Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images

Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an oppor...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 13; no. 1; pp. 1183 - 12
Main Authors: Lewis, John, Cha, Young-Jin, Kim, Jongho
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 21.01.2023
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model’s ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder–decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.
AbstractList Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model’s ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder–decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.
Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model's ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder-decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model's ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder-decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.
Abstract Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model’s ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder–decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.
ArticleNumber 1183
Author Kim, Jongho
Cha, Young-Jin
Lewis, John
Author_xml – sequence: 1
  givenname: John
  surname: Lewis
  fullname: Lewis, John
  organization: Department of Civil Engineering, University of Manitoba
– sequence: 2
  givenname: Young-Jin
  surname: Cha
  fullname: Cha, Young-Jin
  email: young.cha@umanitoba.ca
  organization: Department of Civil Engineering, University of Manitoba
– sequence: 3
  givenname: Jongho
  surname: Kim
  fullname: Kim, Jongho
  organization: Department of Radiology, Max Rady College of Medicine, University of Manitoba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36681776$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQtVARLaU_wAJFYsMm4NhO4tkgofKqVIkFsLZsZxxyybWDnRTdHf_AH_IluDeltF3UG4_sc86ceTwmBz54JORpRV9WlMtXSVQ1yJIyXjJZc1qyB-SIUVGXjDN2cCM-JCcpbWg-NQNRwSNyyJtGVm3bHJHPbxc9Fuht6DD--fW7w31UGp2wKzrEqZjCuJuKhP0W_aznIfjC4_wzxO-FC7GwYQw-JBumXTFsdY_pCXno9Jjw5Oo-Jl_fv_ty-rE8__Th7PTNeWlFS-eyEaANF9ZpbgEsWAkcJbMMhYGqy15NBdIhNdhS17WiAVPXzjomWzDg-DE5W3W7oDdqijl73KmgB7V_CLFXOs6DHVG52jIrdGOzskALkhsNQotWg5PM6Kz1etWaFrPFzuZSox5vid7-8cM31YcLBbLJjaRZ4MWVQAw_Fkyz2g7J4jhqj2FJirWNZBxAVhn6_A50E5boc6suUW3NGNAmo57ddHRt5d_sMoCtABtDShHdNaSi6nJH1LojKu-I2u-IYpkk75DssA41VzWM91P5Sk05j-8x_rd9D-svOKPSrw
CitedBy_id crossref_primary_10_1155_2023_7743762
crossref_primary_10_1109_ACCESS_2024_3431098
crossref_primary_10_1109_TIM_2024_3428593
crossref_primary_10_1016_j_engappai_2024_107898
crossref_primary_10_1109_MMUL_2024_3359267
crossref_primary_10_3904_kjim_2023_332
crossref_primary_10_1111_ppa_13783
crossref_primary_10_1109_TIM_2023_3298391
crossref_primary_10_1016_j_engappai_2024_108475
crossref_primary_10_1016_j_engappai_2024_108552
crossref_primary_10_1109_TITS_2023_3287533
crossref_primary_10_1016_j_pmatsci_2025_101544
crossref_primary_10_1007_s11760_023_02835_1
crossref_primary_10_1109_ACCESS_2024_3402818
crossref_primary_10_1109_TIM_2024_3458059
crossref_primary_10_1038_s41598_023_42436_z
crossref_primary_10_1080_10298436_2023_2255359
crossref_primary_10_1007_s10278_023_00954_2
crossref_primary_10_3390_en16237726
crossref_primary_10_1109_ACCESS_2023_3329991
crossref_primary_10_1016_j_imavis_2024_105068
crossref_primary_10_1137_23M1577663
crossref_primary_10_1007_s11709_024_1071_5
crossref_primary_10_1109_ACCESS_2023_3330142
crossref_primary_10_1007_s11665_023_08923_0
crossref_primary_10_1049_ipr2_12932
crossref_primary_10_1007_s13534_024_00415_x
crossref_primary_10_1109_ACCESS_2023_3325885
crossref_primary_10_1109_TITS_2023_3331769
crossref_primary_10_1007_s11709_024_1088_9
crossref_primary_10_1016_j_autcon_2024_105367
crossref_primary_10_1016_j_aei_2024_102578
crossref_primary_10_1016_j_aei_2023_102214
crossref_primary_10_1016_j_engappai_2025_110364
crossref_primary_10_1016_j_engappai_2025_111852
crossref_primary_10_1088_2057_1976_ad160f
crossref_primary_10_1016_j_engappai_2024_108497
crossref_primary_10_1016_j_engappai_2024_108574
crossref_primary_10_1016_j_engappai_2024_109467
crossref_primary_10_1016_j_engappai_2024_109343
crossref_primary_10_1109_TASE_2024_3430896
crossref_primary_10_3390_diagnostics14050474
crossref_primary_10_54392_irjmt25312
crossref_primary_10_1007_s00521_023_09358_3
crossref_primary_10_1016_j_media_2024_103288
crossref_primary_10_1109_TIM_2024_3413128
crossref_primary_10_1109_TIM_2025_3545506
crossref_primary_10_1109_ACCESS_2023_3312718
crossref_primary_10_1109_TITS_2024_3420763
crossref_primary_10_1109_TAI_2024_3366146
crossref_primary_10_1007_s11760_025_04397_w
crossref_primary_10_1109_ACCESS_2023_3340310
crossref_primary_10_1080_10589759_2023_2291429
crossref_primary_10_1109_TIM_2023_3342222
crossref_primary_10_3390_s23187724
crossref_primary_10_1109_ACCESS_2023_3284043
crossref_primary_10_1016_j_smhl_2025_100551
crossref_primary_10_1002_rob_22260
crossref_primary_10_1111_aej_12822
crossref_primary_10_1109_TIM_2024_3481545
crossref_primary_10_1080_02564602_2023_2242318
Cites_doi 10.1111/mice.12375
10.1016/j.compbiomed.2022.105476
10.1111/j.1469-8137.1912.tb05611.x
10.1109/TMI.2015.2487997
10.1093/jjco/hyv117
10.1109/TMI.2019.2936500
10.1111/mice.12263
10.1145/3065386
10.1109/ACCESS.2019.2900672
10.1109/TIE.2019.2945265
10.1016/j.autcon.2020.103291
10.1007/s11548-013-0926-3
10.5694/j.1326-5377.2007.tb00904.x
10.1056/NEJMoa1100370
10.1109/JBHI.2016.2637004
10.1109/ACCESS.2021.3063716
10.1109/TNNLS.2022.3159394
10.1109/TMI.2019.2959609
10.1109/ICCV48922.2021.00717
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-00928-1_48
10.1007/978-3-030-87193-2_12
10.1007/978-3-030-37734-2_37
10.1109/EIConRus.2019.8657018
10.1016/j.autcon.2022.104412
10.1038/s41598-019-56847-4
10.1109/ICPR56361.2022.9956726
10.1007/978-3-030-68793-9_23
10.1007/978-3-030-01234-2_49
10.1007/978-3-030-87193-2_2
10.1109/CVPR52688.2022.01181
10.1007/978-3-030-59725-2_26
10.1007/978-3-030-87193-2_66
10.1155/2017/4037190
10.1016/j.compmedimag.2015.02.007
10.1007/978-3-030-68763-2_22
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-28530-2
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (via ProQuest SciTech Premium Collection)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_f5c2c4a6cb914ec983ba94a47a9f82ba
PMC9867760
36681776
10_1038_s41598_023_28530_2
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c470t-649ab34cfa3c99c9c893e82c2e4b91d294b198fe0be70fd7469b55fcf2879b9f3
IEDL.DBID M7P
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000955774100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:01 EDT 2025
Tue Nov 04 02:06:34 EST 2025
Fri Sep 05 09:50:25 EDT 2025
Tue Oct 07 09:22:14 EDT 2025
Thu Jan 02 22:55:14 EST 2025
Sat Nov 29 02:07:52 EST 2025
Tue Nov 18 22:30:28 EST 2025
Fri Feb 21 02:39:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-649ab34cfa3c99c9c893e82c2e4b91d294b198fe0be70fd7469b55fcf2879b9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2767522906?pq-origsite=%requestingapplication%
PMID 36681776
PQID 2767522906
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_f5c2c4a6cb914ec983ba94a47a9f82ba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9867760
proquest_miscellaneous_2768239981
proquest_journals_2767522906
pubmed_primary_36681776
crossref_primary_10_1038_s41598_023_28530_2
crossref_citationtrail_10_1038_s41598_023_28530_2
springer_journals_10_1038_s41598_023_28530_2
PublicationCentury 2000
PublicationDate 2023-01-21
PublicationDateYYYYMMDD 2023-01-21
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Jaccard (CR43) 1912; 11
Jha (CR6) 2021; 9
Song, Li, Fan (CR16) 2022; 146
Morris, Iacopetta, Platell (CR1) 2007; 186
Silva, Histace, Romain, Dray, Granado (CR11) 2013; 9
CR19
CR18
Tajbakhsh, Gurudu, Liang (CR10) 2016; 35
CR17
CR39
CR38
CR15
Kang, Cha (CR34) 2018; 33
CR14
CR12
CR32
Choi, Cha (CR35) 2019; 67
Ali (CR30) 2020; 10
Liu (CR23) 2021; 2021
CR5
CR8
CR7
CR29
CR9
CR27
CR26
CR25
CR24
CR22
CR21
CR20
Kang, Benipal, Gopal, Cha (CR36) 2020; 118
CR42
Zauber (CR2) 2012; 366
CR41
Yu, Chen, Dou, Qin, Heng (CR13) 2016; 21
CR40
Matsuda, Ono, Kakugawa, Matsumoto, Saito (CR3) 2015; 45
Cha, Choi, Büyüköztürk (CR33) 2017; 32
Kang, Gwak (CR28) 2021; 7
Wang (CR31) 2019; 39
Krizhevsky, Sutskever, Hinton (CR4) 2017; 60
Kang, Benipal, Cha (CR37) 2021; 9
28530_CR29
28530_CR27
D Kang (28530_CR37) 2021; 9
28530_CR26
P Song (28530_CR16) 2022; 146
28530_CR25
28530_CR24
28530_CR22
28530_CR21
28530_CR20
28530_CR42
28530_CR5
28530_CR7
Z Liu (28530_CR23) 2021; 2021
28530_CR9
28530_CR8
S Ali (28530_CR30) 2020; 10
A Krizhevsky (28530_CR4) 2017; 60
YJ Cha (28530_CR33) 2017; 32
W Choi (28530_CR35) 2019; 67
28530_CR19
28530_CR18
D Kang (28530_CR34) 2018; 33
28530_CR17
28530_CR39
28530_CR38
N Tajbakhsh (28530_CR10) 2016; 35
28530_CR15
L Yu (28530_CR13) 2016; 21
28530_CR14
D Kang (28530_CR36) 2020; 118
28530_CR12
D Jha (28530_CR6) 2021; 9
28530_CR32
28530_CR41
28530_CR40
M Morris (28530_CR1) 2007; 186
J Kang (28530_CR28) 2021; 7
J Jaccard (28530_CR43) 1912; 11
AG Zauber (28530_CR2) 2012; 366
J Silva (28530_CR11) 2013; 9
Y Wang (28530_CR31) 2019; 39
T Matsuda (28530_CR3) 2015; 45
References_xml – ident: CR22
– volume: 33
  start-page: 885
  year: 2018
  end-page: 902
  ident: CR34
  article-title: Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12375
– volume: 146
  start-page: 105476
  year: 2022
  ident: CR16
  article-title: Attention based multi-scale parallel network for polyp segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105476
– ident: CR18
– volume: 11
  start-page: 37
  issue: 2
  year: 1912
  end-page: 50
  ident: CR43
  article-title: The distribution of the Flora in the Alpine Zone
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: CR14
– ident: CR39
– ident: CR12
– volume: 2021
  start-page: 10012
  year: 2021
  end-page: 100022
  ident: CR23
  article-title: Swin transformer: hierarchical vision transformer using shifted windows
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
– ident: CR29
– volume: 9
  start-page: 123
  year: 2021
  end-page: 128
  ident: CR37
  article-title: Hybrid concrete crack segmentation and quantification across complex backgrounds without a large training dataset
  publication-title: Data Sci. Eng.
– volume: 35
  start-page: 630
  year: 2016
  end-page: 644
  ident: CR10
  article-title: Automated polyp detection in colonoscopy videos using shape and context information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2487997
– ident: CR8
– volume: 45
  start-page: 900
  year: 2015
  end-page: 905
  ident: CR3
  article-title: Impact of screening colonoscopy on outcomes in colorectal cancer
  publication-title: Jpn. J. Clin. Oncol.
  doi: 10.1093/jjco/hyv117
– ident: CR40
– ident: CR25
– ident: CR27
– ident: CR42
– volume: 39
  start-page: 866
  year: 2019
  end-page: 876
  ident: CR31
  article-title: Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2936500
– volume: 32
  start-page: 361
  year: 2017
  end-page: 378
  ident: CR33
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– ident: CR21
– ident: CR19
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR4
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: CR15
– ident: CR38
– volume: 7
  start-page: 26440
  year: 2021
  end-page: 26447
  ident: CR28
  article-title: Ensemble of instance segmentation models for polyp segmentation in colonoscopy images
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2900672
– volume: 67
  start-page: 8016
  year: 2019
  end-page: 8025
  ident: CR35
  article-title: SDDNet: real-time crack segmentation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2945265
– volume: 118
  start-page: 103291
  year: 2020
  ident: CR36
  article-title: Hybrid pixel-level crack segmentation and quantification across complex backgrounds using deep learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103291
– ident: CR17
– ident: CR9
– volume: 9
  start-page: 283
  year: 2013
  end-page: 293
  ident: CR11
  article-title: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-013-0926-3
– volume: 186
  start-page: 296
  year: 2007
  end-page: 300
  ident: CR1
  article-title: Comparing survival outcomes for patients with colorectal cancer treated in public and private hospitals
  publication-title: Med. J. Aust.
  doi: 10.5694/j.1326-5377.2007.tb00904.x
– ident: CR32
– ident: CR5
– volume: 366
  start-page: 687
  year: 2012
  end-page: 696
  ident: CR2
  article-title: Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1100370
– ident: CR7
– volume: 21
  start-page: 65
  year: 2016
  end-page: 75
  ident: CR13
  article-title: Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2637004
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: CR30
  article-title: An objective comparison of detection and segmentation algorithms for artefacts in clincal endoscopy
  publication-title: Sci. Rep.
– ident: CR41
– volume: 9
  start-page: 40496
  year: 2021
  end-page: 40510
  ident: CR6
  article-title: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3063716
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 28530_CR17
  doi: 10.1109/TNNLS.2022.3159394
– volume: 7
  start-page: 26440
  year: 2021
  ident: 28530_CR28
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2900672
– ident: 28530_CR32
  doi: 10.1109/TMI.2019.2959609
– ident: 28530_CR27
  doi: 10.1109/ICCV48922.2021.00717
– volume: 39
  start-page: 866
  year: 2019
  ident: 28530_CR31
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2936500
– volume: 11
  start-page: 37
  issue: 2
  year: 1912
  ident: 28530_CR43
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: 28530_CR7
  doi: 10.1007/978-3-319-24574-4_28
– ident: 28530_CR42
  doi: 10.1007/978-3-030-00928-1_48
– volume: 32
  start-page: 361
  year: 2017
  ident: 28530_CR33
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– ident: 28530_CR19
  doi: 10.1007/978-3-030-87193-2_12
– ident: 28530_CR8
  doi: 10.1007/978-3-030-37734-2_37
– ident: 28530_CR39
– ident: 28530_CR14
  doi: 10.1109/EIConRus.2019.8657018
– volume: 45
  start-page: 900
  year: 2015
  ident: 28530_CR3
  publication-title: Jpn. J. Clin. Oncol.
  doi: 10.1093/jjco/hyv117
– volume: 9
  start-page: 283
  year: 2013
  ident: 28530_CR11
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-013-0926-3
– volume: 33
  start-page: 885
  year: 2018
  ident: 28530_CR34
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12375
– volume: 118
  start-page: 103291
  year: 2020
  ident: 28530_CR36
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103291
– ident: 28530_CR38
  doi: 10.1016/j.autcon.2022.104412
– volume: 366
  start-page: 687
  year: 2012
  ident: 28530_CR2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1100370
– volume: 35
  start-page: 630
  year: 2016
  ident: 28530_CR10
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2487997
– ident: 28530_CR41
– volume: 146
  start-page: 105476
  year: 2022
  ident: 28530_CR16
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105476
– volume: 10
  start-page: 1
  year: 2020
  ident: 28530_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– ident: 28530_CR26
– volume: 9
  start-page: 40496
  year: 2021
  ident: 28530_CR6
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3063716
– ident: 28530_CR18
  doi: 10.1109/ICPR56361.2022.9956726
– ident: 28530_CR22
  doi: 10.1007/978-3-030-68793-9_23
– ident: 28530_CR5
  doi: 10.1007/978-3-030-01234-2_49
– ident: 28530_CR29
  doi: 10.1007/978-3-030-87193-2_2
– ident: 28530_CR24
  doi: 10.1109/CVPR52688.2022.01181
– volume: 9
  start-page: 123
  year: 2021
  ident: 28530_CR37
  publication-title: Data Sci. Eng.
– ident: 28530_CR15
  doi: 10.1007/978-3-030-59725-2_26
– ident: 28530_CR20
  doi: 10.1007/978-3-030-87193-2_66
– ident: 28530_CR25
– volume: 67
  start-page: 8016
  year: 2019
  ident: 28530_CR35
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2945265
– ident: 28530_CR12
  doi: 10.1155/2017/4037190
– volume: 60
  start-page: 84
  year: 2017
  ident: 28530_CR4
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 28530_CR9
  doi: 10.1016/j.compmedimag.2015.02.007
– volume: 186
  start-page: 296
  year: 2007
  ident: 28530_CR1
  publication-title: Med. J. Aust.
  doi: 10.5694/j.1326-5377.2007.tb00904.x
– volume: 21
  start-page: 65
  year: 2016
  ident: 28530_CR13
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2637004
– ident: 28530_CR40
– ident: 28530_CR21
  doi: 10.1007/978-3-030-68763-2_22
– volume: 2021
  start-page: 10012
  year: 2021
  ident: 28530_CR23
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
SSID ssj0000529419
Score 2.6019802
Snippet Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive...
Abstract Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1183
SubjectTerms 639/705/794
692/4020/1394
Colonoscopy
Colorectal cancer
Colorectal carcinoma
Comparative studies
Deep learning
Electric Power Supplies
Female
Generalization, Psychological
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted
Labor, Obstetric
multidisciplinary
Neural networks
Neural Networks, Computer
Polyps
Pregnancy
Science
Science (multidisciplinary)
Segmentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiPJMKShI3MBq_EhsH2mh4oAqJEDqzfITVmqzq80u0t76H_oP-SWM7ezS5XnhFsW2NPk8k5mRPd8g9JwTUJuYyj5YazBnvsHSOIsNd8RS4QkvhcLvxOmpPDtT76-1-kp3wgo9cAHuMLaOOm46ZxXhwSnJrFHccGFUlNTm0AiinmvJVGH1pooTNVbJNEweDuCpUjUZZZiCi2ow3fJEmbD_d1Hmr5clfzoxzY7o5A66PUaQ9asi-R66Efq76GbpKbm6hz68XsJooqf0Yf7t8sqH_ISTu_K1D2FWz6bnq1k9hM8XY-FRX_flNngNIWydeKz7aSpXWdWTC_jfDPfRp5M3H4_f4rFzAnZcNAvccWUs4y4a5pRyykFUEiR1NHCA0QM2ligZQ2ODaKIXkCPbto0uQv6krIrsAdrpp314hGouQhu7GKzlnnuR0jvPnYDtcInJhVSIrFHUbqQVT90tznU-3mZSF-Q1IK8z8ppW6MVmzayQavx19lHanM3MRIidX4Ca6FFN9L_UpEIH663Vo5UOmiYmm0x4X6Fnm2Gwr3RoYvowXeY5MtX_SvjSh0UTNpKwrpNECFgttnRkS9TtkX7yJXN4q8Qj2DUVernWph9i_RmK_f8BxWN0iyYzaAim5ADtLObL8ATtuq-LyTB_mu3oOxZaIwY
  priority: 102
  providerName: Directory of Open Access Journals
Title Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images
URI https://link.springer.com/article/10.1038/s41598-023-28530-2
https://www.ncbi.nlm.nih.gov/pubmed/36681776
https://www.proquest.com/docview/2767522906
https://www.proquest.com/docview/2768239981
https://pubmed.ncbi.nlm.nih.gov/PMC9867760
https://doaj.org/article/f5c2c4a6cb914ec983ba94a47a9f82ba
Volume 13
WOSCitedRecordID wos000955774100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoCxIX3oVAiRaJG1hdP7K2T4hCK5BotOIhldPKzxKp3Q3ZBCk3_gP_kF-Cx7tJFR69cLFWa1uyPTMee8bzDUJPOYlsEyDsg4005szlWGprsOaWGCoc4V2g8DsxHsuTE1X2Bre2f1a52hPTRu0aCzbyfQqoIwmc_MX0K4asUeBd7VNobKEdQElg6eleubaxgBeLE9XHyuRM7rdRX0FMGWWYRkWVY7qhjxJs_9_Omn8-mfzNb5rU0dHN_53ILXSjP4hmLzvOuY2u-PoOutalplzeRR9eL2ItoFw6P_v5_Yfz6QuD1nOZ836aTZuz5TRr_el5H79UZ3X3qDyLJ-EM4LDrBqJeltnkPG5b7T306ejw46s3uE_AgC0X-RwXXGnDuA2aWaWssvFw4yW11HOjiIuLa4iSwefGizw4Ea_aZjQKNsRrmDIqsF20XTe1f4AyLvwoFMEbwx13Am6JjlthjbIACEMGiKzIUNkenRySZJxVyUvOZNWRroqkqxLpKjpAz9Z9ph02x6WtD4C665aAq51-NLPTqhfTKowstVwXcVyEe6skM1pxzYVWQVKjB2hvRdSqF_a2uqDoAD1ZV0cxBd-Lrn2zSG0khBHLONP7HSutR8KKQhIhYm-xwWQbQ92sqSdfEhS4AjjCIh-g5yt2vBjWv5fi4eWzeISuU5CQnGBK9tD2fLbwj9FV-20-aWdDtCVORCrlEO0cHI7L98NkyYjlMS2HSQRjTfn2uPz8CxwiNus
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGGN22gQJBgBVZjx4ntBUJAqVp1GFWiSN0ZP8tIbTJMZkCz4x_4Dz6KL8F2kqmGR3ddsItiJ_Lj-F5f-95zAXhCkIeNC2EfeSEhyU0GmdQKSqKRwtQg0gYKD-hwyA4P-f4K-NHHwgS3yl4mRkFtah3OyDdxYB2J5OQvx59hyBoVblf7FBotLPbs_Ks32ZoXu1t-fp9ivP324M0O7LIKQE1oNoUl4VLlRDuZa841115jW4Y1tkRxZDAnyhvizmbK0swZ6u1HVRROO29bcMVd7v97AVz02wjMoqvg_uJMJ9yaEcS72JwsZ5uN148hhg3nEHvFmEG8pP9imoC_7W3_dNH87Z42qr_t6__bwN0A17qNdvqqXRk3wYqtboHLberN-W3wfmvmSwOLp7GTn9--GxufYNDqJjXWjtNxfTwfp409Ounis6q0ap3mU7_TTwPdd1WHqJ55OjrxYrm5Az6cS4_ugtWqruw6SAm1hSudVYoYYmiwgg3RVCuuA-ENSgDqp13ojn09JAE5FtELIGeihYrwUBERKgIn4Nnim3HLPXJm7dcBTYuagTc8vqgnR6ITQ8IVGmsiS98uRKzmLFeSE0mo5I5hJROw0YNIdMKsEacISsDjRbEXQ-FuSVa2nsU6LIRJM9_TtRa6i5bkZckQpf5rugTqpaYul1SjT5HqnAe6xTJLwPMe_qfN-vdQ3Du7F4_AlZ2DdwMx2B3u3QdXcVidGYIYbYDV6WRmH4BL-st01EwexuWdgo_nvSx-AVrljjg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKeYgL78dCgSDBCayNHW8cHxACloqq1WolQOrN9bOs1CbLZhe0N_4D_4afwy_B4yRbLY_eeuAWxXZkJ9_MeOKZbxB6wkiAjYe0j2ygMMtsigtlNFbMEE25JaxJFN7jo1Gxvy_GG-hHlwsDYZWdToyK2lYG_pH3KbCORHLyvm_DIsbD7ZfTzxgqSMFJa1dOo4HIrlt-De5b_WJnGL71U0q333548w63FQawYTyd45wJpTNmvMqMEEaYYL1dQQ11TAtiqWA6OOXepdrx1FsefEk9GHjjg58htPBZeO45dJ4DaXkMGxyv_u_ACRojos3TSbOiXwdbCflsNMM0GMkU0zVbGEsG_G2f-2e45m9nttEUbl_9n1_iNXSl3YAnrxqJuY42XHkDXWxKci5vovfDRWgFdk_rZj-_fbcuXmGw9jaxzk2TaXW0nCa1Ozxu87bKpGyC6ZPgASRAA15WkO2zTCbHQV3Xt9DHM1nRbbRZVqW7ixLG3cDn3mnNLLMcvGPLDDdaGCDCIT1EOghI07KyQ3GQIxmjA7JCNrCRATYywkbSHnq2GjNtOElO7f0akLXqCXzi8UY1O5StepJ-YKhhKg_zIswZUWRaCaYYV8IXVKse2uoAJVslV8sTNPXQ41VzUE9w5qRKVy1inwLSp4uw0jsNjFczyfK8IJyH0XwN4GtTXW8pJ58iBboAGsY87aHnnSicTOvfr-Le6at4hC4FaZB7O6Pd--gyBUFNCaZkC23OZwv3AF0wX-aTevYwSnqCDs5aKn4BK6WW9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+encoder%E2%80%93decoder-based+deep+polyp+segmentation+network+for+colonoscopy+images&rft.jtitle=Scientific+reports&rft.au=Lewis%2C+John&rft.au=Cha%2C+Young-Jin&rft.au=Kim%2C+Jongho&rft.date=2023-01-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-28530-2&rft_id=info%3Apmid%2F36681776&rft.externalDocID=PMC9867760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon