Feature Selection via Pareto Multi-objective Genetic Algorithms
Feature selection, an important combinatorial optimization problem in data mining, aims to find a reduced subset of features of high quality in a dataset. Different categories of importance measures can be used to estimate the quality of a feature subset. Since each measure provides a distinct persp...
Uložené v:
| Vydané v: | Applied artificial intelligence Ročník 31; číslo 9-10; s. 764 - 791 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis
26.11.2017
Taylor & Francis Ltd Taylor & Francis Group |
| Predmet: | |
| ISSN: | 0883-9514, 1087-6545 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Feature selection, an important combinatorial optimization problem in data mining, aims to find a reduced subset of features of high quality in a dataset. Different categories of importance measures can be used to estimate the quality of a feature subset. Since each measure provides a distinct perspective of data and of which are their important features, in this article we investigate the simultaneous optimization of importance measures from different categories using multi-objective genetic algorithms grounded in the Pareto theory. An extensive experimental evaluation of the proposed method is presented, including an analysis of the performance of predictive models built using the selected subsets of features. The results show the competitiveness of the method in comparison with six feature selection algorithms. As an additional contribution, we conducted a pioneer, rigorous, and replicable systematic review on related work. As a result, a summary of 93 related papers strengthens features of our method. |
|---|---|
| AbstractList | Feature selection, an important combinatorial optimization problem in data mining, aims to find a reduced subset of features of high quality in a dataset. Different categories of importance measures can be used to estimate the quality of a feature subset. Since each measure provides a distinct perspective of data and of which are their important features, in this article we investigate the simultaneous optimization of importance measures from different categories using multi-objective genetic algorithms grounded in the Pareto theory. An extensive experimental evaluation of the proposed method is presented, including an analysis of the performance of predictive models built using the selected subsets of features. The results show the competitiveness of the method in comparison with six feature selection algorithms. As an additional contribution, we conducted a pioneer, rigorous, and replicable systematic review on related work. As a result, a summary of 93 related papers strengthens features of our method. |
| Author | Diana Lee, Huei Spolaôr, Newton Lorena, Ana Carolina |
| Author_xml | – sequence: 1 givenname: Newton orcidid: 0000-0003-0748-3693 surname: Spolaôr fullname: Spolaôr, Newton email: newtonspolaor@gmail.com organization: Laboratory of Bioinformatics (LABI), Western Paraná State University (UNIOESTE) – sequence: 2 givenname: Ana Carolina orcidid: 0000-0002-6140-571X surname: Lorena fullname: Lorena, Ana Carolina organization: Science and Technology Institute (STI), Federal University of São Paulo (UNIFESP) – sequence: 3 givenname: Huei orcidid: 0000-0002-2189-1047 surname: Diana Lee fullname: Diana Lee, Huei organization: Laboratory of Bioinformatics (LABI), Western Paraná State University (UNIOESTE) |
| BookMark | eNqFkF1LHDEUhkNR6Kr9CYUBr2fNyXfohRVRKygW2l6Hs5nEZpmd2ExW8d874-pNL9qrQM7zvrw8B2RvyEMg5DPQJVBDT6gx3EoQS0bBLEEIwbn4QBbTUbdKCrlHFjPTztBHcjCOa0opaA0LcnoZsG5LaH6EPvia8tA8Jmy-Ywk1N7fbvqY2r9bz6TE0V2EINfnmrL_PJdXfm_GI7Efsx_Dp7T0kvy4vfp5_a2_urq7Pz25aLzStreaoOquMCh6j1djpqCKzK_AS0CjGGLeCIuWRg-44s9zqCNQabyZyFfkhud71dhnX7qGkDZZnlzG5149c7h2WaVofnJUBsFtpgR0TEjqjFKNCcq2kASbN1HW863oo-c82jNWt87YM03w3GWSWgrIwUV92lC95HEuIzqeKs6FaMPUOqJvtu3f7c9a4N_tTWv6Vft_8v9zXXS4NMZcNPuXSd67ic59LLDj4NDr-74oX6bSasQ |
| CitedBy_id | crossref_primary_10_1016_j_cie_2020_106628 crossref_primary_10_3390_e22111198 crossref_primary_10_1007_s11227_025_07629_5 crossref_primary_10_1007_s42107_025_01276_0 crossref_primary_10_1587_transinf_2019EDL8001 crossref_primary_10_1016_j_procs_2020_03_376 |
| Cites_doi | 10.1007/s10844-007-0037-0 10.4114/ia.v10i32.923 10.1016/S0004-3702(97)00043-X 10.1109/5254.671091 10.1109/SBRN.2010.33 10.1201/9781584888796 10.1142/S0218213013500243 10.1145/1046456.1046467 10.1007/BF00153759 10.1007/978-3-642-19893-9_32 10.1162/153244303322753616 10.1016/j.eswa.2008.07.026 10.1007/978-1-4615-5689-3 10.1109/34.990133 10.1613/jair.346 10.1007/3-540-36970-8_35 10.1023/A:1025667309714 10.7551/mitpress/4175.001.0001 |
| ContentType | Journal Article |
| Copyright | 2017 Taylor & Francis 2017 2017 Taylor & Francis |
| Copyright_xml | – notice: 2017 Taylor & Francis 2017 – notice: 2017 Taylor & Francis |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
| DOI | 10.1080/08839514.2018.1444334 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1087-6545 |
| EndPage | 791 |
| ExternalDocumentID | oai_doaj_org_article_95e1adb74ad2451d8662045376581258 10_1080_08839514_2018_1444334 1444334 |
| Genre | Article |
| GrantInformation_xml | – fundername: São Paulo Research Foundation grantid: 2012/22608-8 funderid: 10.13039/501100001807 – fundername: Brazilian National Council for Scientific and Technological Development grantid: 482222/2013-1; 308232/2011-9 funderid: 10.13039/501100003593 |
| GroupedDBID | .4S .7F .DC .QJ 0YH 23M 2DF 30N 4.4 5GY 5VS 8VB AAENE AAFWJ AAJMT ABCCY ABDBF ABFIM ABHAV ABIVO ABPEM ABTAI ACGEJ ACGFS ACGOD ACNCT ACTIO ACUHS ADCVX ADMLS ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AFPKN AGMYJ AHQJS AIJEM AIYEW AJWEG AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAP EBR EBS EBU ECS EDO EJD EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P I-F IPNFZ J.P K1G KYCEM M4Z MK~ NA5 NX~ O9- P2P PQQKQ QWB RIG S-T SNACF TDBHL TFL TFW TH9 TNC TTHFI TUS TWF UT5 UU3 ZL0 ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c470t-73a6d9686ecaf97ad7f6f29b1c51a862223940a03f317d329397f1098c87f6bf3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432145400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0883-9514 |
| IngestDate | Mon Nov 10 04:34:40 EST 2025 Sun Nov 09 07:15:58 EST 2025 Sat Nov 29 03:21:24 EST 2025 Tue Nov 18 22:18:56 EST 2025 Mon Oct 20 23:46:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9-10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-73a6d9686ecaf97ad7f6f29b1c51a862223940a03f317d329397f1098c87f6bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6140-571X 0000-0002-2189-1047 0000-0003-0748-3693 |
| OpenAccessLink | https://doaj.org/article/95e1adb74ad2451d8662045376581258 |
| PQID | 2012901691 |
| PQPubID | 53050 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2012901691 crossref_citationtrail_10_1080_08839514_2018_1444334 doaj_primary_oai_doaj_org_article_95e1adb74ad2451d8662045376581258 crossref_primary_10_1080_08839514_2018_1444334 informaworld_taylorfrancis_310_1080_08839514_2018_1444334 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-26 |
| PublicationDateYYYYMMDD | 2017-11-26 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Applied artificial intelligence |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
| References | CIT0010 CIT0032 Witten I. H. (CIT0038) 2011 CIT0034 CIT0011 Press W. H. (CIT0027) 1992 CIT0036 CIT0016 CIT0015 CIT0017 CIT0039 CIT0019 Han J. (CIT0013) 2011 Scholkopf B. (CIT0031) 2001 Zeleny M. (CIT0042) 1973 CIT0040 CIT0001 Wilson D. R. (CIT0037) 1997; 6 Deb K. (CIT0007) 2000 Liu H. (CIT0020) 2007 CIT0002 CIT0024 Nahook H. N. (CIT0025) 2013; 3 CIT0006 CIT0028 CIT0009 |
| References_xml | – ident: CIT0002 doi: 10.1007/s10844-007-0037-0 – ident: CIT0015 – ident: CIT0011 – ident: CIT0017 doi: 10.4114/ia.v10i32.923 – ident: CIT0016 doi: 10.1016/S0004-3702(97)00043-X – ident: CIT0040 doi: 10.1109/5254.671091 – ident: CIT0032 doi: 10.1109/SBRN.2010.33 – volume-title: Data mining: Concepts and techniques year: 2011 ident: CIT0013 – volume-title: Computational methods of feature selection year: 2007 ident: CIT0020 doi: 10.1201/9781584888796 – ident: CIT0039 doi: 10.1142/S0218213013500243 – volume: 3 start-page: 37 issue: 2 year: 2013 ident: CIT0025 publication-title: International Journal of Soft Computing and Engineering – volume-title: Numerical recipes in C: The art of scientific computing year: 1992 ident: CIT0027 – ident: CIT0009 doi: 10.1145/1046456.1046467 – ident: CIT0001 doi: 10.1007/BF00153759 – ident: CIT0034 doi: 10.1007/978-3-642-19893-9_32 – start-page: 849 volume-title: Parallel problem solving from nature year: 2000 ident: CIT0007 – start-page: 262 volume-title: Multiple criteria decision making year: 1973 ident: CIT0042 – ident: CIT0010 doi: 10.1162/153244303322753616 – ident: CIT0036 doi: 10.1016/j.eswa.2008.07.026 – ident: CIT0019 doi: 10.1007/978-1-4615-5689-3 – ident: CIT0024 doi: 10.1109/34.990133 – volume: 6 start-page: 1 year: 1997 ident: CIT0037 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.346 – ident: CIT0006 doi: 10.1007/3-540-36970-8_35 – ident: CIT0028 doi: 10.1023/A:1025667309714 – volume-title: Learning with Kernels: Support vector machines, regularization, optimization, and beyond year: 2001 ident: CIT0031 doi: 10.7551/mitpress/4175.001.0001 – volume-title: Data mining: Practical machine learning tools and techniques year: 2011 ident: CIT0038 |
| SSID | ssj0001771 |
| Score | 2.165594 |
| Snippet | Feature selection, an important combinatorial optimization problem in data mining, aims to find a reduced subset of features of high quality in a dataset.... |
| SourceID | doaj proquest crossref informaworld |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 764 |
| SubjectTerms | Combinatorial analysis Data mining Genetic algorithms Multiple objective analysis Pareto optimization Performance prediction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZQxcDCjSgU5IHVECc-4gkVBGKqKgFSN8vxAUWlRW3a34_tOIhj6MJq2ZH1Dr_3Yr_vA-CCVtqIChNEbaYQKbFFimYaUSeYsY6bUjRkE3wwKEcjMfxG9RXehDXwwI3grgS1WJmKE2VyQrEpWURQ935BfWyisc0346ItptIZjHkstbwLFcjnEKTt3Qmo2n4sDIVnXWW42yRFQX5EpQje_wu69M9RHePP_S7YTokj7Dcb3gMbdroPdlpSBph89ABch6RuObfwMTLceLHD1VjBYWCzncHYb4tm1VtzzsGAOu0_CPuTl9l8XL--Lw7B8_3d0-0DSiwJSBOe1YgXihnBSma1coIrwx1zuZe_plj5eiWP5OcqK5xPFUzhw7vgDmei1KWfWbniCHSms6k9BtDXLgyb3KtIKaKcFcZmOrwD9TlgxRztAtJKSeoEIR6YLCYSt0ijSbgyCFcm4XbB5deyjwZDY92Cm6CCr8kBAjsOeMOQyTDkOsPoAvFdgbKOf0BcQ1ciizUb6LXalsmnF2FCuHRmAp_8x_5OwVYeUgSMUc56oFPPl_YMbOpVPV7Mz6M5fwJHkO53 priority: 102 providerName: Directory of Open Access Journals |
| Title | Feature Selection via Pareto Multi-objective Genetic Algorithms |
| URI | https://www.tandfonline.com/doi/abs/10.1080/08839514.2018.1444334 https://www.proquest.com/docview/2012901691 https://doaj.org/article/95e1adb74ad2451d8662045376581258 |
| Volume | 31 |
| WOSCitedRecordID | wos000432145400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1087-6545 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001771 issn: 0883-9514 databaseCode: TFW dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKGX8mirbnnIB66GOIlfJwSIVU8ICapysxw_6FZ0g5Isv78ex1m1RRWHco08VjLjGc_Yk-9D6Ig11qmG1oT5wpBaUk8MKyxhQXHng3BSjWQT4upK3t2p69xN2Oe2SqihwwgUkWI1OLdp-qkj7iQ6RhUTAzgRoRJuJ-uqAkTQuPWDa97Ov61jMRWp5AIJAiLTPzz_muWP3SmB-P8FYfosZKd9aL71Cl-wjd7lJBSfjatmB73xy120NRE84Ozv79EpJIirzuObxJYTTYifFgZfAzNui9O_u6RtfowxEwOCdZwQnz3ct91i-P6z_4C-zi9vL76QzLhAbC2KgYjKcKe45N6aoIRxIvBQRltaRk2sfcpEpG6KKsS0w1UxVVAi0EJJK-PIJlQf0cayXfpPCMc6iFNXRnMbU5vglfOFhZ7SmE82PLAZqidNa5vhyIEV40HTCbU0K0mDknRW0gwdr8UeRzyOlwTOwYzrwQCnnR603b3O3qkV89S4RtTGlTWjTvIE0x-DL4sJEJMzpH5fBHpIpylhpD7R1QsvsD-tGJ3jQw8D4AKbK_r5P6beQ29LyDIoJSXfRxtDt_IHaNM-DYu-O0zHC4fJH34B5QkBgA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagRaIX2vJQFwr40KshTvw8obZiVURZVeoierMcP8qiskHZtL8fj5OsCgj1ANfIYyUez_gbx_4-hA547byuKSM8FJYwRQOxvHCERy18iNIr3YtNyNlMXVzo23dh4Fgl1NCxJ4rIuRqCGzajxyNxb1NkVAkZwJYIVfB7klUVu482eVprgT9_Pv2yzsZU5qILTAjYjLd4_tbNL-tTpvH_jcT0j6SdV6Lp9v_4hh30aMCh-LCfOLvoXlg-RtujxgMeQv4JegcY8boN-DwL5iQv4puFxWcgjtvgfH2XNPW3Pm1iILFOHeLDq8umXXRfv6-eos_T9_PjEzKILhDHZNERWVnhtVAiOBu1tF5GEcvkTsepTeVPmbXUbVHFhDx8ldCClpEWWjmVWtaxeoY2ls0y7CGcSiFBfZk8bi2zMWgfCgfHShOkrEXkE8TGoTZuYCQHYYwrQ0fi0mGQDAySGQZpgt6szX70lBx3GRyBH9eNgVE7P2jaSzMEqNE8UOtryawvGadeiczUn_IvTxiIqwnSt2eB6fKGSuzVT0x1xwvsj1PGDCliBQ3gH7bQ9Pk_dP0aPTyZfzo1px9mH1-grRJAB6WkFPtoo2uvw0v0wN10i1X7KofFTy7pBLU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLagINQLZRUDBXzgaogTrydUlhEINBqJInqzHC_toDKpMml_f_0cZ8Qi1ANcIz8r8Vv8vfj5ewi94K3zuqWM8FBZwhQNxPLKER618CFKr_TYbEIuFuroSC9LNeGmlFVCDh1Hoogcq8G5z3ycKuJeJcdoEjCAPyJUwekkaxp2Hd1I0FmAkR_Ov22DMZU55wIRAjLTJZ6_TfPL9pRZ_H_jMP0jZueNaL73Hz7hDrpdUCg-GM3mLroW1vfQ3tThAReHv49eA0I87wP-ktvlJB3ii5XFS2iN2-F8eZd07fcxaGKgsE4T4oPT465fDSc_Ng_Q1_n7w7cfSGm5QByT1UBkY4XXQongbNTSehlFrJMyHac2JT917qRuqyYm3OGbhBW0jLTSyqk0so3NQ7Sz7tbhEcIpERLU10nf1jIbg_ahclBUmgBlKyKfITattHGFjxzaYpwaOtGWlkUysEimLNIMvdyKnY2EHFcJvAE1bgcDn3Z-0PXHprin0TxQ61vJrK8Zp16JzNOfoi9PCIirGdI_G4EZ8u-UOPY-Mc0VL7A_WYwpAWIDA-AEW2j6-B-mfo5uLd_NzeePi09P0G4NiINSUot9tDP05-EpuukuhtWmf5ad4hIIxwNn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+via+Pareto+Multi-objective+Genetic+Algorithms&rft.jtitle=Applied+artificial+intelligence&rft.au=Spola%C3%B4r%2C+Newton&rft.au=Lorena%2C+Ana+Carolina&rft.au=Diana+Lee%2C+Huei&rft.date=2017-11-26&rft.issn=0883-9514&rft.eissn=1087-6545&rft.volume=31&rft.issue=9-10&rft.spage=764&rft.epage=791&rft_id=info:doi/10.1080%2F08839514.2018.1444334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_08839514_2018_1444334 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-9514&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-9514&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-9514&client=summon |