Uniformity and the Taylor expansion of ordinary lambda-terms

We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 403; H. 2; S. 347 - 372
Hauptverfasser: Ehrhard, Thomas, Regnier, Laurent
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 28.08.2008
Elsevier
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the complete Taylor expansion of an ordinary lambda-term as an infinite linear combination–with rational coefficients–of terms of a resource calculus similar to Boudol’s lambda-calculus with multiplicities (or with resources). In our resource calculus, all applications are (multi)linear in the algebraic sense, i.e. commute with linear combinations of the function or the argument. We study the collective behaviour of the beta-reducts of the terms occurring in the Taylor expansion of any ordinary lambda-term, using, in a surprisingly crucial way, a uniformity property that they enjoy. As a corollary, we obtain (the main part of) a proof that this Taylor expansion commutes with Böhm tree computation, syntactically.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2008.06.001