A Deep-Learning-Inspired Person-Job Matching Model Based on Sentence Vectors and Subject-Term Graphs

In this study, an end-to-end person-to-job post data matching model is constructed, and the experiments for matching people with the actual recruitment data are conducted. First, the representation of the constructed knowledge in the low-dimensional space is described. Then, it is explained in the B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) Jg. 2021; H. 1
Hauptverfasser: Wang, Xiaowei, Jiang, Zhenhong, Peng, Lingxi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Hindawi 2021
John Wiley & Sons, Inc
Wiley
Schlagworte:
ISSN:1076-2787, 1099-0526
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, an end-to-end person-to-job post data matching model is constructed, and the experiments for matching people with the actual recruitment data are conducted. First, the representation of the constructed knowledge in the low-dimensional space is described. Then, it is explained in the Bidirectional Encoder Representations from Transformers (BERT) pretraining language model, which is introduced as the encoding model for textual information. The structure of the person-post matching model is explained in terms of the attention mechanism and its computational layers. Finally, the experiments based on the person-post matching model are compared with a variety of person-post matching methods in the actual recruitment dataset, and the experimental results are analyzed.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/6206288