Discriminative dictionary learning for abdominal multi-organ segmentation

•Discriminative dictionary learning is applied to multi-organ segmentation.•A local voxel-wise atlas selection is proposed.•A multi-resolution strategy is developed for gaining computational efficiency.•Validation is carried out on 150 abdominal CT images.•A comparison between different atlas select...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis Vol. 23; no. 1; pp. 92 - 104
Main Authors: Tong, Tong, Wolz, Robin, Wang, Zehan, Gao, Qinquan, Misawa, Kazunari, Fujiwara, Michitaka, Mori, Kensaku, Hajnal, Joseph V., Rueckert, Daniel
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.07.2015
Subjects:
ISSN:1361-8415, 1361-8423, 1361-8423
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Discriminative dictionary learning is applied to multi-organ segmentation.•A local voxel-wise atlas selection is proposed.•A multi-resolution strategy is developed for gaining computational efficiency.•Validation is carried out on 150 abdominal CT images.•A comparison between different atlas selection strategies. The framework of the multi-resolution segmentation process. The proposed DDLS approach is performed to generate probabilistic atlas for each organ, which propagates across resolutions. The segmentation mask at current resolution is limited to the voxels with uncertain segmentations at the previous resolution. The final segmentation is achieved by using the graph-cuts algorithm in the native space. [Display omitted] An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively.
AbstractList An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively.An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively.
An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively.
•Discriminative dictionary learning is applied to multi-organ segmentation.•A local voxel-wise atlas selection is proposed.•A multi-resolution strategy is developed for gaining computational efficiency.•Validation is carried out on 150 abdominal CT images.•A comparison between different atlas selection strategies. The framework of the multi-resolution segmentation process. The proposed DDLS approach is performed to generate probabilistic atlas for each organ, which propagates across resolutions. The segmentation mask at current resolution is limited to the voxels with uncertain segmentations at the previous resolution. The final segmentation is achieved by using the graph-cuts algorithm in the native space. [Display omitted] An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively.
Author Wolz, Robin
Tong, Tong
Misawa, Kazunari
Gao, Qinquan
Fujiwara, Michitaka
Wang, Zehan
Hajnal, Joseph V.
Rueckert, Daniel
Mori, Kensaku
Author_xml – sequence: 1
  givenname: Tong
  surname: Tong
  fullname: Tong, Tong
  email: t.tong11@imperial.ac.uk
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
– sequence: 2
  givenname: Robin
  surname: Wolz
  fullname: Wolz, Robin
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
– sequence: 3
  givenname: Zehan
  surname: Wang
  fullname: Wang, Zehan
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
– sequence: 4
  givenname: Qinquan
  surname: Gao
  fullname: Gao, Qinquan
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
– sequence: 5
  givenname: Kazunari
  surname: Misawa
  fullname: Misawa, Kazunari
  organization: Aichi Cancer Center, Nagoya 464-8681, Japan
– sequence: 6
  givenname: Michitaka
  surname: Fujiwara
  fullname: Fujiwara, Michitaka
  organization: Nagoya University Hospital, Nagoya 466-0065, Japan
– sequence: 7
  givenname: Kensaku
  surname: Mori
  fullname: Mori, Kensaku
  organization: Information and Communications, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
– sequence: 8
  givenname: Joseph V.
  surname: Hajnal
  fullname: Hajnal, Joseph V.
  organization: Center for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St. Thomas Hospital, London SE1 7EH, UK
– sequence: 9
  givenname: Daniel
  surname: Rueckert
  fullname: Rueckert, Daniel
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25988490$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAURS0EorTwC5BQRpaE58Rx4oEB8VmpEgvMluO8VK4SG-wUiX-PQwsDA9PzcM6V752TQ-ssEnJOIaNA-dUmG7A1KsuBlhmwLJ4DckILTtOa5cXh75uWMzIPYQMAFWNwTGZ5KeqaCTghyzsTtDeDsWo0H5i0Ro_GWeU_kx6Vt8auk875RDWtm6A-Gbb9aFLn18omAdcD2lFNyik56lQf8Gx_F-T14f7l9ildPT8ub29WqWYVjGndqVIL3iheFVBxjVw0AspOt5R1AjQtyjZ-s-Qgugohr6oa8xIrXiAT2NTFglzuct-8e99iGOUQK2DfK4tuGyTlNYcpnEf0Yo9um7iVfItFYzP5Uz8CYgdo70Lw2Eltdm1Gr0wvKchparmR31PLaWoJTMYT3eKP-xP_v3W9szBO9GHQy6ANWh1Bj3qUrTP_-l-0Wpiw
CitedBy_id crossref_primary_10_1016_j_media_2016_06_009
crossref_primary_10_3389_fonc_2025_1528654
crossref_primary_10_1016_j_bspc_2023_105361
crossref_primary_10_1016_j_compbiomed_2019_02_017
crossref_primary_10_1007_s12021_016_9312_y
crossref_primary_10_1016_j_compbiomed_2021_104658
crossref_primary_10_1016_j_eswa_2024_123856
crossref_primary_10_1148_ryai_2020190102
crossref_primary_10_1016_j_bspc_2025_107745
crossref_primary_10_1109_ACCESS_2023_3320570
crossref_primary_10_1186_s12880_025_01737_7
crossref_primary_10_1134_S0361768816060050
crossref_primary_10_1109_TMI_2019_2903562
crossref_primary_10_1016_j_acra_2019_08_014
crossref_primary_10_1016_j_artmed_2021_102109
crossref_primary_10_1016_j_patcog_2020_107762
crossref_primary_10_1049_iet_ipr_2019_0399
crossref_primary_10_1109_TMI_2022_3162111
crossref_primary_10_1016_j_eswa_2022_118625
crossref_primary_10_1007_s11042_022_12322_3
crossref_primary_10_1016_j_media_2018_07_009
crossref_primary_10_1097_BRS_0000000000004308
crossref_primary_10_1155_2022_2196782
crossref_primary_10_1016_j_ymeth_2020_10_004
crossref_primary_10_1016_j_compmedimag_2018_09_003
crossref_primary_10_3390_app131910765
crossref_primary_10_1109_TMI_2017_2726112
crossref_primary_10_1016_j_compmedimag_2019_04_004
crossref_primary_10_1016_j_media_2018_11_002
crossref_primary_10_1186_s12918_018_0572_z
crossref_primary_10_1016_j_media_2021_101979
crossref_primary_10_1007_s11604_021_01098_5
crossref_primary_10_1016_j_cmpb_2019_07_002
crossref_primary_10_1109_TMI_2021_3089661
crossref_primary_10_1002_ima_22321
crossref_primary_10_1002_mp_14364
crossref_primary_10_1155_2022_5906877
crossref_primary_10_1016_j_compbiomed_2024_108637
crossref_primary_10_1007_s11042_020_09592_0
crossref_primary_10_1016_j_compmedimag_2018_03_001
crossref_primary_10_1007_s13304_016_0394_8
crossref_primary_10_1016_j_patcog_2016_09_026
crossref_primary_10_1007_s11517_019_01976_1
crossref_primary_10_1186_s12880_020_00460_9
crossref_primary_10_1109_TRPMS_2018_2876562
crossref_primary_10_1109_TBME_2019_2894123
crossref_primary_10_1016_j_compbiomed_2021_105030
crossref_primary_10_1016_j_clinimag_2022_04_007
crossref_primary_10_1109_TMI_2020_3001036
crossref_primary_10_3389_fbioe_2024_1414605
crossref_primary_10_1109_TMI_2018_2806309
crossref_primary_10_1097_JP9_0000000000000056
crossref_primary_10_1109_TIP_2020_3038363
crossref_primary_10_1007_s11042_023_15948_z
crossref_primary_10_1007_s11766_022_4346_4
crossref_primary_10_1016_j_media_2023_102879
crossref_primary_10_1002_hbm_24243
crossref_primary_10_1088_1361_6560_aa766e
crossref_primary_10_1109_ACCESS_2021_3086530
crossref_primary_10_1109_TMI_2017_2720261
crossref_primary_10_1109_TMI_2018_2835303
crossref_primary_10_1155_2020_8351725
crossref_primary_10_1007_s11042_020_09640_9
crossref_primary_10_1007_s11548_016_1501_5
crossref_primary_10_1093_jrr_rrx104
crossref_primary_10_1016_j_media_2016_02_006
crossref_primary_10_1007_s10334_015_0498_z
crossref_primary_10_1016_j_intonc_2025_06_007
crossref_primary_10_1016_j_jvcir_2021_103311
crossref_primary_10_1007_s10462_024_10966_1
crossref_primary_10_1016_j_media_2021_102156
crossref_primary_10_1109_TMI_2018_2890510
crossref_primary_10_3390_su151511630
crossref_primary_10_1007_s11548_016_1481_5
crossref_primary_10_1109_TMI_2018_2851780
crossref_primary_10_1016_j_media_2017_03_006
crossref_primary_10_1016_j_cmpb_2020_105533
crossref_primary_10_1002_mp_14386
crossref_primary_10_1016_j_media_2018_02_001
crossref_primary_10_1002_mp_12438
crossref_primary_10_1016_j_compbiomed_2024_108659
crossref_primary_10_3390_diagnostics13071282
crossref_primary_10_1109_ACCESS_2023_3299491
crossref_primary_10_1007_s00521_025_11055_2
crossref_primary_10_1016_j_displa_2022_102223
crossref_primary_10_1016_j_neucom_2016_06_036
crossref_primary_10_1007_s00521_019_04333_3
crossref_primary_10_1016_j_media_2019_101539
crossref_primary_10_1088_1361_6560_abfce3
crossref_primary_10_1007_s11548_018_1879_3
crossref_primary_10_1016_j_mri_2020_01_008
Cites_doi 10.1109/TMI.2003.809139
10.1007/s11548-007-0135-z
10.1016/j.media.2009.10.001
10.1118/1.3284530
10.1016/j.neuroimage.2011.09.012
10.1097/00004424-199806000-00006
10.1016/j.neuroimage.2010.09.018
10.1109/TSP.2006.881199
10.1109/TMI.2011.2156806
10.1016/j.neuroimage.2009.02.018
10.1016/j.acra.2008.07.008
10.1109/TMI.2009.2013851
10.1109/TMI.2011.2180920
10.1016/j.neuroimage.2010.02.025
10.1109/TMI.2014.2321281
10.1109/TIP.2012.2186306
10.1016/j.compmedimag.2008.10.002
10.1016/j.neuroimage.2009.09.069
10.1016/j.neuroimage.2008.07.058
10.1109/TMI.2013.2265805
10.1006/cviu.1995.1004
10.1016/j.neuroimage.2006.05.061
10.1109/TMI.2003.815867
10.1016/j.neuroimage.2013.02.069
10.1007/s11548-009-0384-0
10.1109/TMI.2011.2165294
10.1016/j.media.2012.02.001
ContentType Journal Article
Copyright 2015 The Authors
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 The Authors
– notice: Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.media.2015.04.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 104
ExternalDocumentID 25988490
10_1016_j_media_2015_04_015
S1361841515000651
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/K006355/1
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c470t-8fa5c96ba673076ce69b905fcd14f90c135d0745609f7e02778e25e763e49eb83
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357351600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Mon Sep 29 05:59:54 EDT 2025
Mon Jul 21 05:57:31 EDT 2025
Sat Nov 29 04:06:01 EST 2025
Tue Nov 18 21:56:41 EST 2025
Fri Feb 23 02:28:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Local atlas selection
Abdominal multi-organ segmentation
Discriminative dictionary learning
Patch based
Language English
License http://creativecommons.org/licenses/by/4.0
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-8fa5c96ba673076ce69b905fcd14f90c135d0745609f7e02778e25e763e49eb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.media.2015.04.015
PMID 25988490
PQID 1686067306
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1686067306
pubmed_primary_25988490
crossref_citationtrail_10_1016_j_media_2015_04_015
crossref_primary_10_1016_j_media_2015_04_015
elsevier_sciencedirect_doi_10_1016_j_media_2015_04_015
PublicationCentury 2000
PublicationDate July 2015
2015-07-00
2015-Jul
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Awate, Whitaker (bib0003) 2014; 33
Liu, Zhao, Kijewski, Ginsberg, Wang, Schwartz (bib0019) 2004
Park, Bland, Meyer (bib0026) 2003; 22
Gao, Heath, Fishman (bib0012) 1998; 33
Bagci, Chen, Udupa (bib0004) 2012; 31
Spiegel, Hahn, Daum, Wasza, Hornegger (bib0034) 2009; 33
van der Lijn, den Heijer, Breteler, Niessen (bib0016) 2008; 43
Coupé, Manjķn, Fonov, Pruessner, Robles, Collins (bib0010) 2011; 54
Okada, Yokota, Hori, Nakamoto, Nakamura, Sato (bib0025) 2008
Okada, Linguraru, Hori, Summers, Tomiyama, Sato (bib0022) 2013
Wolz, Aljabar, Rueckert, Heckemann, Hammers (bib0043) 2009
Wang, Donoghue, Rueckert (bib0040) 2013
Wang, Lekadir, Ismail, Yacoub, Yang (bib0038) 2010
Pluim, Maintz, Viergever (bib0027) 2003; 22
Ta, Giraud, Coupé, Collins (bib0035) 2014
Shimizu, Nakagomi, Narihira, Kobatake, Nawano, Shinozaki, Ishizu, Togashi (bib0032) 2011
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bib0002) 2009; 46
van Rikxoort, Isgum, Arzhaeva, Staring, Klein, Viergever, Pluim, van Ginneken (bib0028) 2010; 14
Oda, Nakaoka, Kitasaka, Furukawa, Misawa, Fujiwara, Mori (bib0021) 2012
Aharon, Elad, Bruckstein (bib0001) 2006; 54
Wimmer, Soza, Hornegger (bib0041) 2009
Wang, Stout, Chatziioannou (bib0037) 2012; 31
Heimann, Van Ginneken, Styner, Arzhaeva, Aurich, Bauer, Beck, Becker, Beichel, Bekes (bib0014) 2009; 28
Wang, Bhatia, Glocker, Marvao, Dawes, Misawa, Mori, Rueckert (bib0039) 2014
Linguraru, Pura, Pamulapati, Summers (bib0017) 2012; 16
Linguraru, Sandberg, Li, Shah, Summers (bib0018) 2010; 37
Shimizu, Kimoto, Kobatake, Nawano, Shinozaki (bib0031) 2010; 5
Eskildsen, Coupé, Fonov, Manjón, Leung, Guizard, Wassef, Østergaard, Collins (bib0011) 2011; 59
Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bib0013) 2006; 33
Cerrolaza, Villanueva, Reyes, Cabeza, Ballester, Linguraru (bib0006) 2014
Heimann, Wolf, Meinzer (bib0015) 2006
Okada, Shimada, Hori, Nakamoto, Chen, Nakamura, Sato (bib0024) 2008; 15
Wolz, Chu, Misawa, Fujiwara, Mori, Rueckert (bib0044) 2013; 32
Cootes, Taylor, Cooper, Graham (bib0009) 1995; 61
Chu, Oda, Kitasaka, Misawa, Fujiwara, Hayashi, Nimura, Rueckert, Mori (bib0008) 2013
Rousseau, Habas, Studholme (bib0029) 2011; 30
Shi, Yap, Fan, Gilmore, Lin, Shen (bib0030) 2010; 51
Wolz, Aljabar, Hajnal, Hammers, Rueckert (bib0042) 2010; 49
Tong, Wolz, Coupé, Hajnal, Rueckert (bib0036) 2013; 76
Mairal, Bach, Ponce, Sapiro (bib0020) 2009
Okada, Linguraru, Yoshida, Hori, Summers, Chen, Tomiyama, Sato (bib0023) 2012
Cao, Yuan, Li, Turkbey, Choyke, Yan (bib0005) 2011
Chen, Udupa, Bagci, Zhuge, Yao (bib0007) 2012; 21
Shimizu, Ohno, Ikegami, Kobatake, Nawano, Smutek (bib0033) 2007; 2
Bagci (10.1016/j.media.2015.04.015_bib0004) 2012; 31
Wang (10.1016/j.media.2015.04.015_bib0038) 2010
Eskildsen (10.1016/j.media.2015.04.015_bib0011) 2011; 59
van der Lijn (10.1016/j.media.2015.04.015_bib0016) 2008; 43
Awate (10.1016/j.media.2015.04.015_bib0003) 2014; 33
Linguraru (10.1016/j.media.2015.04.015_bib0018) 2010; 37
Oda (10.1016/j.media.2015.04.015_bib0021) 2012
Okada (10.1016/j.media.2015.04.015_bib0022) 2013
Shi (10.1016/j.media.2015.04.015_bib0030) 2010; 51
Rousseau (10.1016/j.media.2015.04.015_bib0029) 2011; 30
Heimann (10.1016/j.media.2015.04.015_bib0015) 2006
Heckemann (10.1016/j.media.2015.04.015_bib0013) 2006; 33
Cootes (10.1016/j.media.2015.04.015_bib0009) 1995; 61
Linguraru (10.1016/j.media.2015.04.015_bib0017) 2012; 16
Chen (10.1016/j.media.2015.04.015_bib0007) 2012; 21
Ta (10.1016/j.media.2015.04.015_bib0035) 2014
Wimmer (10.1016/j.media.2015.04.015_bib0041) 2009
Wolz (10.1016/j.media.2015.04.015_bib0043) 2009
Gao (10.1016/j.media.2015.04.015_bib0012) 1998; 33
Cao (10.1016/j.media.2015.04.015_bib0005) 2011
Okada (10.1016/j.media.2015.04.015_bib0024) 2008; 15
van Rikxoort (10.1016/j.media.2015.04.015_bib0028) 2010; 14
Tong (10.1016/j.media.2015.04.015_bib0036) 2013; 76
Wang (10.1016/j.media.2015.04.015_bib0037) 2012; 31
Wolz (10.1016/j.media.2015.04.015_bib0044) 2013; 32
Okada (10.1016/j.media.2015.04.015_bib0023) 2012
Spiegel (10.1016/j.media.2015.04.015_bib0034) 2009; 33
Wang (10.1016/j.media.2015.04.015_bib0039) 2014
Aharon (10.1016/j.media.2015.04.015_bib0001) 2006; 54
Shimizu (10.1016/j.media.2015.04.015_bib0032) 2011
Shimizu (10.1016/j.media.2015.04.015_bib0031) 2010; 5
Heimann (10.1016/j.media.2015.04.015_bib0014) 2009; 28
Pluim (10.1016/j.media.2015.04.015_bib0027) 2003; 22
Shimizu (10.1016/j.media.2015.04.015_bib0033) 2007; 2
Aljabar (10.1016/j.media.2015.04.015_bib0002) 2009; 46
Wang (10.1016/j.media.2015.04.015_bib0040) 2013
Wolz (10.1016/j.media.2015.04.015_bib0042) 2010; 49
Cerrolaza (10.1016/j.media.2015.04.015_bib0006) 2014
Chu (10.1016/j.media.2015.04.015_bib0008) 2013
Liu (10.1016/j.media.2015.04.015_bib0019) 2004
Park (10.1016/j.media.2015.04.015_bib0026) 2003; 22
Mairal (10.1016/j.media.2015.04.015_bib0020) 2009
Okada (10.1016/j.media.2015.04.015_bib0025) 2008
Coupé (10.1016/j.media.2015.04.015_bib0010) 2011; 54
References_xml – start-page: 470
  year: 2009
  end-page: 473
  ident: bib0043
  article-title: Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information
  publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– volume: 59
  start-page: 2362
  year: 2011
  end-page: 2373
  ident: bib0011
  article-title: BEaST: brain extraction based on nonlocal segmentation technique
  publication-title: NeuroImage
– volume: 33
  start-page: 348
  year: 1998
  end-page: 355
  ident: bib0012
  article-title: Abdominal image segmentation using three-dimensional deformable models
  publication-title: Invest. Radiol.
– start-page: 165
  year: 2013
  end-page: 172
  ident: bib0008
  article-title: Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
– volume: 30
  start-page: 1852
  year: 2011
  end-page: 1862
  ident: bib0029
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imaging
– volume: 51
  start-page: 684
  year: 2010
  end-page: 693
  ident: bib0030
  article-title: Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation
  publication-title: Neuroimage
– start-page: 98
  year: 2013
  end-page: 105
  ident: bib0040
  article-title: Patch-based segmentation without registration: application to knee MRI
  publication-title: Machine Learning in Medical Imaging
– start-page: 666
  year: 2014
  end-page: 673
  ident: bib0039
  article-title: Geodesic patch-based segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– volume: 54
  start-page: 940
  year: 2011
  end-page: 954
  ident: bib0010
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: Neuroimage
– start-page: 502
  year: 2008
  end-page: 509
  ident: bib0025
  article-title: Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– start-page: 41
  year: 2006
  end-page: 48
  ident: bib0015
  article-title: Active shape models for a fully automated 3D segmentation of the liver–an evaluation on clinical data
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: bib0002
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: bib0001
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– start-page: 1
  year: 2014
  end-page: 8
  ident: bib0006
  article-title: Generalized multiresolution hierarchical shape models via automatic landmark clusterization
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– start-page: 21
  year: 2010
  end-page: 30
  ident: bib0038
  article-title: Subject specific shape modeling with incremental mixture models
  publication-title: Medical Imaging and Augmented Reality
– volume: 28
  start-page: 1251
  year: 2009
  end-page: 1265
  ident: bib0014
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1466
  year: 2004
  end-page: 1473
  ident: bib0019
  article-title: Automatic liver contour segmentation using GVF snake
  publication-title: SPIE Medical Imaging
– volume: 33
  start-page: 29
  year: 2009
  end-page: 39
  ident: bib0034
  article-title: Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration
  publication-title: Comput. Med. Imaging Graph.
– start-page: 689
  year: 2009
  end-page: 696
  ident: bib0020
  article-title: Online dictionary learning for sparse coding
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning
– volume: 2
  start-page: 135
  year: 2007
  end-page: 142
  ident: bib0033
  article-title: Segmentation of multiple organs in non-contrast 3D abdominal CT images
  publication-title: Intl. J. Comput. Assist. Radiol. Surg.
– volume: 33
  start-page: 1803
  year: 2014
  end-page: 1817
  ident: bib0003
  article-title: Multiatlas segmentation as nonparametric regression
  publication-title: IEEE Trans. Med. Imaging
– start-page: 272
  year: 2011
  end-page: 279
  ident: bib0005
  article-title: Segmenting images by combining selected atlases on manifold
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011
– volume: 43
  start-page: 708
  year: 2008
  end-page: 720
  ident: bib0016
  article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
  publication-title: Neuroimage
– volume: 31
  start-page: 88
  year: 2012
  end-page: 102
  ident: bib0037
  article-title: Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images
  publication-title: IEEE Trans. Med. Imaging
– volume: 49
  start-page: 1316
  year: 2010
  end-page: 1325
  ident: bib0042
  article-title: LEAP: learning embeddings for atlas propagation
  publication-title: NeuroImage
– volume: 15
  start-page: 1390
  year: 2008
  end-page: 1403
  ident: bib0024
  article-title: Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model
  publication-title: Acad. Radiol.
– volume: 5
  start-page: 85
  year: 2010
  end-page: 98
  ident: bib0031
  article-title: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography
  publication-title: Intl. J. Comput. Assist. Radiol. Surg.
– start-page: 214
  year: 2011
  end-page: 223
  ident: bib0032
  article-title: Automated segmentation of 3D CT images based on statistical atlas and graph cuts
  publication-title: Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging
– volume: 22
  start-page: 483
  year: 2003
  end-page: 492
  ident: bib0026
  article-title: Construction of an abdominal probabilistic atlas and its application in segmentation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 26
  year: 2009
  end-page: 33
  ident: bib0041
  article-title: A generic probabilistic active shape model for organ segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention
– start-page: 181
  year: 2012
  end-page: 188
  ident: bib0021
  article-title: Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut
  publication-title: Abdominal Imaging. Computational and Clinical Applications
– start-page: 173
  year: 2012
  end-page: 180
  ident: bib0023
  article-title: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations
  publication-title: Abdominal Imaging. Computational and Clinical Applications
– volume: 21
  start-page: 2035
  year: 2012
  end-page: 2046
  ident: bib0007
  article-title: Medical image segmentation by combining graph cuts and oriented active appearance models
  publication-title: IEEE Trans. Image Process.
– volume: 61
  start-page: 38
  year: 1995
  end-page: 59
  ident: bib0009
  article-title: Active shape models-their training and application
  publication-title: Comput. Vis. Image Understand.
– volume: 76
  start-page: 11
  year: 2013
  end-page: 23
  ident: bib0036
  article-title: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling
  publication-title: NeuroImage
– volume: 16
  start-page: 904
  year: 2012
  end-page: 914
  ident: bib0017
  article-title: Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT
  publication-title: Med. Image Anal.
– start-page: 105
  year: 2014
  end-page: 112
  ident: bib0035
  article-title: Optimized patchmatch for near real time and accurate label fusion
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014
– volume: 32
  start-page: 1723
  year: 2013
  end-page: 1730
  ident: bib0044
  article-title: Automated abdominal multi-organ segmentation with subject-specific atlas generation
  publication-title: IEEE Trans. Med. Imaging
– volume: 14
  start-page: 39
  year: 2010
  end-page: 49
  ident: bib0028
  article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus
  publication-title: Med. Image Anal.
– volume: 33
  start-page: 115
  year: 2006
  end-page: 126
  ident: bib0013
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
– volume: 31
  start-page: 777
  year: 2012
  end-page: 789
  ident: bib0004
  article-title: Hierarchical scale-based multiobject recognition of 3D anatomical structures
  publication-title: IEEE Trans. Med. Imaging
– volume: 37
  start-page: 771
  year: 2010
  end-page: 783
  ident: bib0018
  article-title: Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation
  publication-title: Med. Phys.
– start-page: 275
  year: 2013
  end-page: 282
  ident: bib0022
  article-title: Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
– volume: 22
  start-page: 986
  year: 2003
  end-page: 1004
  ident: bib0027
  article-title: Mutual-information-based registration of medical images: a survey
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 483
  issue: 4
  year: 2003
  ident: 10.1016/j.media.2015.04.015_bib0026
  article-title: Construction of an abdominal probabilistic atlas and its application in segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.809139
– start-page: 1466
  year: 2004
  ident: 10.1016/j.media.2015.04.015_bib0019
  article-title: Automatic liver contour segmentation using GVF snake
– volume: 2
  start-page: 135
  issue: 3–4
  year: 2007
  ident: 10.1016/j.media.2015.04.015_bib0033
  article-title: Segmentation of multiple organs in non-contrast 3D abdominal CT images
  publication-title: Intl. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-007-0135-z
– volume: 14
  start-page: 39
  issue: 1
  year: 2010
  ident: 10.1016/j.media.2015.04.015_bib0028
  article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.10.001
– volume: 37
  start-page: 771
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2015.04.015_bib0018
  article-title: Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation
  publication-title: Med. Phys.
  doi: 10.1118/1.3284530
– volume: 59
  start-page: 2362
  issue: 3
  year: 2011
  ident: 10.1016/j.media.2015.04.015_bib0011
  article-title: BEaST: brain extraction based on nonlocal segmentation technique
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.012
– start-page: 666
  year: 2014
  ident: 10.1016/j.media.2015.04.015_bib0039
  article-title: Geodesic patch-based segmentation
– start-page: 41
  year: 2006
  ident: 10.1016/j.media.2015.04.015_bib0015
  article-title: Active shape models for a fully automated 3D segmentation of the liver–an evaluation on clinical data
– volume: 33
  start-page: 348
  issue: 6
  year: 1998
  ident: 10.1016/j.media.2015.04.015_bib0012
  article-title: Abdominal image segmentation using three-dimensional deformable models
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-199806000-00006
– start-page: 181
  year: 2012
  ident: 10.1016/j.media.2015.04.015_bib0021
  article-title: Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut
– start-page: 105
  year: 2014
  ident: 10.1016/j.media.2015.04.015_bib0035
  article-title: Optimized patchmatch for near real time and accurate label fusion
– start-page: 470
  year: 2009
  ident: 10.1016/j.media.2015.04.015_bib0043
  article-title: Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information
– volume: 54
  start-page: 940
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2015.04.015_bib0010
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 10.1016/j.media.2015.04.015_bib0001
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– start-page: 272
  year: 2011
  ident: 10.1016/j.media.2015.04.015_bib0005
  article-title: Segmenting images by combining selected atlases on manifold
– start-page: 21
  year: 2010
  ident: 10.1016/j.media.2015.04.015_bib0038
  article-title: Subject specific shape modeling with incremental mixture models
– volume: 30
  start-page: 1852
  issue: 10
  year: 2011
  ident: 10.1016/j.media.2015.04.015_bib0029
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2156806
– start-page: 173
  year: 2012
  ident: 10.1016/j.media.2015.04.015_bib0023
  article-title: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations
– volume: 46
  start-page: 726
  issue: 3
  year: 2009
  ident: 10.1016/j.media.2015.04.015_bib0002
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.018
– volume: 15
  start-page: 1390
  issue: 11
  year: 2008
  ident: 10.1016/j.media.2015.04.015_bib0024
  article-title: Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2008.07.008
– volume: 28
  start-page: 1251
  issue: 8
  year: 2009
  ident: 10.1016/j.media.2015.04.015_bib0014
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2013851
– volume: 31
  start-page: 777
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2015.04.015_bib0004
  article-title: Hierarchical scale-based multiobject recognition of 3D anatomical structures
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2180920
– start-page: 275
  year: 2013
  ident: 10.1016/j.media.2015.04.015_bib0022
  article-title: Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors
– start-page: 214
  year: 2011
  ident: 10.1016/j.media.2015.04.015_bib0032
  article-title: Automated segmentation of 3D CT images based on statistical atlas and graph cuts
– volume: 51
  start-page: 684
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2015.04.015_bib0030
  article-title: Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.025
– start-page: 502
  year: 2008
  ident: 10.1016/j.media.2015.04.015_bib0025
  article-title: Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images
– volume: 33
  start-page: 1803
  issue: 9
  year: 2014
  ident: 10.1016/j.media.2015.04.015_bib0003
  article-title: Multiatlas segmentation as nonparametric regression
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2321281
– volume: 21
  start-page: 2035
  issue: 4
  year: 2012
  ident: 10.1016/j.media.2015.04.015_bib0007
  article-title: Medical image segmentation by combining graph cuts and oriented active appearance models
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2186306
– volume: 33
  start-page: 29
  issue: 1
  year: 2009
  ident: 10.1016/j.media.2015.04.015_bib0034
  article-title: Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2008.10.002
– start-page: 26
  year: 2009
  ident: 10.1016/j.media.2015.04.015_bib0041
  article-title: A generic probabilistic active shape model for organ segmentation
– volume: 49
  start-page: 1316
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2015.04.015_bib0042
  article-title: LEAP: learning embeddings for atlas propagation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.09.069
– volume: 43
  start-page: 708
  issue: 4
  year: 2008
  ident: 10.1016/j.media.2015.04.015_bib0016
  article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.07.058
– volume: 32
  start-page: 1723
  issue: 9
  year: 2013
  ident: 10.1016/j.media.2015.04.015_bib0044
  article-title: Automated abdominal multi-organ segmentation with subject-specific atlas generation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2265805
– volume: 61
  start-page: 38
  issue: 1
  year: 1995
  ident: 10.1016/j.media.2015.04.015_bib0009
  article-title: Active shape models-their training and application
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1006/cviu.1995.1004
– volume: 33
  start-page: 115
  issue: 1
  year: 2006
  ident: 10.1016/j.media.2015.04.015_bib0013
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– volume: 22
  start-page: 986
  issue: 8
  year: 2003
  ident: 10.1016/j.media.2015.04.015_bib0027
  article-title: Mutual-information-based registration of medical images: a survey
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.815867
– start-page: 689
  year: 2009
  ident: 10.1016/j.media.2015.04.015_bib0020
  article-title: Online dictionary learning for sparse coding
– volume: 76
  start-page: 11
  year: 2013
  ident: 10.1016/j.media.2015.04.015_bib0036
  article-title: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.02.069
– start-page: 165
  year: 2013
  ident: 10.1016/j.media.2015.04.015_bib0008
  article-title: Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images
– volume: 5
  start-page: 85
  issue: 1
  year: 2010
  ident: 10.1016/j.media.2015.04.015_bib0031
  article-title: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography
  publication-title: Intl. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-009-0384-0
– start-page: 1
  year: 2014
  ident: 10.1016/j.media.2015.04.015_bib0006
  article-title: Generalized multiresolution hierarchical shape models via automatic landmark clusterization
– volume: 31
  start-page: 88
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2015.04.015_bib0037
  article-title: Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2165294
– start-page: 98
  year: 2013
  ident: 10.1016/j.media.2015.04.015_bib0040
  article-title: Patch-based segmentation without registration: application to knee MRI
– volume: 16
  start-page: 904
  issue: 4
  year: 2012
  ident: 10.1016/j.media.2015.04.015_bib0017
  article-title: Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.02.001
SSID ssj0007440
Score 2.5156665
Snippet •Discriminative dictionary learning is applied to multi-organ segmentation.•A local voxel-wise atlas selection is proposed.•A multi-resolution strategy is...
An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 92
SubjectTerms Abdominal multi-organ segmentation
Algorithms
Discriminative dictionary learning
Humans
Kidney - diagnostic imaging
Liver - diagnostic imaging
Local atlas selection
Pancreas - diagnostic imaging
Patch based
Radiographic Image Interpretation, Computer-Assisted - methods
Radiography, Abdominal - methods
Spleen - diagnostic imaging
Tomography, X-Ray Computed - methods
Title Discriminative dictionary learning for abdominal multi-organ segmentation
URI https://dx.doi.org/10.1016/j.media.2015.04.015
https://www.ncbi.nlm.nih.gov/pubmed/25988490
https://www.proquest.com/docview/1686067306
Volume 23
WOSCitedRecordID wos000357351600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 20160831
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhhA8IBgfKx9TkBAv4ClJbcd-nKCDoVJA6iDixUoch2Xq0m5t0cRfz_kjaaaxaTzwkqRWnEa-X87n8-_uEHqp8n5RcJ5hkG-MSVkyDPMOwSaMsigJI5GtovBtmIxGPE3FF08bm9tyAkld87MzMfuvooY2ELYJnf0HcbcPhQa4BqHDEcQOx2sJ_l1lNIFhuFhWUFHZyAVDjps0bhDLnMyLqSvoZTmF2JZ3ej3XP499NFLdtVub_Zzq2HB8Mp_JZOWidhrDnFstP5389tTtqgXgd--d_qEPV6h8n1l37deqPln6Vu-GiGhLWW00Z59FmBMXPLyj_9Lm1a3_1YWV052uJt4Fle68C0c7NpLGcPGozU3rgkDPJ9AefZZ7B8OhHA_S8avZCTa1xcwevC-0soY24oQK0H0bu_uD9GM7Y5skiS4-z71uk53K8gAv_O9lFsxlKxRrqYzvobt-iRHsOmjcRzd0vYnudBJPbqJbnzyl4gHaP4-XYIWXoMFLAHgJWrwEHbwEXbw8RAd7g_HbD9jX18CKJOEC8zKjSrA8Y6DmE6Y0E7kIaamKiJQiVFGfFjA2YBOLMtFms5_rmGqYkTQROuf9R2i9ntZ6CwVRlsWwso6oyaCWw3eeFLAU10QxGNOS0x6KmzGTyiefNzVQJrJhGR5JO9DSDLQMiYRTD71pO81c7pWrb2eNMKQ3H51ZKAFKV3d80YhOgnI1O2ZZrafLuYwYZ6aSU8h66LGTafsmMRWcExE-uUbvp-j26pt5htYXp0v9HN1UvxbV_HQbrSUp3_ag_APYaaRf
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+dictionary+learning+for+abdominal+multi-organ+segmentation&rft.jtitle=Medical+image+analysis&rft.au=Tong%2C+Tong&rft.au=Wolz%2C+Robin&rft.au=Wang%2C+Zehan&rft.au=Gao%2C+Qinquan&rft.date=2015-07-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=23&rft.issue=1&rft.spage=92&rft_id=info:doi/10.1016%2Fj.media.2015.04.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon