An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems

We propose a proximal-gradient algorithm with penalization terms and inertial and memory effects for minimizing the sum of a proper, convex, and lower semicontinuous and a convex differentiable function subject to the set of minimizers of another convex differentiable function. We show that, under s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics Jg. 46; H. 1; S. 53 - 71
Hauptverfasser: Boţ, Radu Ioan, Csetnek, Ernö Robert, Nimana, Nimit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.03.2018
Springer Nature B.V
Schlagworte:
ISSN:2305-221X, 2305-2228, 2305-2228
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a proximal-gradient algorithm with penalization terms and inertial and memory effects for minimizing the sum of a proper, convex, and lower semicontinuous and a convex differentiable function subject to the set of minimizers of another convex differentiable function. We show that, under suitable choices for the step sizes and the penalization parameters, the generated iterates weakly converge to an optimal solution of the addressed bilevel optimization problem, while the objective function values converge to its optimal objective value.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2305-221X
2305-2228
2305-2228
DOI:10.1007/s10013-017-0256-9