Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images
Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an oppor...
Saved in:
| Published in: | Scientific reports Vol. 13; no. 1; pp. 1183 - 12 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
21.01.2023
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model’s ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder–decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively. |
|---|---|
| AbstractList | Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model’s ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder–decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively. Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model's ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder-decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model's ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder-decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively. Abstract Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model’s ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder–decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively. |
| ArticleNumber | 1183 |
| Author | Kim, Jongho Cha, Young-Jin Lewis, John |
| Author_xml | – sequence: 1 givenname: John surname: Lewis fullname: Lewis, John organization: Department of Civil Engineering, University of Manitoba – sequence: 2 givenname: Young-Jin surname: Cha fullname: Cha, Young-Jin email: young.cha@umanitoba.ca organization: Department of Civil Engineering, University of Manitoba – sequence: 3 givenname: Jongho surname: Kim fullname: Kim, Jongho organization: Department of Radiology, Max Rady College of Medicine, University of Manitoba |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36681776$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAQtVARLaU_wAJFYsMm4NhO4tkgofKqVIkFsLZsZxxyybWDnRTdHf_AH_IluDeltF3UG4_sc86ceTwmBz54JORpRV9WlMtXSVQ1yJIyXjJZc1qyB-SIUVGXjDN2cCM-JCcpbWg-NQNRwSNyyJtGVm3bHJHPbxc9Fuht6DD--fW7w31UGp2wKzrEqZjCuJuKhP0W_aznIfjC4_wzxO-FC7GwYQw-JBumXTFsdY_pCXno9Jjw5Oo-Jl_fv_ty-rE8__Th7PTNeWlFS-eyEaANF9ZpbgEsWAkcJbMMhYGqy15NBdIhNdhS17WiAVPXzjomWzDg-DE5W3W7oDdqijl73KmgB7V_CLFXOs6DHVG52jIrdGOzskALkhsNQotWg5PM6Kz1etWaFrPFzuZSox5vid7-8cM31YcLBbLJjaRZ4MWVQAw_Fkyz2g7J4jhqj2FJirWNZBxAVhn6_A50E5boc6suUW3NGNAmo57ddHRt5d_sMoCtABtDShHdNaSi6nJH1LojKu-I2u-IYpkk75DssA41VzWM91P5Sk05j-8x_rd9D-svOKPSrw |
| CitedBy_id | crossref_primary_10_1155_2023_7743762 crossref_primary_10_1109_ACCESS_2024_3431098 crossref_primary_10_1109_TIM_2024_3428593 crossref_primary_10_1016_j_engappai_2024_107898 crossref_primary_10_1109_MMUL_2024_3359267 crossref_primary_10_3904_kjim_2023_332 crossref_primary_10_1111_ppa_13783 crossref_primary_10_1109_TIM_2023_3298391 crossref_primary_10_1016_j_engappai_2024_108475 crossref_primary_10_1016_j_engappai_2024_108552 crossref_primary_10_1109_TITS_2023_3287533 crossref_primary_10_1016_j_pmatsci_2025_101544 crossref_primary_10_1007_s11760_023_02835_1 crossref_primary_10_1109_ACCESS_2024_3402818 crossref_primary_10_1109_TIM_2024_3458059 crossref_primary_10_1038_s41598_023_42436_z crossref_primary_10_1080_10298436_2023_2255359 crossref_primary_10_1007_s10278_023_00954_2 crossref_primary_10_3390_en16237726 crossref_primary_10_1109_ACCESS_2023_3329991 crossref_primary_10_1016_j_imavis_2024_105068 crossref_primary_10_1137_23M1577663 crossref_primary_10_1007_s11709_024_1071_5 crossref_primary_10_1109_ACCESS_2023_3330142 crossref_primary_10_1007_s11665_023_08923_0 crossref_primary_10_1049_ipr2_12932 crossref_primary_10_1007_s13534_024_00415_x crossref_primary_10_1109_ACCESS_2023_3325885 crossref_primary_10_1109_TITS_2023_3331769 crossref_primary_10_1007_s11709_024_1088_9 crossref_primary_10_1016_j_autcon_2024_105367 crossref_primary_10_1016_j_aei_2024_102578 crossref_primary_10_1016_j_aei_2023_102214 crossref_primary_10_1016_j_engappai_2025_110364 crossref_primary_10_1016_j_engappai_2025_111852 crossref_primary_10_1088_2057_1976_ad160f crossref_primary_10_1016_j_engappai_2024_108497 crossref_primary_10_1016_j_engappai_2024_108574 crossref_primary_10_1016_j_engappai_2024_109467 crossref_primary_10_1016_j_engappai_2024_109343 crossref_primary_10_1109_TASE_2024_3430896 crossref_primary_10_3390_diagnostics14050474 crossref_primary_10_54392_irjmt25312 crossref_primary_10_1007_s00521_023_09358_3 crossref_primary_10_1016_j_media_2024_103288 crossref_primary_10_1109_TIM_2024_3413128 crossref_primary_10_1109_TIM_2025_3545506 crossref_primary_10_1109_ACCESS_2023_3312718 crossref_primary_10_1109_TITS_2024_3420763 crossref_primary_10_1109_TAI_2024_3366146 crossref_primary_10_1007_s11760_025_04397_w crossref_primary_10_1109_ACCESS_2023_3340310 crossref_primary_10_1080_10589759_2023_2291429 crossref_primary_10_1109_TIM_2023_3342222 crossref_primary_10_3390_s23187724 crossref_primary_10_1109_ACCESS_2023_3284043 crossref_primary_10_1016_j_smhl_2025_100551 crossref_primary_10_1002_rob_22260 crossref_primary_10_1111_aej_12822 crossref_primary_10_1109_TIM_2024_3481545 crossref_primary_10_1080_02564602_2023_2242318 |
| Cites_doi | 10.1111/mice.12375 10.1016/j.compbiomed.2022.105476 10.1111/j.1469-8137.1912.tb05611.x 10.1109/TMI.2015.2487997 10.1093/jjco/hyv117 10.1109/TMI.2019.2936500 10.1111/mice.12263 10.1145/3065386 10.1109/ACCESS.2019.2900672 10.1109/TIE.2019.2945265 10.1016/j.autcon.2020.103291 10.1007/s11548-013-0926-3 10.5694/j.1326-5377.2007.tb00904.x 10.1056/NEJMoa1100370 10.1109/JBHI.2016.2637004 10.1109/ACCESS.2021.3063716 10.1109/TNNLS.2022.3159394 10.1109/TMI.2019.2959609 10.1109/ICCV48922.2021.00717 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-00928-1_48 10.1007/978-3-030-87193-2_12 10.1007/978-3-030-37734-2_37 10.1109/EIConRus.2019.8657018 10.1016/j.autcon.2022.104412 10.1038/s41598-019-56847-4 10.1109/ICPR56361.2022.9956726 10.1007/978-3-030-68793-9_23 10.1007/978-3-030-01234-2_49 10.1007/978-3-030-87193-2_2 10.1109/CVPR52688.2022.01181 10.1007/978-3-030-59725-2_26 10.1007/978-3-030-87193-2_66 10.1155/2017/4037190 10.1016/j.compmedimag.2015.02.007 10.1007/978-3-030-68763-2_22 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-28530-2 |
| DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (via ProQuest SciTech Premium Collection) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_f5c2c4a6cb914ec983ba94a47a9f82ba PMC9867760 36681776 10_1038_s41598_023_28530_2 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c470t-649ab34cfa3c99c9c893e82c2e4b91d294b198fe0be70fd7469b55fcf2879b9f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000955774100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:01 EDT 2025 Tue Nov 04 02:06:34 EST 2025 Fri Sep 05 09:50:25 EDT 2025 Tue Oct 07 09:22:14 EDT 2025 Thu Jan 02 22:55:14 EST 2025 Sat Nov 29 02:07:52 EST 2025 Tue Nov 18 22:30:28 EST 2025 Fri Feb 21 02:39:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-649ab34cfa3c99c9c893e82c2e4b91d294b198fe0be70fd7469b55fcf2879b9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2767522906?pq-origsite=%requestingapplication% |
| PMID | 36681776 |
| PQID | 2767522906 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f5c2c4a6cb914ec983ba94a47a9f82ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_9867760 proquest_miscellaneous_2768239981 proquest_journals_2767522906 pubmed_primary_36681776 crossref_primary_10_1038_s41598_023_28530_2 crossref_citationtrail_10_1038_s41598_023_28530_2 springer_journals_10_1038_s41598_023_28530_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-21 |
| PublicationDateYYYYMMDD | 2023-01-21 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Jaccard (CR43) 1912; 11 Jha (CR6) 2021; 9 Song, Li, Fan (CR16) 2022; 146 Morris, Iacopetta, Platell (CR1) 2007; 186 Silva, Histace, Romain, Dray, Granado (CR11) 2013; 9 CR19 CR18 Tajbakhsh, Gurudu, Liang (CR10) 2016; 35 CR17 CR39 CR38 CR15 Kang, Cha (CR34) 2018; 33 CR14 CR12 CR32 Choi, Cha (CR35) 2019; 67 Ali (CR30) 2020; 10 Liu (CR23) 2021; 2021 CR5 CR8 CR7 CR29 CR9 CR27 CR26 CR25 CR24 CR22 CR21 CR20 Kang, Benipal, Gopal, Cha (CR36) 2020; 118 CR42 Zauber (CR2) 2012; 366 CR41 Yu, Chen, Dou, Qin, Heng (CR13) 2016; 21 CR40 Matsuda, Ono, Kakugawa, Matsumoto, Saito (CR3) 2015; 45 Cha, Choi, Büyüköztürk (CR33) 2017; 32 Kang, Gwak (CR28) 2021; 7 Wang (CR31) 2019; 39 Krizhevsky, Sutskever, Hinton (CR4) 2017; 60 Kang, Benipal, Cha (CR37) 2021; 9 28530_CR29 28530_CR27 D Kang (28530_CR37) 2021; 9 28530_CR26 P Song (28530_CR16) 2022; 146 28530_CR25 28530_CR24 28530_CR22 28530_CR21 28530_CR20 28530_CR42 28530_CR5 28530_CR7 Z Liu (28530_CR23) 2021; 2021 28530_CR9 28530_CR8 S Ali (28530_CR30) 2020; 10 A Krizhevsky (28530_CR4) 2017; 60 YJ Cha (28530_CR33) 2017; 32 W Choi (28530_CR35) 2019; 67 28530_CR19 28530_CR18 D Kang (28530_CR34) 2018; 33 28530_CR17 28530_CR39 28530_CR38 N Tajbakhsh (28530_CR10) 2016; 35 28530_CR15 L Yu (28530_CR13) 2016; 21 28530_CR14 D Kang (28530_CR36) 2020; 118 28530_CR12 D Jha (28530_CR6) 2021; 9 28530_CR32 28530_CR41 28530_CR40 M Morris (28530_CR1) 2007; 186 J Kang (28530_CR28) 2021; 7 J Jaccard (28530_CR43) 1912; 11 AG Zauber (28530_CR2) 2012; 366 J Silva (28530_CR11) 2013; 9 Y Wang (28530_CR31) 2019; 39 T Matsuda (28530_CR3) 2015; 45 |
| References_xml | – ident: CR22 – volume: 33 start-page: 885 year: 2018 end-page: 902 ident: CR34 article-title: Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12375 – volume: 146 start-page: 105476 year: 2022 ident: CR16 article-title: Attention based multi-scale parallel network for polyp segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105476 – ident: CR18 – volume: 11 start-page: 37 issue: 2 year: 1912 end-page: 50 ident: CR43 article-title: The distribution of the Flora in the Alpine Zone publication-title: New Phytol. doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: CR14 – ident: CR39 – ident: CR12 – volume: 2021 start-page: 10012 year: 2021 end-page: 100022 ident: CR23 article-title: Swin transformer: hierarchical vision transformer using shifted windows publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. – ident: CR29 – volume: 9 start-page: 123 year: 2021 end-page: 128 ident: CR37 article-title: Hybrid concrete crack segmentation and quantification across complex backgrounds without a large training dataset publication-title: Data Sci. Eng. – volume: 35 start-page: 630 year: 2016 end-page: 644 ident: CR10 article-title: Automated polyp detection in colonoscopy videos using shape and context information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2487997 – ident: CR8 – volume: 45 start-page: 900 year: 2015 end-page: 905 ident: CR3 article-title: Impact of screening colonoscopy on outcomes in colorectal cancer publication-title: Jpn. J. Clin. Oncol. doi: 10.1093/jjco/hyv117 – ident: CR40 – ident: CR25 – ident: CR27 – ident: CR42 – volume: 39 start-page: 866 year: 2019 end-page: 876 ident: CR31 article-title: Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2936500 – volume: 32 start-page: 361 year: 2017 end-page: 378 ident: CR33 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12263 – ident: CR21 – ident: CR19 – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: CR4 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: CR15 – ident: CR38 – volume: 7 start-page: 26440 year: 2021 end-page: 26447 ident: CR28 article-title: Ensemble of instance segmentation models for polyp segmentation in colonoscopy images publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2900672 – volume: 67 start-page: 8016 year: 2019 end-page: 8025 ident: CR35 article-title: SDDNet: real-time crack segmentation publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2945265 – volume: 118 start-page: 103291 year: 2020 ident: CR36 article-title: Hybrid pixel-level crack segmentation and quantification across complex backgrounds using deep learning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103291 – ident: CR17 – ident: CR9 – volume: 9 start-page: 283 year: 2013 end-page: 293 ident: CR11 article-title: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-013-0926-3 – volume: 186 start-page: 296 year: 2007 end-page: 300 ident: CR1 article-title: Comparing survival outcomes for patients with colorectal cancer treated in public and private hospitals publication-title: Med. J. Aust. doi: 10.5694/j.1326-5377.2007.tb00904.x – ident: CR32 – ident: CR5 – volume: 366 start-page: 687 year: 2012 end-page: 696 ident: CR2 article-title: Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1100370 – ident: CR7 – volume: 21 start-page: 65 year: 2016 end-page: 75 ident: CR13 article-title: Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2637004 – volume: 10 start-page: 1 year: 2020 end-page: 15 ident: CR30 article-title: An objective comparison of detection and segmentation algorithms for artefacts in clincal endoscopy publication-title: Sci. Rep. – ident: CR41 – volume: 9 start-page: 40496 year: 2021 end-page: 40510 ident: CR6 article-title: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3063716 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 28530_CR17 doi: 10.1109/TNNLS.2022.3159394 – volume: 7 start-page: 26440 year: 2021 ident: 28530_CR28 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2900672 – ident: 28530_CR32 doi: 10.1109/TMI.2019.2959609 – ident: 28530_CR27 doi: 10.1109/ICCV48922.2021.00717 – volume: 39 start-page: 866 year: 2019 ident: 28530_CR31 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2936500 – volume: 11 start-page: 37 issue: 2 year: 1912 ident: 28530_CR43 publication-title: New Phytol. doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: 28530_CR7 doi: 10.1007/978-3-319-24574-4_28 – ident: 28530_CR42 doi: 10.1007/978-3-030-00928-1_48 – volume: 32 start-page: 361 year: 2017 ident: 28530_CR33 publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12263 – ident: 28530_CR19 doi: 10.1007/978-3-030-87193-2_12 – ident: 28530_CR8 doi: 10.1007/978-3-030-37734-2_37 – ident: 28530_CR39 – ident: 28530_CR14 doi: 10.1109/EIConRus.2019.8657018 – volume: 45 start-page: 900 year: 2015 ident: 28530_CR3 publication-title: Jpn. J. Clin. Oncol. doi: 10.1093/jjco/hyv117 – volume: 9 start-page: 283 year: 2013 ident: 28530_CR11 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-013-0926-3 – volume: 33 start-page: 885 year: 2018 ident: 28530_CR34 publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12375 – volume: 118 start-page: 103291 year: 2020 ident: 28530_CR36 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103291 – ident: 28530_CR38 doi: 10.1016/j.autcon.2022.104412 – volume: 366 start-page: 687 year: 2012 ident: 28530_CR2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1100370 – volume: 35 start-page: 630 year: 2016 ident: 28530_CR10 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2487997 – ident: 28530_CR41 – volume: 146 start-page: 105476 year: 2022 ident: 28530_CR16 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105476 – volume: 10 start-page: 1 year: 2020 ident: 28530_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56847-4 – ident: 28530_CR26 – volume: 9 start-page: 40496 year: 2021 ident: 28530_CR6 publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3063716 – ident: 28530_CR18 doi: 10.1109/ICPR56361.2022.9956726 – ident: 28530_CR22 doi: 10.1007/978-3-030-68793-9_23 – ident: 28530_CR5 doi: 10.1007/978-3-030-01234-2_49 – ident: 28530_CR29 doi: 10.1007/978-3-030-87193-2_2 – ident: 28530_CR24 doi: 10.1109/CVPR52688.2022.01181 – volume: 9 start-page: 123 year: 2021 ident: 28530_CR37 publication-title: Data Sci. Eng. – ident: 28530_CR15 doi: 10.1007/978-3-030-59725-2_26 – ident: 28530_CR20 doi: 10.1007/978-3-030-87193-2_66 – ident: 28530_CR25 – volume: 67 start-page: 8016 year: 2019 ident: 28530_CR35 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2945265 – ident: 28530_CR12 doi: 10.1155/2017/4037190 – volume: 60 start-page: 84 year: 2017 ident: 28530_CR4 publication-title: Commun. ACM doi: 10.1145/3065386 – ident: 28530_CR9 doi: 10.1016/j.compmedimag.2015.02.007 – volume: 186 start-page: 296 year: 2007 ident: 28530_CR1 publication-title: Med. J. Aust. doi: 10.5694/j.1326-5377.2007.tb00904.x – volume: 21 start-page: 65 year: 2016 ident: 28530_CR13 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2637004 – ident: 28530_CR40 – ident: 28530_CR21 doi: 10.1007/978-3-030-68763-2_22 – volume: 2021 start-page: 10012 year: 2021 ident: 28530_CR23 publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. |
| SSID | ssj0000529419 |
| Score | 2.6019802 |
| Snippet | Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive... Abstract Detection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1183 |
| SubjectTerms | 639/705/794 692/4020/1394 Colonoscopy Colorectal cancer Colorectal carcinoma Comparative studies Deep learning Electric Power Supplies Female Generalization, Psychological Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted Labor, Obstetric multidisciplinary Neural networks Neural Networks, Computer Polyps Pregnancy Science Science (multidisciplinary) Segmentation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiPJMKShI3MBq_EhsH2mh4oAqJEDqzfITVmqzq80u0t76H_oP-SWM7ezS5XnhFsW2NPk8k5mRPd8g9JwTUJuYyj5YazBnvsHSOIsNd8RS4QkvhcLvxOmpPDtT76-1-kp3wgo9cAHuMLaOOm46ZxXhwSnJrFHccGFUlNTm0AiinmvJVGH1pooTNVbJNEweDuCpUjUZZZiCi2ow3fJEmbD_d1Hmr5clfzoxzY7o5A66PUaQ9asi-R66Efq76GbpKbm6hz68XsJooqf0Yf7t8sqH_ISTu_K1D2FWz6bnq1k9hM8XY-FRX_flNngNIWydeKz7aSpXWdWTC_jfDPfRp5M3H4_f4rFzAnZcNAvccWUs4y4a5pRyykFUEiR1NHCA0QM2ligZQ2ODaKIXkCPbto0uQv6krIrsAdrpp314hGouQhu7GKzlnnuR0jvPnYDtcInJhVSIrFHUbqQVT90tznU-3mZSF-Q1IK8z8ppW6MVmzayQavx19lHanM3MRIidX4Ca6FFN9L_UpEIH663Vo5UOmiYmm0x4X6Fnm2Gwr3RoYvowXeY5MtX_SvjSh0UTNpKwrpNECFgttnRkS9TtkX7yJXN4q8Qj2DUVernWph9i_RmK_f8BxWN0iyYzaAim5ADtLObL8ATtuq-LyTB_mu3oOxZaIwY priority: 102 providerName: Directory of Open Access Journals |
| Title | Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images |
| URI | https://link.springer.com/article/10.1038/s41598-023-28530-2 https://www.ncbi.nlm.nih.gov/pubmed/36681776 https://www.proquest.com/docview/2767522906 https://www.proquest.com/docview/2768239981 https://pubmed.ncbi.nlm.nih.gov/PMC9867760 https://doaj.org/article/f5c2c4a6cb914ec983ba94a47a9f82ba |
| Volume | 13 |
| WOSCitedRecordID | wos000955774100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoCxIX3oVAiRaJG1hdP7K2T4hCK5BotOIhldPKzxKp3Q3ZBCk3_gP_kF-Cx7tJFR69cLFWa1uyPTMee8bzDUJPOYlsEyDsg4005szlWGprsOaWGCoc4V2g8DsxHsuTE1X2Bre2f1a52hPTRu0aCzbyfQqoIwmc_MX0K4asUeBd7VNobKEdQElg6eleubaxgBeLE9XHyuRM7rdRX0FMGWWYRkWVY7qhjxJs_9_Omn8-mfzNb5rU0dHN_53ILXSjP4hmLzvOuY2u-PoOutalplzeRR9eL2ItoFw6P_v5_Yfz6QuD1nOZ836aTZuz5TRr_el5H79UZ3X3qDyLJ-EM4LDrBqJeltnkPG5b7T306ejw46s3uE_AgC0X-RwXXGnDuA2aWaWssvFw4yW11HOjiIuLa4iSwefGizw4Ea_aZjQKNsRrmDIqsF20XTe1f4AyLvwoFMEbwx13Am6JjlthjbIACEMGiKzIUNkenRySZJxVyUvOZNWRroqkqxLpKjpAz9Z9ph02x6WtD4C665aAq51-NLPTqhfTKowstVwXcVyEe6skM1pxzYVWQVKjB2hvRdSqF_a2uqDoAD1ZV0cxBd-Lrn2zSG0khBHLONP7HSutR8KKQhIhYm-xwWQbQ92sqSdfEhS4AjjCIh-g5yt2vBjWv5fi4eWzeISuU5CQnGBK9tD2fLbwj9FV-20-aWdDtCVORCrlEO0cHI7L98NkyYjlMS2HSQRjTfn2uPz8CxwiNus |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGGN22gQJBgBVZjx4ntBUJAqVp1GFWiSN0ZP8tIbTJMZkCz4x_4Dz6KL8F2kqmGR3ddsItiJ_Lj-F5f-95zAXhCkIeNC2EfeSEhyU0GmdQKSqKRwtQg0gYKD-hwyA4P-f4K-NHHwgS3yl4mRkFtah3OyDdxYB2J5OQvx59hyBoVblf7FBotLPbs_Ks32ZoXu1t-fp9ivP324M0O7LIKQE1oNoUl4VLlRDuZa841115jW4Y1tkRxZDAnyhvizmbK0swZ6u1HVRROO29bcMVd7v97AVz02wjMoqvg_uJMJ9yaEcS72JwsZ5uN148hhg3nEHvFmEG8pP9imoC_7W3_dNH87Z42qr_t6__bwN0A17qNdvqqXRk3wYqtboHLberN-W3wfmvmSwOLp7GTn9--GxufYNDqJjXWjtNxfTwfp409Ounis6q0ap3mU7_TTwPdd1WHqJ55OjrxYrm5Az6cS4_ugtWqruw6SAm1hSudVYoYYmiwgg3RVCuuA-ENSgDqp13ojn09JAE5FtELIGeihYrwUBERKgIn4Nnim3HLPXJm7dcBTYuagTc8vqgnR6ITQ8IVGmsiS98uRKzmLFeSE0mo5I5hJROw0YNIdMKsEacISsDjRbEXQ-FuSVa2nsU6LIRJM9_TtRa6i5bkZckQpf5rugTqpaYul1SjT5HqnAe6xTJLwPMe_qfN-vdQ3Du7F4_AlZ2DdwMx2B3u3QdXcVidGYIYbYDV6WRmH4BL-st01EwexuWdgo_nvSx-AVrljjg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKeYgL78dCgSDBCayNHW8cHxACloqq1WolQOrN9bOs1CbLZhe0N_4D_4afwy_B4yRbLY_eeuAWxXZkJ9_MeOKZbxB6wkiAjYe0j2ygMMtsigtlNFbMEE25JaxJFN7jo1Gxvy_GG-hHlwsDYZWdToyK2lYG_pH3KbCORHLyvm_DIsbD7ZfTzxgqSMFJa1dOo4HIrlt-De5b_WJnGL71U0q333548w63FQawYTyd45wJpTNmvMqMEEaYYL1dQQ11TAtiqWA6OOXepdrx1FsefEk9GHjjg58htPBZeO45dJ4DaXkMGxyv_u_ACRojos3TSbOiXwdbCflsNMM0GMkU0zVbGEsG_G2f-2e45m9nttEUbl_9n1_iNXSl3YAnrxqJuY42XHkDXWxKci5vovfDRWgFdk_rZj-_fbcuXmGw9jaxzk2TaXW0nCa1Ozxu87bKpGyC6ZPgASRAA15WkO2zTCbHQV3Xt9DHM1nRbbRZVqW7ixLG3cDn3mnNLLMcvGPLDDdaGCDCIT1EOghI07KyQ3GQIxmjA7JCNrCRATYywkbSHnq2GjNtOElO7f0akLXqCXzi8UY1O5StepJ-YKhhKg_zIswZUWRaCaYYV8IXVKse2uoAJVslV8sTNPXQ41VzUE9w5qRKVy1inwLSp4uw0jsNjFczyfK8IJyH0XwN4GtTXW8pJ58iBboAGsY87aHnnSicTOvfr-Le6at4hC4FaZB7O6Pd--gyBUFNCaZkC23OZwv3AF0wX-aTevYwSnqCDs5aKn4BK6WW9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+encoder%E2%80%93decoder-based+deep+polyp+segmentation+network+for+colonoscopy+images&rft.jtitle=Scientific+reports&rft.au=Lewis%2C+John&rft.au=Cha%2C+Young-Jin&rft.au=Kim%2C+Jongho&rft.date=2023-01-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-28530-2&rft_id=info%3Apmid%2F36681776&rft.externalDocID=PMC9867760 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |