOeqvLq_cC3QrX6--15eHEZs_AILMnE0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniformity+and+the+Taylor+expansion+of+ordinary+lambda-terms&rft.jtitle=Theoretical+computer+science&rft.au=EHRHARD%2C+Thomas&rft.au=REGNIER%2C+Laurent&rft.date=2008-08-28&rft.pub=Elsevier&rft.issn=0304-3975&rft.volume=403&rft.issue=2-3&rft.spage=347&rft.epage=372&rft_id=info:doi/10.1016%2Fj.tcs.2008.06.001&rft.externalDBID=n%2Fa&rft.externalDocID=20611129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon