Feature Selection via Pareto Multi-objective Genetic Algorithms

Feature selection, an important combinatorial optimization problem in data mining, aims to find a reduced subset of features of high quality in a dataset. Different categories of importance measures can be used to estimate the quality of a feature subset. Since each measure provides a distinct persp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied artificial intelligence Ročník 31; číslo 9-10; s. 764 - 791
Hlavní autori: Spolaôr, Newton, Lorena, Ana Carolina, Diana Lee, Huei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 26.11.2017
Taylor & Francis Ltd
Taylor & Francis Group
Predmet:
ISSN:0883-9514, 1087-6545
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Feature selection, an important combinatorial optimization problem in data mining, aims to find a reduced subset of features of high quality in a dataset. Different categories of importance measures can be used to estimate the quality of a feature subset. Since each measure provides a distinct perspective of data and of which are their important features, in this article we investigate the simultaneous optimization of importance measures from different categories using multi-objective genetic algorithms grounded in the Pareto theory. An extensive experimental evaluation of the proposed method is presented, including an analysis of the performance of predictive models built using the selected subsets of features. The results show the competitiveness of the method in comparison with six feature selection algorithms. As an additional contribution, we conducted a pioneer, rigorous, and replicable systematic review on related work. As a result, a summary of 93 related papers strengthens features of our method.
AbstractList Feature selection, an important combinatorial optimization problem in data mining, aims to find a reduced subset of features of high quality in a dataset. Different categories of importance measures can be used to estimate the quality of a feature subset. Since each measure provides a distinct perspective of data and of which are their important features, in this article we investigate the simultaneous optimization of importance measures from different categories using multi-objective genetic algorithms grounded in the Pareto theory. An extensive experimental evaluation of the proposed method is presented, including an analysis of the performance of predictive models built using the selected subsets of features. The results show the competitiveness of the method in comparison with six feature selection algorithms. As an additional contribution, we conducted a pioneer, rigorous, and replicable systematic review on related work. As a result, a summary of 93 related papers strengthens features of our method.
Author Diana Lee, Huei
Spolaôr, Newton
Lorena, Ana Carolina
Author_xml – sequence: 1
  givenname: Newton
  orcidid: 0000-0003-0748-3693
  surname: Spolaôr
  fullname: Spolaôr, Newton
  email: newtonspolaor@gmail.com
  organization: Laboratory of Bioinformatics (LABI), Western Paraná State University (UNIOESTE)
– sequence: 2
  givenname: Ana Carolina
  orcidid: 0000-0002-6140-571X
  surname: Lorena
  fullname: Lorena, Ana Carolina
  organization: Science and Technology Institute (STI), Federal University of São Paulo (UNIFESP)
– sequence: 3
  givenname: Huei
  orcidid: 0000-0002-2189-1047
  surname: Diana Lee
  fullname: Diana Lee, Huei
  organization: Laboratory of Bioinformatics (LABI), Western Paraná State University (UNIOESTE)
BookMark eNqFkF1LHDEUhkNR6Kr9CYUBr2fNyXfohRVRKygW2l6Hs5nEZpmd2ExW8d874-pNL9qrQM7zvrw8B2RvyEMg5DPQJVBDT6gx3EoQS0bBLEEIwbn4QBbTUbdKCrlHFjPTztBHcjCOa0opaA0LcnoZsG5LaH6EPvia8tA8Jmy-Ywk1N7fbvqY2r9bz6TE0V2EINfnmrL_PJdXfm_GI7Efsx_Dp7T0kvy4vfp5_a2_urq7Pz25aLzStreaoOquMCh6j1djpqCKzK_AS0CjGGLeCIuWRg-44s9zqCNQabyZyFfkhud71dhnX7qGkDZZnlzG5149c7h2WaVofnJUBsFtpgR0TEjqjFKNCcq2kASbN1HW863oo-c82jNWt87YM03w3GWSWgrIwUV92lC95HEuIzqeKs6FaMPUOqJvtu3f7c9a4N_tTWv6Vft_8v9zXXS4NMZcNPuXSd67ic59LLDj4NDr-74oX6bSasQ
CitedBy_id crossref_primary_10_1016_j_cie_2020_106628
crossref_primary_10_3390_e22111198
crossref_primary_10_1007_s11227_025_07629_5
crossref_primary_10_1007_s42107_025_01276_0
crossref_primary_10_1587_transinf_2019EDL8001
crossref_primary_10_1016_j_procs_2020_03_376
Cites_doi 10.1007/s10844-007-0037-0
10.4114/ia.v10i32.923
10.1016/S0004-3702(97)00043-X
10.1109/5254.671091
10.1109/SBRN.2010.33
10.1201/9781584888796
10.1142/S0218213013500243
10.1145/1046456.1046467
10.1007/BF00153759
10.1007/978-3-642-19893-9_32
10.1162/153244303322753616
10.1016/j.eswa.2008.07.026
10.1007/978-1-4615-5689-3
10.1109/34.990133
10.1613/jair.346
10.1007/3-540-36970-8_35
10.1023/A:1025667309714
10.7551/mitpress/4175.001.0001
ContentType Journal Article
Copyright 2017 Taylor & Francis 2017
2017 Taylor & Francis
Copyright_xml – notice: 2017 Taylor & Francis 2017
– notice: 2017 Taylor & Francis
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1080/08839514.2018.1444334
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1087-6545
EndPage 791
ExternalDocumentID oai_doaj_org_article_95e1adb74ad2451d8662045376581258
10_1080_08839514_2018_1444334
1444334
Genre Article
GrantInformation_xml – fundername: São Paulo Research Foundation
  grantid: 2012/22608-8
  funderid: 10.13039/501100001807
– fundername: Brazilian National Council for Scientific and Technological Development
  grantid: 482222/2013-1; 308232/2011-9
  funderid: 10.13039/501100003593
GroupedDBID .4S
.7F
.DC
.QJ
0YH
23M
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAFWJ
AAJMT
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABPEM
ABTAI
ACGEJ
ACGFS
ACGOD
ACNCT
ACTIO
ACUHS
ADCVX
ADMLS
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFPKN
AGMYJ
AHQJS
AIJEM
AIYEW
AJWEG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
S-T
SNACF
TDBHL
TFL
TFW
TH9
TNC
TTHFI
TUS
TWF
UT5
UU3
ZL0
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
GROUPED_DOAJ
ID FETCH-LOGICAL-c470t-73a6d9686ecaf97ad7f6f29b1c51a862223940a03f317d329397f1098c87f6bf3
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432145400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0883-9514
IngestDate Mon Nov 10 04:34:40 EST 2025
Sun Nov 09 07:15:58 EST 2025
Sat Nov 29 03:21:24 EST 2025
Tue Nov 18 22:18:56 EST 2025
Mon Oct 20 23:46:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9-10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-73a6d9686ecaf97ad7f6f29b1c51a862223940a03f317d329397f1098c87f6bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6140-571X
0000-0002-2189-1047
0000-0003-0748-3693
OpenAccessLink https://doaj.org/article/95e1adb74ad2451d8662045376581258
PQID 2012901691
PQPubID 53050
PageCount 28
ParticipantIDs proquest_journals_2012901691
crossref_citationtrail_10_1080_08839514_2018_1444334
doaj_primary_oai_doaj_org_article_95e1adb74ad2451d8662045376581258
crossref_primary_10_1080_08839514_2018_1444334
informaworld_taylorfrancis_310_1080_08839514_2018_1444334
PublicationCentury 2000
PublicationDate 2017-11-26
PublicationDateYYYYMMDD 2017-11-26
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-26
  day: 26
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Applied artificial intelligence
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References CIT0010
CIT0032
Witten I. H. (CIT0038) 2011
CIT0034
CIT0011
Press W. H. (CIT0027) 1992
CIT0036
CIT0016
CIT0015
CIT0017
CIT0039
CIT0019
Han J. (CIT0013) 2011
Scholkopf B. (CIT0031) 2001
Zeleny M. (CIT0042) 1973
CIT0040
CIT0001
Wilson D. R. (CIT0037) 1997; 6
Deb K. (CIT0007) 2000
Liu H. (CIT0020) 2007
CIT0002
CIT0024
Nahook H. N. (CIT0025) 2013; 3
CIT0006
CIT0028
CIT0009
References_xml – ident: CIT0002
  doi: 10.1007/s10844-007-0037-0
– ident: CIT0015
– ident: CIT0011
– ident: CIT0017
  doi: 10.4114/ia.v10i32.923
– ident: CIT0016
  doi: 10.1016/S0004-3702(97)00043-X
– ident: CIT0040
  doi: 10.1109/5254.671091
– ident: CIT0032
  doi: 10.1109/SBRN.2010.33
– volume-title: Data mining: Concepts and techniques
  year: 2011
  ident: CIT0013
– volume-title: Computational methods of feature selection
  year: 2007
  ident: CIT0020
  doi: 10.1201/9781584888796
– ident: CIT0039
  doi: 10.1142/S0218213013500243
– volume: 3
  start-page: 37
  issue: 2
  year: 2013
  ident: CIT0025
  publication-title: International Journal of Soft Computing and Engineering
– volume-title: Numerical recipes in C: The art of scientific computing
  year: 1992
  ident: CIT0027
– ident: CIT0009
  doi: 10.1145/1046456.1046467
– ident: CIT0001
  doi: 10.1007/BF00153759
– ident: CIT0034
  doi: 10.1007/978-3-642-19893-9_32
– start-page: 849
  volume-title: Parallel problem solving from nature
  year: 2000
  ident: CIT0007
– start-page: 262
  volume-title: Multiple criteria decision making
  year: 1973
  ident: CIT0042
– ident: CIT0010
  doi: 10.1162/153244303322753616
– ident: CIT0036
  doi: 10.1016/j.eswa.2008.07.026
– ident: CIT0019
  doi: 10.1007/978-1-4615-5689-3
– ident: CIT0024
  doi: 10.1109/34.990133
– volume: 6
  start-page: 1
  year: 1997
  ident: CIT0037
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.346
– ident: CIT0006
  doi: 10.1007/3-540-36970-8_35
– ident: CIT0028
  doi: 10.1023/A:1025667309714
– volume-title: Learning with Kernels: Support vector machines, regularization, optimization, and beyond
  year: 2001
  ident: CIT0031
  doi: 10.7551/mitpress/4175.001.0001
– volume-title: Data mining: Practical machine learning tools and techniques
  year: 2011
  ident: CIT0038
SSID ssj0001771
Score 2.165594
Snippet Feature selection, an important combinatorial optimization problem in data mining, aims to find a reduced subset of features of high quality in a dataset....
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 764
SubjectTerms Combinatorial analysis
Data mining
Genetic algorithms
Multiple objective analysis
Pareto optimization
Performance prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZQxcDCjSgU5IHVECc-4gkVBGKqKgFSN8vxAUWlRW3a34_tOIhj6MJq2ZH1Dr_3Yr_vA-CCVtqIChNEbaYQKbFFimYaUSeYsY6bUjRkE3wwKEcjMfxG9RXehDXwwI3grgS1WJmKE2VyQrEpWURQ935BfWyisc0346ItptIZjHkstbwLFcjnEKTt3Qmo2n4sDIVnXWW42yRFQX5EpQje_wu69M9RHePP_S7YTokj7Dcb3gMbdroPdlpSBph89ABch6RuObfwMTLceLHD1VjBYWCzncHYb4tm1VtzzsGAOu0_CPuTl9l8XL--Lw7B8_3d0-0DSiwJSBOe1YgXihnBSma1coIrwx1zuZe_plj5eiWP5OcqK5xPFUzhw7vgDmei1KWfWbniCHSms6k9BtDXLgyb3KtIKaKcFcZmOrwD9TlgxRztAtJKSeoEIR6YLCYSt0ijSbgyCFcm4XbB5deyjwZDY92Cm6CCr8kBAjsOeMOQyTDkOsPoAvFdgbKOf0BcQ1ciizUb6LXalsmnF2FCuHRmAp_8x_5OwVYeUgSMUc56oFPPl_YMbOpVPV7Mz6M5fwJHkO53
  priority: 102
  providerName: Directory of Open Access Journals
Title Feature Selection via Pareto Multi-objective Genetic Algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/08839514.2018.1444334
https://www.proquest.com/docview/2012901691
https://doaj.org/article/95e1adb74ad2451d8662045376581258
Volume 31
WOSCitedRecordID wos000432145400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1087-6545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001771
  issn: 0883-9514
  databaseCode: TFW
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKGX8mirbnnIB66GOIlfJwSIVU8ICapysxw_6FZ0g5Isv78ex1m1RRWHco08VjLjGc_Yk-9D6Ig11qmG1oT5wpBaUk8MKyxhQXHng3BSjWQT4upK3t2p69xN2Oe2SqihwwgUkWI1OLdp-qkj7iQ6RhUTAzgRoRJuJ-uqAkTQuPWDa97Ov61jMRWp5AIJAiLTPzz_muWP3SmB-P8FYfosZKd9aL71Cl-wjd7lJBSfjatmB73xy120NRE84Ozv79EpJIirzuObxJYTTYifFgZfAzNui9O_u6RtfowxEwOCdZwQnz3ct91i-P6z_4C-zi9vL76QzLhAbC2KgYjKcKe45N6aoIRxIvBQRltaRk2sfcpEpG6KKsS0w1UxVVAi0EJJK-PIJlQf0cayXfpPCMc6iFNXRnMbU5vglfOFhZ7SmE82PLAZqidNa5vhyIEV40HTCbU0K0mDknRW0gwdr8UeRzyOlwTOwYzrwQCnnR603b3O3qkV89S4RtTGlTWjTvIE0x-DL4sJEJMzpH5fBHpIpylhpD7R1QsvsD-tGJ3jQw8D4AKbK_r5P6beQ29LyDIoJSXfRxtDt_IHaNM-DYu-O0zHC4fJH34B5QkBgA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagRaIX2vJQFwr40KshTvw8obZiVURZVeoierMcP8qiskHZtL8fj5OsCgj1ANfIYyUez_gbx_4-hA547byuKSM8FJYwRQOxvHCERy18iNIr3YtNyNlMXVzo23dh4Fgl1NCxJ4rIuRqCGzajxyNxb1NkVAkZwJYIVfB7klUVu482eVprgT9_Pv2yzsZU5qILTAjYjLd4_tbNL-tTpvH_jcT0j6SdV6Lp9v_4hh30aMCh-LCfOLvoXlg-RtujxgMeQv4JegcY8boN-DwL5iQv4puFxWcgjtvgfH2XNPW3Pm1iILFOHeLDq8umXXRfv6-eos_T9_PjEzKILhDHZNERWVnhtVAiOBu1tF5GEcvkTsepTeVPmbXUbVHFhDx8ldCClpEWWjmVWtaxeoY2ls0y7CGcSiFBfZk8bi2zMWgfCgfHShOkrEXkE8TGoTZuYCQHYYwrQ0fi0mGQDAySGQZpgt6szX70lBx3GRyBH9eNgVE7P2jaSzMEqNE8UOtryawvGadeiczUn_IvTxiIqwnSt2eB6fKGSuzVT0x1xwvsj1PGDCliBQ3gH7bQ9Pk_dP0aPTyZfzo1px9mH1-grRJAB6WkFPtoo2uvw0v0wN10i1X7KofFTy7pBLU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLagINQLZRUDBXzgaogTrydUlhEINBqJInqzHC_toDKpMml_f_0cZ8Qi1ANcIz8r8Vv8vfj5ewi94K3zuqWM8FBZwhQNxPLKER618CFKr_TYbEIuFuroSC9LNeGmlFVCDh1Hoogcq8G5z3ycKuJeJcdoEjCAPyJUwekkaxp2Hd1I0FmAkR_Ov22DMZU55wIRAjLTJZ6_TfPL9pRZ_H_jMP0jZueNaL73Hz7hDrpdUCg-GM3mLroW1vfQ3tThAReHv49eA0I87wP-ktvlJB3ii5XFS2iN2-F8eZd07fcxaGKgsE4T4oPT465fDSc_Ng_Q1_n7w7cfSGm5QByT1UBkY4XXQongbNTSehlFrJMyHac2JT917qRuqyYm3OGbhBW0jLTSyqk0so3NQ7Sz7tbhEcIpERLU10nf1jIbg_ahclBUmgBlKyKfITattHGFjxzaYpwaOtGWlkUysEimLNIMvdyKnY2EHFcJvAE1bgcDn3Z-0PXHprin0TxQ61vJrK8Zp16JzNOfoi9PCIirGdI_G4EZ8u-UOPY-Mc0VL7A_WYwpAWIDA-AEW2j6-B-mfo5uLd_NzeePi09P0G4NiINSUot9tDP05-EpuukuhtWmf5ad4hIIxwNn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+via+Pareto+Multi-objective+Genetic+Algorithms&rft.jtitle=Applied+artificial+intelligence&rft.au=Spola%C3%B4r%2C+Newton&rft.au=Lorena%2C+Ana+Carolina&rft.au=Diana+Lee%2C+Huei&rft.date=2017-11-26&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=31&rft.issue=9-10&rft.spage=764&rft.epage=791&rft_id=info:doi/10.1080%2F08839514.2018.1444334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_08839514_2018_1444334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon