Discriminative dictionary learning for abdominal multi-organ segmentation
•Discriminative dictionary learning is applied to multi-organ segmentation.•A local voxel-wise atlas selection is proposed.•A multi-resolution strategy is developed for gaining computational efficiency.•Validation is carried out on 150 abdominal CT images.•A comparison between different atlas select...
Saved in:
| Published in: | Medical image analysis Vol. 23; no. 1; pp. 92 - 104 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.07.2015
|
| Subjects: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Discriminative dictionary learning is applied to multi-organ segmentation.•A local voxel-wise atlas selection is proposed.•A multi-resolution strategy is developed for gaining computational efficiency.•Validation is carried out on 150 abdominal CT images.•A comparison between different atlas selection strategies.
The framework of the multi-resolution segmentation process. The proposed DDLS approach is performed to generate probabilistic atlas for each organ, which propagates across resolutions. The segmentation mask at current resolution is limited to the voxels with uncertain segmentations at the previous resolution. The final segmentation is achieved by using the graph-cuts algorithm in the native space. [Display omitted]
An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively. |
|---|---|
| AbstractList | An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively.An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively. An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively. •Discriminative dictionary learning is applied to multi-organ segmentation.•A local voxel-wise atlas selection is proposed.•A multi-resolution strategy is developed for gaining computational efficiency.•Validation is carried out on 150 abdominal CT images.•A comparison between different atlas selection strategies. The framework of the multi-resolution segmentation process. The proposed DDLS approach is performed to generate probabilistic atlas for each organ, which propagates across resolutions. The segmentation mask at current resolution is limited to the voxels with uncertain segmentations at the previous resolution. The final segmentation is achieved by using the graph-cuts algorithm in the native space. [Display omitted] An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively. |
| Author | Wolz, Robin Tong, Tong Misawa, Kazunari Gao, Qinquan Fujiwara, Michitaka Wang, Zehan Hajnal, Joseph V. Rueckert, Daniel Mori, Kensaku |
| Author_xml | – sequence: 1 givenname: Tong surname: Tong fullname: Tong, Tong email: t.tong11@imperial.ac.uk organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK – sequence: 2 givenname: Robin surname: Wolz fullname: Wolz, Robin organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK – sequence: 3 givenname: Zehan surname: Wang fullname: Wang, Zehan organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK – sequence: 4 givenname: Qinquan surname: Gao fullname: Gao, Qinquan organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK – sequence: 5 givenname: Kazunari surname: Misawa fullname: Misawa, Kazunari organization: Aichi Cancer Center, Nagoya 464-8681, Japan – sequence: 6 givenname: Michitaka surname: Fujiwara fullname: Fujiwara, Michitaka organization: Nagoya University Hospital, Nagoya 466-0065, Japan – sequence: 7 givenname: Kensaku surname: Mori fullname: Mori, Kensaku organization: Information and Communications, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan – sequence: 8 givenname: Joseph V. surname: Hajnal fullname: Hajnal, Joseph V. organization: Center for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, St. Thomas Hospital, London SE1 7EH, UK – sequence: 9 givenname: Daniel surname: Rueckert fullname: Rueckert, Daniel organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25988490$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAURS0EorTwC5BQRpaE58Rx4oEB8VmpEgvMluO8VK4SG-wUiX-PQwsDA9PzcM6V752TQ-ssEnJOIaNA-dUmG7A1KsuBlhmwLJ4DckILTtOa5cXh75uWMzIPYQMAFWNwTGZ5KeqaCTghyzsTtDeDsWo0H5i0Ro_GWeU_kx6Vt8auk875RDWtm6A-Gbb9aFLn18omAdcD2lFNyik56lQf8Gx_F-T14f7l9ildPT8ub29WqWYVjGndqVIL3iheFVBxjVw0AspOt5R1AjQtyjZ-s-Qgugohr6oa8xIrXiAT2NTFglzuct-8e99iGOUQK2DfK4tuGyTlNYcpnEf0Yo9um7iVfItFYzP5Uz8CYgdo70Lw2Eltdm1Gr0wvKchparmR31PLaWoJTMYT3eKP-xP_v3W9szBO9GHQy6ANWh1Bj3qUrTP_-l-0Wpiw |
| CitedBy_id | crossref_primary_10_1016_j_media_2016_06_009 crossref_primary_10_3389_fonc_2025_1528654 crossref_primary_10_1016_j_bspc_2023_105361 crossref_primary_10_1016_j_compbiomed_2019_02_017 crossref_primary_10_1007_s12021_016_9312_y crossref_primary_10_1016_j_compbiomed_2021_104658 crossref_primary_10_1016_j_eswa_2024_123856 crossref_primary_10_1148_ryai_2020190102 crossref_primary_10_1016_j_bspc_2025_107745 crossref_primary_10_1109_ACCESS_2023_3320570 crossref_primary_10_1186_s12880_025_01737_7 crossref_primary_10_1134_S0361768816060050 crossref_primary_10_1109_TMI_2019_2903562 crossref_primary_10_1016_j_acra_2019_08_014 crossref_primary_10_1016_j_artmed_2021_102109 crossref_primary_10_1016_j_patcog_2020_107762 crossref_primary_10_1049_iet_ipr_2019_0399 crossref_primary_10_1109_TMI_2022_3162111 crossref_primary_10_1016_j_eswa_2022_118625 crossref_primary_10_1007_s11042_022_12322_3 crossref_primary_10_1016_j_media_2018_07_009 crossref_primary_10_1097_BRS_0000000000004308 crossref_primary_10_1155_2022_2196782 crossref_primary_10_1016_j_ymeth_2020_10_004 crossref_primary_10_1016_j_compmedimag_2018_09_003 crossref_primary_10_3390_app131910765 crossref_primary_10_1109_TMI_2017_2726112 crossref_primary_10_1016_j_compmedimag_2019_04_004 crossref_primary_10_1016_j_media_2018_11_002 crossref_primary_10_1186_s12918_018_0572_z crossref_primary_10_1016_j_media_2021_101979 crossref_primary_10_1007_s11604_021_01098_5 crossref_primary_10_1016_j_cmpb_2019_07_002 crossref_primary_10_1109_TMI_2021_3089661 crossref_primary_10_1002_ima_22321 crossref_primary_10_1002_mp_14364 crossref_primary_10_1155_2022_5906877 crossref_primary_10_1016_j_compbiomed_2024_108637 crossref_primary_10_1007_s11042_020_09592_0 crossref_primary_10_1016_j_compmedimag_2018_03_001 crossref_primary_10_1007_s13304_016_0394_8 crossref_primary_10_1016_j_patcog_2016_09_026 crossref_primary_10_1007_s11517_019_01976_1 crossref_primary_10_1186_s12880_020_00460_9 crossref_primary_10_1109_TRPMS_2018_2876562 crossref_primary_10_1109_TBME_2019_2894123 crossref_primary_10_1016_j_compbiomed_2021_105030 crossref_primary_10_1016_j_clinimag_2022_04_007 crossref_primary_10_1109_TMI_2020_3001036 crossref_primary_10_3389_fbioe_2024_1414605 crossref_primary_10_1109_TMI_2018_2806309 crossref_primary_10_1097_JP9_0000000000000056 crossref_primary_10_1109_TIP_2020_3038363 crossref_primary_10_1007_s11042_023_15948_z crossref_primary_10_1007_s11766_022_4346_4 crossref_primary_10_1016_j_media_2023_102879 crossref_primary_10_1002_hbm_24243 crossref_primary_10_1088_1361_6560_aa766e crossref_primary_10_1109_ACCESS_2021_3086530 crossref_primary_10_1109_TMI_2017_2720261 crossref_primary_10_1109_TMI_2018_2835303 crossref_primary_10_1155_2020_8351725 crossref_primary_10_1007_s11042_020_09640_9 crossref_primary_10_1007_s11548_016_1501_5 crossref_primary_10_1093_jrr_rrx104 crossref_primary_10_1016_j_media_2016_02_006 crossref_primary_10_1007_s10334_015_0498_z crossref_primary_10_1016_j_intonc_2025_06_007 crossref_primary_10_1016_j_jvcir_2021_103311 crossref_primary_10_1007_s10462_024_10966_1 crossref_primary_10_1016_j_media_2021_102156 crossref_primary_10_1109_TMI_2018_2890510 crossref_primary_10_3390_su151511630 crossref_primary_10_1007_s11548_016_1481_5 crossref_primary_10_1109_TMI_2018_2851780 crossref_primary_10_1016_j_media_2017_03_006 crossref_primary_10_1016_j_cmpb_2020_105533 crossref_primary_10_1002_mp_14386 crossref_primary_10_1016_j_media_2018_02_001 crossref_primary_10_1002_mp_12438 crossref_primary_10_1016_j_compbiomed_2024_108659 crossref_primary_10_3390_diagnostics13071282 crossref_primary_10_1109_ACCESS_2023_3299491 crossref_primary_10_1007_s00521_025_11055_2 crossref_primary_10_1016_j_displa_2022_102223 crossref_primary_10_1016_j_neucom_2016_06_036 crossref_primary_10_1007_s00521_019_04333_3 crossref_primary_10_1016_j_media_2019_101539 crossref_primary_10_1088_1361_6560_abfce3 crossref_primary_10_1007_s11548_018_1879_3 crossref_primary_10_1016_j_mri_2020_01_008 |
| Cites_doi | 10.1109/TMI.2003.809139 10.1007/s11548-007-0135-z 10.1016/j.media.2009.10.001 10.1118/1.3284530 10.1016/j.neuroimage.2011.09.012 10.1097/00004424-199806000-00006 10.1016/j.neuroimage.2010.09.018 10.1109/TSP.2006.881199 10.1109/TMI.2011.2156806 10.1016/j.neuroimage.2009.02.018 10.1016/j.acra.2008.07.008 10.1109/TMI.2009.2013851 10.1109/TMI.2011.2180920 10.1016/j.neuroimage.2010.02.025 10.1109/TMI.2014.2321281 10.1109/TIP.2012.2186306 10.1016/j.compmedimag.2008.10.002 10.1016/j.neuroimage.2009.09.069 10.1016/j.neuroimage.2008.07.058 10.1109/TMI.2013.2265805 10.1006/cviu.1995.1004 10.1016/j.neuroimage.2006.05.061 10.1109/TMI.2003.815867 10.1016/j.neuroimage.2013.02.069 10.1007/s11548-009-0384-0 10.1109/TMI.2011.2165294 10.1016/j.media.2012.02.001 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2015 The Authors – notice: Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.media.2015.04.015 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 104 |
| ExternalDocumentID | 25988490 10_1016_j_media_2015_04_015 S1361841515000651 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MR/K006355/1 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c470t-8fa5c96ba673076ce69b905fcd14f90c135d0745609f7e02778e25e763e49eb83 |
| ISICitedReferencesCount | 118 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357351600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Mon Sep 29 05:59:54 EDT 2025 Mon Jul 21 05:57:31 EDT 2025 Sat Nov 29 04:06:01 EST 2025 Tue Nov 18 21:56:41 EST 2025 Fri Feb 23 02:28:18 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Local atlas selection Abdominal multi-organ segmentation Discriminative dictionary learning Patch based |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c470t-8fa5c96ba673076ce69b905fcd14f90c135d0745609f7e02778e25e763e49eb83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.media.2015.04.015 |
| PMID | 25988490 |
| PQID | 1686067306 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1686067306 pubmed_primary_25988490 crossref_citationtrail_10_1016_j_media_2015_04_015 crossref_primary_10_1016_j_media_2015_04_015 elsevier_sciencedirect_doi_10_1016_j_media_2015_04_015 |
| PublicationCentury | 2000 |
| PublicationDate | July 2015 2015-07-00 2015-Jul 20150701 |
| PublicationDateYYYYMMDD | 2015-07-01 |
| PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Awate, Whitaker (bib0003) 2014; 33 Liu, Zhao, Kijewski, Ginsberg, Wang, Schwartz (bib0019) 2004 Park, Bland, Meyer (bib0026) 2003; 22 Gao, Heath, Fishman (bib0012) 1998; 33 Bagci, Chen, Udupa (bib0004) 2012; 31 Spiegel, Hahn, Daum, Wasza, Hornegger (bib0034) 2009; 33 van der Lijn, den Heijer, Breteler, Niessen (bib0016) 2008; 43 Coupé, Manjķn, Fonov, Pruessner, Robles, Collins (bib0010) 2011; 54 Okada, Yokota, Hori, Nakamoto, Nakamura, Sato (bib0025) 2008 Okada, Linguraru, Hori, Summers, Tomiyama, Sato (bib0022) 2013 Wolz, Aljabar, Rueckert, Heckemann, Hammers (bib0043) 2009 Wang, Donoghue, Rueckert (bib0040) 2013 Wang, Lekadir, Ismail, Yacoub, Yang (bib0038) 2010 Pluim, Maintz, Viergever (bib0027) 2003; 22 Ta, Giraud, Coupé, Collins (bib0035) 2014 Shimizu, Nakagomi, Narihira, Kobatake, Nawano, Shinozaki, Ishizu, Togashi (bib0032) 2011 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bib0002) 2009; 46 van Rikxoort, Isgum, Arzhaeva, Staring, Klein, Viergever, Pluim, van Ginneken (bib0028) 2010; 14 Oda, Nakaoka, Kitasaka, Furukawa, Misawa, Fujiwara, Mori (bib0021) 2012 Aharon, Elad, Bruckstein (bib0001) 2006; 54 Wimmer, Soza, Hornegger (bib0041) 2009 Wang, Stout, Chatziioannou (bib0037) 2012; 31 Heimann, Van Ginneken, Styner, Arzhaeva, Aurich, Bauer, Beck, Becker, Beichel, Bekes (bib0014) 2009; 28 Wang, Bhatia, Glocker, Marvao, Dawes, Misawa, Mori, Rueckert (bib0039) 2014 Linguraru, Pura, Pamulapati, Summers (bib0017) 2012; 16 Linguraru, Sandberg, Li, Shah, Summers (bib0018) 2010; 37 Shimizu, Kimoto, Kobatake, Nawano, Shinozaki (bib0031) 2010; 5 Eskildsen, Coupé, Fonov, Manjón, Leung, Guizard, Wassef, Østergaard, Collins (bib0011) 2011; 59 Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bib0013) 2006; 33 Cerrolaza, Villanueva, Reyes, Cabeza, Ballester, Linguraru (bib0006) 2014 Heimann, Wolf, Meinzer (bib0015) 2006 Okada, Shimada, Hori, Nakamoto, Chen, Nakamura, Sato (bib0024) 2008; 15 Wolz, Chu, Misawa, Fujiwara, Mori, Rueckert (bib0044) 2013; 32 Cootes, Taylor, Cooper, Graham (bib0009) 1995; 61 Chu, Oda, Kitasaka, Misawa, Fujiwara, Hayashi, Nimura, Rueckert, Mori (bib0008) 2013 Rousseau, Habas, Studholme (bib0029) 2011; 30 Shi, Yap, Fan, Gilmore, Lin, Shen (bib0030) 2010; 51 Wolz, Aljabar, Hajnal, Hammers, Rueckert (bib0042) 2010; 49 Tong, Wolz, Coupé, Hajnal, Rueckert (bib0036) 2013; 76 Mairal, Bach, Ponce, Sapiro (bib0020) 2009 Okada, Linguraru, Yoshida, Hori, Summers, Chen, Tomiyama, Sato (bib0023) 2012 Cao, Yuan, Li, Turkbey, Choyke, Yan (bib0005) 2011 Chen, Udupa, Bagci, Zhuge, Yao (bib0007) 2012; 21 Shimizu, Ohno, Ikegami, Kobatake, Nawano, Smutek (bib0033) 2007; 2 Bagci (10.1016/j.media.2015.04.015_bib0004) 2012; 31 Wang (10.1016/j.media.2015.04.015_bib0038) 2010 Eskildsen (10.1016/j.media.2015.04.015_bib0011) 2011; 59 van der Lijn (10.1016/j.media.2015.04.015_bib0016) 2008; 43 Awate (10.1016/j.media.2015.04.015_bib0003) 2014; 33 Linguraru (10.1016/j.media.2015.04.015_bib0018) 2010; 37 Oda (10.1016/j.media.2015.04.015_bib0021) 2012 Okada (10.1016/j.media.2015.04.015_bib0022) 2013 Shi (10.1016/j.media.2015.04.015_bib0030) 2010; 51 Rousseau (10.1016/j.media.2015.04.015_bib0029) 2011; 30 Heimann (10.1016/j.media.2015.04.015_bib0015) 2006 Heckemann (10.1016/j.media.2015.04.015_bib0013) 2006; 33 Cootes (10.1016/j.media.2015.04.015_bib0009) 1995; 61 Linguraru (10.1016/j.media.2015.04.015_bib0017) 2012; 16 Chen (10.1016/j.media.2015.04.015_bib0007) 2012; 21 Ta (10.1016/j.media.2015.04.015_bib0035) 2014 Wimmer (10.1016/j.media.2015.04.015_bib0041) 2009 Wolz (10.1016/j.media.2015.04.015_bib0043) 2009 Gao (10.1016/j.media.2015.04.015_bib0012) 1998; 33 Cao (10.1016/j.media.2015.04.015_bib0005) 2011 Okada (10.1016/j.media.2015.04.015_bib0024) 2008; 15 van Rikxoort (10.1016/j.media.2015.04.015_bib0028) 2010; 14 Tong (10.1016/j.media.2015.04.015_bib0036) 2013; 76 Wang (10.1016/j.media.2015.04.015_bib0037) 2012; 31 Wolz (10.1016/j.media.2015.04.015_bib0044) 2013; 32 Okada (10.1016/j.media.2015.04.015_bib0023) 2012 Spiegel (10.1016/j.media.2015.04.015_bib0034) 2009; 33 Wang (10.1016/j.media.2015.04.015_bib0039) 2014 Aharon (10.1016/j.media.2015.04.015_bib0001) 2006; 54 Shimizu (10.1016/j.media.2015.04.015_bib0032) 2011 Shimizu (10.1016/j.media.2015.04.015_bib0031) 2010; 5 Heimann (10.1016/j.media.2015.04.015_bib0014) 2009; 28 Pluim (10.1016/j.media.2015.04.015_bib0027) 2003; 22 Shimizu (10.1016/j.media.2015.04.015_bib0033) 2007; 2 Aljabar (10.1016/j.media.2015.04.015_bib0002) 2009; 46 Wang (10.1016/j.media.2015.04.015_bib0040) 2013 Wolz (10.1016/j.media.2015.04.015_bib0042) 2010; 49 Cerrolaza (10.1016/j.media.2015.04.015_bib0006) 2014 Chu (10.1016/j.media.2015.04.015_bib0008) 2013 Liu (10.1016/j.media.2015.04.015_bib0019) 2004 Park (10.1016/j.media.2015.04.015_bib0026) 2003; 22 Mairal (10.1016/j.media.2015.04.015_bib0020) 2009 Okada (10.1016/j.media.2015.04.015_bib0025) 2008 Coupé (10.1016/j.media.2015.04.015_bib0010) 2011; 54 |
| References_xml | – start-page: 470 year: 2009 end-page: 473 ident: bib0043 article-title: Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro – volume: 59 start-page: 2362 year: 2011 end-page: 2373 ident: bib0011 article-title: BEaST: brain extraction based on nonlocal segmentation technique publication-title: NeuroImage – volume: 33 start-page: 348 year: 1998 end-page: 355 ident: bib0012 article-title: Abdominal image segmentation using three-dimensional deformable models publication-title: Invest. Radiol. – start-page: 165 year: 2013 end-page: 172 ident: bib0008 article-title: Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 – volume: 30 start-page: 1852 year: 2011 end-page: 1862 ident: bib0029 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imaging – volume: 51 start-page: 684 year: 2010 end-page: 693 ident: bib0030 article-title: Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation publication-title: Neuroimage – start-page: 98 year: 2013 end-page: 105 ident: bib0040 article-title: Patch-based segmentation without registration: application to knee MRI publication-title: Machine Learning in Medical Imaging – start-page: 666 year: 2014 end-page: 673 ident: bib0039 article-title: Geodesic patch-based segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – volume: 54 start-page: 940 year: 2011 end-page: 954 ident: bib0010 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: Neuroimage – start-page: 502 year: 2008 end-page: 509 ident: bib0025 article-title: Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images publication-title: Medical Image Computing and Computer-Assisted Intervention – start-page: 41 year: 2006 end-page: 48 ident: bib0015 article-title: Active shape models for a fully automated 3D segmentation of the liver–an evaluation on clinical data publication-title: Medical Image Computing and Computer-Assisted Intervention – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bib0002 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage – volume: 54 start-page: 4311 year: 2006 end-page: 4322 ident: bib0001 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. – start-page: 1 year: 2014 end-page: 8 ident: bib0006 article-title: Generalized multiresolution hierarchical shape models via automatic landmark clusterization publication-title: Medical Image Computing and Computer-Assisted Intervention – start-page: 21 year: 2010 end-page: 30 ident: bib0038 article-title: Subject specific shape modeling with incremental mixture models publication-title: Medical Imaging and Augmented Reality – volume: 28 start-page: 1251 year: 2009 end-page: 1265 ident: bib0014 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans. Med. Imaging – start-page: 1466 year: 2004 end-page: 1473 ident: bib0019 article-title: Automatic liver contour segmentation using GVF snake publication-title: SPIE Medical Imaging – volume: 33 start-page: 29 year: 2009 end-page: 39 ident: bib0034 article-title: Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration publication-title: Comput. Med. Imaging Graph. – start-page: 689 year: 2009 end-page: 696 ident: bib0020 article-title: Online dictionary learning for sparse coding publication-title: Proceedings of the 26th Annual International Conference on Machine Learning – volume: 2 start-page: 135 year: 2007 end-page: 142 ident: bib0033 article-title: Segmentation of multiple organs in non-contrast 3D abdominal CT images publication-title: Intl. J. Comput. Assist. Radiol. Surg. – volume: 33 start-page: 1803 year: 2014 end-page: 1817 ident: bib0003 article-title: Multiatlas segmentation as nonparametric regression publication-title: IEEE Trans. Med. Imaging – start-page: 272 year: 2011 end-page: 279 ident: bib0005 article-title: Segmenting images by combining selected atlases on manifold publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011 – volume: 43 start-page: 708 year: 2008 end-page: 720 ident: bib0016 article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts publication-title: Neuroimage – volume: 31 start-page: 88 year: 2012 end-page: 102 ident: bib0037 article-title: Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images publication-title: IEEE Trans. Med. Imaging – volume: 49 start-page: 1316 year: 2010 end-page: 1325 ident: bib0042 article-title: LEAP: learning embeddings for atlas propagation publication-title: NeuroImage – volume: 15 start-page: 1390 year: 2008 end-page: 1403 ident: bib0024 article-title: Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model publication-title: Acad. Radiol. – volume: 5 start-page: 85 year: 2010 end-page: 98 ident: bib0031 article-title: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography publication-title: Intl. J. Comput. Assist. Radiol. Surg. – start-page: 214 year: 2011 end-page: 223 ident: bib0032 article-title: Automated segmentation of 3D CT images based on statistical atlas and graph cuts publication-title: Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging – volume: 22 start-page: 483 year: 2003 end-page: 492 ident: bib0026 article-title: Construction of an abdominal probabilistic atlas and its application in segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 26 year: 2009 end-page: 33 ident: bib0041 article-title: A generic probabilistic active shape model for organ segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – start-page: 181 year: 2012 end-page: 188 ident: bib0021 article-title: Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut publication-title: Abdominal Imaging. Computational and Clinical Applications – start-page: 173 year: 2012 end-page: 180 ident: bib0023 article-title: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations publication-title: Abdominal Imaging. Computational and Clinical Applications – volume: 21 start-page: 2035 year: 2012 end-page: 2046 ident: bib0007 article-title: Medical image segmentation by combining graph cuts and oriented active appearance models publication-title: IEEE Trans. Image Process. – volume: 61 start-page: 38 year: 1995 end-page: 59 ident: bib0009 article-title: Active shape models-their training and application publication-title: Comput. Vis. Image Understand. – volume: 76 start-page: 11 year: 2013 end-page: 23 ident: bib0036 article-title: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling publication-title: NeuroImage – volume: 16 start-page: 904 year: 2012 end-page: 914 ident: bib0017 article-title: Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT publication-title: Med. Image Anal. – start-page: 105 year: 2014 end-page: 112 ident: bib0035 article-title: Optimized patchmatch for near real time and accurate label fusion publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014 – volume: 32 start-page: 1723 year: 2013 end-page: 1730 ident: bib0044 article-title: Automated abdominal multi-organ segmentation with subject-specific atlas generation publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 39 year: 2010 end-page: 49 ident: bib0028 article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus publication-title: Med. Image Anal. – volume: 33 start-page: 115 year: 2006 end-page: 126 ident: bib0013 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage – volume: 31 start-page: 777 year: 2012 end-page: 789 ident: bib0004 article-title: Hierarchical scale-based multiobject recognition of 3D anatomical structures publication-title: IEEE Trans. Med. Imaging – volume: 37 start-page: 771 year: 2010 end-page: 783 ident: bib0018 article-title: Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation publication-title: Med. Phys. – start-page: 275 year: 2013 end-page: 282 ident: bib0022 article-title: Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 – volume: 22 start-page: 986 year: 2003 end-page: 1004 ident: bib0027 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 483 issue: 4 year: 2003 ident: 10.1016/j.media.2015.04.015_bib0026 article-title: Construction of an abdominal probabilistic atlas and its application in segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.809139 – start-page: 1466 year: 2004 ident: 10.1016/j.media.2015.04.015_bib0019 article-title: Automatic liver contour segmentation using GVF snake – volume: 2 start-page: 135 issue: 3–4 year: 2007 ident: 10.1016/j.media.2015.04.015_bib0033 article-title: Segmentation of multiple organs in non-contrast 3D abdominal CT images publication-title: Intl. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-007-0135-z – volume: 14 start-page: 39 issue: 1 year: 2010 ident: 10.1016/j.media.2015.04.015_bib0028 article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.10.001 – volume: 37 start-page: 771 issue: 2 year: 2010 ident: 10.1016/j.media.2015.04.015_bib0018 article-title: Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation publication-title: Med. Phys. doi: 10.1118/1.3284530 – volume: 59 start-page: 2362 issue: 3 year: 2011 ident: 10.1016/j.media.2015.04.015_bib0011 article-title: BEaST: brain extraction based on nonlocal segmentation technique publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.012 – start-page: 666 year: 2014 ident: 10.1016/j.media.2015.04.015_bib0039 article-title: Geodesic patch-based segmentation – start-page: 41 year: 2006 ident: 10.1016/j.media.2015.04.015_bib0015 article-title: Active shape models for a fully automated 3D segmentation of the liver–an evaluation on clinical data – volume: 33 start-page: 348 issue: 6 year: 1998 ident: 10.1016/j.media.2015.04.015_bib0012 article-title: Abdominal image segmentation using three-dimensional deformable models publication-title: Invest. Radiol. doi: 10.1097/00004424-199806000-00006 – start-page: 181 year: 2012 ident: 10.1016/j.media.2015.04.015_bib0021 article-title: Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut – start-page: 105 year: 2014 ident: 10.1016/j.media.2015.04.015_bib0035 article-title: Optimized patchmatch for near real time and accurate label fusion – start-page: 470 year: 2009 ident: 10.1016/j.media.2015.04.015_bib0043 article-title: Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information – volume: 54 start-page: 940 issue: 2 year: 2011 ident: 10.1016/j.media.2015.04.015_bib0010 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.018 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 10.1016/j.media.2015.04.015_bib0001 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – start-page: 272 year: 2011 ident: 10.1016/j.media.2015.04.015_bib0005 article-title: Segmenting images by combining selected atlases on manifold – start-page: 21 year: 2010 ident: 10.1016/j.media.2015.04.015_bib0038 article-title: Subject specific shape modeling with incremental mixture models – volume: 30 start-page: 1852 issue: 10 year: 2011 ident: 10.1016/j.media.2015.04.015_bib0029 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2156806 – start-page: 173 year: 2012 ident: 10.1016/j.media.2015.04.015_bib0023 article-title: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations – volume: 46 start-page: 726 issue: 3 year: 2009 ident: 10.1016/j.media.2015.04.015_bib0002 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 15 start-page: 1390 issue: 11 year: 2008 ident: 10.1016/j.media.2015.04.015_bib0024 article-title: Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model publication-title: Acad. Radiol. doi: 10.1016/j.acra.2008.07.008 – volume: 28 start-page: 1251 issue: 8 year: 2009 ident: 10.1016/j.media.2015.04.015_bib0014 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2013851 – volume: 31 start-page: 777 issue: 3 year: 2012 ident: 10.1016/j.media.2015.04.015_bib0004 article-title: Hierarchical scale-based multiobject recognition of 3D anatomical structures publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2180920 – start-page: 275 year: 2013 ident: 10.1016/j.media.2015.04.015_bib0022 article-title: Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors – start-page: 214 year: 2011 ident: 10.1016/j.media.2015.04.015_bib0032 article-title: Automated segmentation of 3D CT images based on statistical atlas and graph cuts – volume: 51 start-page: 684 issue: 2 year: 2010 ident: 10.1016/j.media.2015.04.015_bib0030 article-title: Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.025 – start-page: 502 year: 2008 ident: 10.1016/j.media.2015.04.015_bib0025 article-title: Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images – volume: 33 start-page: 1803 issue: 9 year: 2014 ident: 10.1016/j.media.2015.04.015_bib0003 article-title: Multiatlas segmentation as nonparametric regression publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2321281 – volume: 21 start-page: 2035 issue: 4 year: 2012 ident: 10.1016/j.media.2015.04.015_bib0007 article-title: Medical image segmentation by combining graph cuts and oriented active appearance models publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2186306 – volume: 33 start-page: 29 issue: 1 year: 2009 ident: 10.1016/j.media.2015.04.015_bib0034 article-title: Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2008.10.002 – start-page: 26 year: 2009 ident: 10.1016/j.media.2015.04.015_bib0041 article-title: A generic probabilistic active shape model for organ segmentation – volume: 49 start-page: 1316 issue: 2 year: 2010 ident: 10.1016/j.media.2015.04.015_bib0042 article-title: LEAP: learning embeddings for atlas propagation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.09.069 – volume: 43 start-page: 708 issue: 4 year: 2008 ident: 10.1016/j.media.2015.04.015_bib0016 article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.07.058 – volume: 32 start-page: 1723 issue: 9 year: 2013 ident: 10.1016/j.media.2015.04.015_bib0044 article-title: Automated abdominal multi-organ segmentation with subject-specific atlas generation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2265805 – volume: 61 start-page: 38 issue: 1 year: 1995 ident: 10.1016/j.media.2015.04.015_bib0009 article-title: Active shape models-their training and application publication-title: Comput. Vis. Image Understand. doi: 10.1006/cviu.1995.1004 – volume: 33 start-page: 115 issue: 1 year: 2006 ident: 10.1016/j.media.2015.04.015_bib0013 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.061 – volume: 22 start-page: 986 issue: 8 year: 2003 ident: 10.1016/j.media.2015.04.015_bib0027 article-title: Mutual-information-based registration of medical images: a survey publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.815867 – start-page: 689 year: 2009 ident: 10.1016/j.media.2015.04.015_bib0020 article-title: Online dictionary learning for sparse coding – volume: 76 start-page: 11 year: 2013 ident: 10.1016/j.media.2015.04.015_bib0036 article-title: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.02.069 – start-page: 165 year: 2013 ident: 10.1016/j.media.2015.04.015_bib0008 article-title: Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images – volume: 5 start-page: 85 issue: 1 year: 2010 ident: 10.1016/j.media.2015.04.015_bib0031 article-title: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography publication-title: Intl. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-009-0384-0 – start-page: 1 year: 2014 ident: 10.1016/j.media.2015.04.015_bib0006 article-title: Generalized multiresolution hierarchical shape models via automatic landmark clusterization – volume: 31 start-page: 88 issue: 1 year: 2012 ident: 10.1016/j.media.2015.04.015_bib0037 article-title: Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2165294 – start-page: 98 year: 2013 ident: 10.1016/j.media.2015.04.015_bib0040 article-title: Patch-based segmentation without registration: application to knee MRI – volume: 16 start-page: 904 issue: 4 year: 2012 ident: 10.1016/j.media.2015.04.015_bib0017 article-title: Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.02.001 |
| SSID | ssj0007440 |
| Score | 2.5156665 |
| Snippet | •Discriminative dictionary learning is applied to multi-organ segmentation.•A local voxel-wise atlas selection is proposed.•A multi-resolution strategy is... An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 92 |
| SubjectTerms | Abdominal multi-organ segmentation Algorithms Discriminative dictionary learning Humans Kidney - diagnostic imaging Liver - diagnostic imaging Local atlas selection Pancreas - diagnostic imaging Patch based Radiographic Image Interpretation, Computer-Assisted - methods Radiography, Abdominal - methods Spleen - diagnostic imaging Tomography, X-Ray Computed - methods |
| Title | Discriminative dictionary learning for abdominal multi-organ segmentation |
| URI | https://dx.doi.org/10.1016/j.media.2015.04.015 https://www.ncbi.nlm.nih.gov/pubmed/25988490 https://www.proquest.com/docview/1686067306 |
| Volume | 23 |
| WOSCitedRecordID | wos000357351600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1361-8423 dateEnd: 20160831 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhhA8IBgfKx9TkBAv4ClJbcd-nKCDoVJA6iDixUoch2Xq0m5t0cRfz_kjaaaxaTzwkqRWnEa-X87n8-_uEHqp8n5RcJ5hkG-MSVkyDPMOwSaMsigJI5GtovBtmIxGPE3FF08bm9tyAkld87MzMfuvooY2ELYJnf0HcbcPhQa4BqHDEcQOx2sJ_l1lNIFhuFhWUFHZyAVDjps0bhDLnMyLqSvoZTmF2JZ3ej3XP499NFLdtVub_Zzq2HB8Mp_JZOWidhrDnFstP5389tTtqgXgd--d_qEPV6h8n1l37deqPln6Vu-GiGhLWW00Z59FmBMXPLyj_9Lm1a3_1YWV052uJt4Fle68C0c7NpLGcPGozU3rgkDPJ9AefZZ7B8OhHA_S8avZCTa1xcwevC-0soY24oQK0H0bu_uD9GM7Y5skiS4-z71uk53K8gAv_O9lFsxlKxRrqYzvobt-iRHsOmjcRzd0vYnudBJPbqJbnzyl4gHaP4-XYIWXoMFLAHgJWrwEHbwEXbw8RAd7g_HbD9jX18CKJOEC8zKjSrA8Y6DmE6Y0E7kIaamKiJQiVFGfFjA2YBOLMtFms5_rmGqYkTQROuf9R2i9ntZ6CwVRlsWwso6oyaCWw3eeFLAU10QxGNOS0x6KmzGTyiefNzVQJrJhGR5JO9DSDLQMiYRTD71pO81c7pWrb2eNMKQ3H51ZKAFKV3d80YhOgnI1O2ZZrafLuYwYZ6aSU8h66LGTafsmMRWcExE-uUbvp-j26pt5htYXp0v9HN1UvxbV_HQbrSUp3_ag_APYaaRf |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+dictionary+learning+for+abdominal+multi-organ+segmentation&rft.jtitle=Medical+image+analysis&rft.au=Tong%2C+Tong&rft.au=Wolz%2C+Robin&rft.au=Wang%2C+Zehan&rft.au=Gao%2C+Qinquan&rft.date=2015-07-01&rft.issn=1361-8423&rft.eissn=1361-8423&rft.volume=23&rft.issue=1&rft.spage=92&rft_id=info:doi/10.1016%2Fj.media.2015.04.015&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |