Parameter estimation in biochemical pathways: a comparison of global optimization methods
Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and mult...
Uložené v:
| Vydané v: | Genome research Ročník 13; číslo 11; s. 2467 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.11.2003
|
| Predmet: | |
| ISSN: | 1088-9051 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates. |
|---|---|
| AbstractList | Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates. Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates.Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates. |
| Author | Banga, Julio R Moles, Carmen G Mendes, Pedro |
| Author_xml | – sequence: 1 givenname: Carmen G surname: Moles fullname: Moles, Carmen G organization: Process Engineering Group, Instituto de Investigaciones Marinas (CSIC), 36208 Vigo, Spain – sequence: 2 givenname: Pedro surname: Mendes fullname: Mendes, Pedro – sequence: 3 givenname: Julio R surname: Banga fullname: Banga, Julio R |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14559783$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kDtPwzAUhT0U0Qcs_ADkiS3Fjzi22VDFS6oEAwxMke3YjVESBzsVKr8eSy13uHf5ztE9ZwlmQxgsAFcYrTFG-HYX15hUhCE6AwuMhCgkYngOlil9IYRoKcQ5mOOSMckFXYDPNxVVbycboU2T79XkwwD9ALUPprW9N6qDo5raH3VId1BBE_pRRZ8yFRzcdUFnIIxZ6n-P4uzWhiZdgDOnumQvT3cFPh4f3jfPxfb16WVzvy1MydFUMEWIk4RbjgkjktP8vtCC5VUZR7STSnEmy0rnqaSRWdY01AqKndSOkxW4OfqOMXzvc4i698nYrlODDftUc0wrIqoyg9cncK9729RjzHHjof4vg_wBQBBhWA |
| CitedBy_id | crossref_primary_10_1016_j_mbs_2009_03_002 crossref_primary_10_1016_j_compchemeng_2013_12_014 crossref_primary_10_1371_journal_pcbi_1003686 crossref_primary_10_1371_journal_pcbi_1000298 crossref_primary_10_1371_journal_pcbi_1003687 crossref_primary_10_1007_s11306_013_0564_3 crossref_primary_10_1186_1752_0509_8_5 crossref_primary_10_1371_journal_pcbi_1005627 crossref_primary_10_1007_s12559_015_9328_x crossref_primary_10_1093_bioinformatics_btl552 crossref_primary_10_1097_SS_0b013e3181e0559a crossref_primary_10_2134_jeq2006_0451 crossref_primary_10_1002_rnc_2793 crossref_primary_10_1002_rnc_2794 crossref_primary_10_1007_s10589_007_9092_2 crossref_primary_10_1016_j_jphotochemrev_2011_10_002 crossref_primary_10_1038_s41540_017_0023_2 crossref_primary_10_1371_journal_pcbi_1006828 crossref_primary_10_1177_117693510700300020 crossref_primary_10_1371_journal_pone_0097130 crossref_primary_10_1371_journal_pone_0088419 crossref_primary_10_3390_ijms24108734 crossref_primary_10_1007_s10898_018_0691_5 crossref_primary_10_1186_1471_2105_11_547 crossref_primary_10_1093_glycob_cwr036 crossref_primary_10_1124_jpet_107_133967 crossref_primary_10_1093_bioinformatics_btm510 crossref_primary_10_1186_1752_0509_6_142 crossref_primary_10_1186_1687_4153_2012_3 crossref_primary_10_1186_1752_0509_4_69 crossref_primary_10_1109_TCBB_2022_3225675 crossref_primary_10_1016_j_amc_2008_11_008 crossref_primary_10_1038_jes_2008_9 crossref_primary_10_1371_journal_pone_0032749 crossref_primary_10_1186_1752_0509_3_94 crossref_primary_10_1007_s10898_024_01381_5 crossref_primary_10_1016_j_apenergy_2014_12_043 crossref_primary_10_1016_j_asoc_2019_105494 crossref_primary_10_1016_j_physrep_2013_03_004 crossref_primary_10_1371_journal_pcbi_1000086 crossref_primary_10_1186_1742_4682_3_42 crossref_primary_10_1038_nrg2509 crossref_primary_10_1186_1471_2105_13_181 crossref_primary_10_3390_app11146449 crossref_primary_10_1038_srep08493 crossref_primary_10_1016_j_biosystems_2015_08_003 crossref_primary_10_1002_rnc_2797 crossref_primary_10_1007_s12021_018_9369_x crossref_primary_10_1042_bse0450001 crossref_primary_10_1093_bioinformatics_btl443 crossref_primary_10_1155_2014_362738 crossref_primary_10_1007_s00500_014_1467_6 crossref_primary_10_1016_j_ymben_2023_03_005 crossref_primary_10_1016_j_tins_2005_08_002 crossref_primary_10_1186_s12918_016_0257_4 crossref_primary_10_3389_fbioe_2019_00122 crossref_primary_10_1186_s12918_015_0144_4 crossref_primary_10_1177_1094342016679011 crossref_primary_10_1038_s41598_022_09128_6 crossref_primary_10_1007_s40484_018_0150_9 crossref_primary_10_1016_j_cellsig_2007_01_029 crossref_primary_10_1109_TCBB_2014_2322360 crossref_primary_10_1093_bioinformatics_btm433 crossref_primary_10_3389_fpls_2021_717958 crossref_primary_10_1016_j_chemolab_2008_08_002 crossref_primary_10_3390_fermentation8090446 crossref_primary_10_1002_cjce_25445 crossref_primary_10_1093_bioinformatics_btn527 crossref_primary_10_1371_journal_pone_0013283 crossref_primary_10_1186_1471_2105_6_155 crossref_primary_10_3389_fbioe_2019_00025 crossref_primary_10_3390_w11081637 crossref_primary_10_1146_annurev_bioeng_071910_124729 crossref_primary_10_1186_s12918_017_0433_1 crossref_primary_10_1137_15M103306X crossref_primary_10_1080_10556788_2018_1435648 crossref_primary_10_1186_s12859_024_05746_1 crossref_primary_10_1371_journal_pone_0074178 crossref_primary_10_1186_1752_0509_4_11 crossref_primary_10_1016_j_compchemeng_2014_06_013 crossref_primary_10_1038_s41598_017_07957_4 crossref_primary_10_2136_vzj2007_0021 crossref_primary_10_1007_s11081_013_9234_6 crossref_primary_10_1016_j_drudis_2013_07_014 crossref_primary_10_1016_j_tcs_2008_07_005 crossref_primary_10_1016_j_ecolmodel_2013_10_013 crossref_primary_10_1093_bioinformatics_bti099 crossref_primary_10_1371_journal_pone_0091963 crossref_primary_10_1186_s12918_018_0610_x crossref_primary_10_1016_j_tcs_2008_07_012 crossref_primary_10_1007_s00285_010_0350_z crossref_primary_10_1186_1752_0509_4_17 crossref_primary_10_1016_j_chroma_2023_464113 crossref_primary_10_1109_TNSE_2018_2808954 crossref_primary_10_1186_s12859_021_04255_9 crossref_primary_10_1042_bse0450195 crossref_primary_10_1162_biot_2007_2_2_183 crossref_primary_10_1186_1471_2105_16_S17_S8 crossref_primary_10_1111_j_1749_6632_2008_03945_x crossref_primary_10_1186_1471_2105_10_343 crossref_primary_10_1371_journal_pcbi_1000696 crossref_primary_10_1007_s10898_006_9075_3 crossref_primary_10_1007_s11051_012_0821_9 crossref_primary_10_1007_s11590_008_0110_9 crossref_primary_10_1101_gr_1763203 crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_1049_iet_syb_2014_0010 crossref_primary_10_3233_ISB_180470 crossref_primary_10_1016_j_jksus_2017_01_005 crossref_primary_10_1093_nar_gku616 crossref_primary_10_2118_224437_PA crossref_primary_10_1042_BST0331427 crossref_primary_10_1016_j_cmpb_2008_12_001 crossref_primary_10_1158_0008_5472_CAN_10_0460 crossref_primary_10_1016_j_compstruct_2023_116748 crossref_primary_10_1016_j_fob_2015_03_002 crossref_primary_10_1109_TCBB_2022_3156759 crossref_primary_10_1186_1751_0473_7_9 crossref_primary_10_1016_j_febslet_2005_02_012 crossref_primary_10_1529_biophysj_106_093344 crossref_primary_10_1007_s00521_017_2908_9 crossref_primary_10_1042_EBC20180003 crossref_primary_10_1088_1742_5468_2010_12_P12034 crossref_primary_10_1002_ceat_200800544 crossref_primary_10_3389_fams_2017_00006 crossref_primary_10_3390_pr9061053 crossref_primary_10_1007_s00161_014_0367_4 crossref_primary_10_1016_j_engappai_2017_04_004 crossref_primary_10_3389_fgene_2019_00549 crossref_primary_10_1073_pnas_1004042108 crossref_primary_10_1089_brain_2012_0120 crossref_primary_10_1016_j_ejor_2024_02_020 crossref_primary_10_1177_0954408916682985 crossref_primary_10_1186_1752_0509_6_86 crossref_primary_10_3389_fsufs_2023_1083388 crossref_primary_10_1124_dmd_111_043174 crossref_primary_10_2478_pomr_2023_0020 crossref_primary_10_1002_psp4_12071 crossref_primary_10_1186_s12918_017_0431_3 crossref_primary_10_1016_j_ijhydene_2023_04_133 crossref_primary_10_1016_j_jtice_2009_05_010 crossref_primary_10_3389_fimmu_2018_00393 crossref_primary_10_1529_biophysj_104_050385 crossref_primary_10_1016_j_febslet_2012_03_063 crossref_primary_10_1371_journal_pone_0104057 crossref_primary_10_1093_bib_bbn039 crossref_primary_10_1016_j_compchemeng_2019_106665 crossref_primary_10_1016_j_jtbi_2018_10_041 crossref_primary_10_1093_bib_bbz114 crossref_primary_10_1088_1478_3975_aa868a crossref_primary_10_1186_s13059_019_1887_9 crossref_primary_10_1016_j_jprocont_2011_10_003 crossref_primary_10_1111_j_1742_4658_2008_06844_x crossref_primary_10_1016_j_sajce_2021_05_005 crossref_primary_10_1186_1752_0509_4_112 crossref_primary_10_1186_1687_4153_2011_7 crossref_primary_10_1371_journal_pcbi_1000534 crossref_primary_10_1007_s00449_020_02360_2 crossref_primary_10_1016_j_biosystems_2010_03_001 crossref_primary_10_1002_pmic_200600428 crossref_primary_10_3389_fmicb_2018_01690 crossref_primary_10_1109_TCBB_2010_117 crossref_primary_10_3390_metabo4041034 crossref_primary_10_1007_s12551_025_01281_2 crossref_primary_10_3390_math12152357 crossref_primary_10_1371_journal_pone_0003758 crossref_primary_10_3390_w17050703 crossref_primary_10_7554_eLife_44494 crossref_primary_10_1534_genetics_107_080069 crossref_primary_10_1186_1752_0509_5_159 crossref_primary_10_1109_TCBB_2011_154 crossref_primary_10_1038_srep02755 crossref_primary_10_1111_febs_12525 crossref_primary_10_1007_s10898_020_00883_2 crossref_primary_10_1038_nrg3885 crossref_primary_10_1016_j_compchemeng_2009_05_008 crossref_primary_10_1007_s12649_020_01337_2 crossref_primary_10_1016_j_eswa_2010_06_042 crossref_primary_10_1155_2013_698341 crossref_primary_10_1016_j_asoc_2022_109243 crossref_primary_10_1186_1471_2105_11_582 crossref_primary_10_1523_JNEUROSCI_2866_14_2015 crossref_primary_10_1016_j_ymben_2014_03_007 crossref_primary_10_1162_ARTL_a_00076 crossref_primary_10_1186_1471_2105_15_S6_S1 crossref_primary_10_1016_j_ceca_2008_07_005 crossref_primary_10_1016_j_jfoodeng_2007_03_023 crossref_primary_10_1016_j_mbs_2013_03_006 crossref_primary_10_1007_s11063_017_9711_6 crossref_primary_10_1016_j_ejor_2015_12_018 crossref_primary_10_1175_2007JTECHO535_1 crossref_primary_10_1038_ncb1497 crossref_primary_10_2166_hydro_2017_021 crossref_primary_10_1007_s13748_016_0091_3 crossref_primary_10_1186_1752_0509_4_99 crossref_primary_10_1155_2021_5513860 crossref_primary_10_1177_0748730418764540 crossref_primary_10_1016_j_agrformet_2014_10_009 crossref_primary_10_1002_btpr_2388 crossref_primary_10_1101_gr_1765703 crossref_primary_10_1007_s10462_019_09751_2 crossref_primary_10_3390_en10111763 crossref_primary_10_1016_j_matcom_2010_09_010 crossref_primary_10_1093_nar_gki791 crossref_primary_10_1016_j_ces_2012_06_063 crossref_primary_10_1186_s12918_015_0219_2 crossref_primary_10_1002_btpr_2030 crossref_primary_10_1016_j_apm_2013_07_039 crossref_primary_10_1038_ncomms1496 crossref_primary_10_1186_1471_2105_11_202 crossref_primary_10_1016_j_swevo_2015_03_001 crossref_primary_10_1007_s10479_019_03183_5 crossref_primary_10_1080_08958378_2020_1742818 crossref_primary_10_1186_s12918_015_0175_x crossref_primary_10_1016_j_compbiomed_2011_01_004 crossref_primary_10_1088_1757_899X_546_5_052006 crossref_primary_10_1038_nrm2030 crossref_primary_10_1586_14737159_7_4_329 crossref_primary_10_1261_rna_2056010 crossref_primary_10_1371_journal_pone_0068124 crossref_primary_10_1109_TCBB_2020_3039490 crossref_primary_10_1186_s12918_016_0319_7 crossref_primary_10_1007_s00449_010_0486_7 crossref_primary_10_1016_j_wavemoti_2021_102732 crossref_primary_10_1016_j_sajce_2022_06_009 crossref_primary_10_3390_metabo2030553 crossref_primary_10_1016_j_jbiotec_2007_02_009 crossref_primary_10_1101_gr_1226004 crossref_primary_10_1016_j_biosystems_2010_09_002 crossref_primary_10_1016_j_biosystems_2005_06_016 crossref_primary_10_1016_j_mbs_2021_108716 crossref_primary_10_1016_j_cam_2019_112698 crossref_primary_10_1016_j_tim_2006_11_003 crossref_primary_10_1016_j_electacta_2025_145673 crossref_primary_10_1109_TCBB_2013_19 crossref_primary_10_2166_wst_2017_162 crossref_primary_10_1016_j_mce_2010_11_016 crossref_primary_10_1049_iet_syb_2015_0014 crossref_primary_10_1002_mma_8009 crossref_primary_10_1242_jcs_036319 crossref_primary_10_1016_j_tcs_2011_02_013 crossref_primary_10_1016_j_jtbi_2012_04_031 crossref_primary_10_1016_j_compchemeng_2012_06_001 crossref_primary_10_1016_j_ymben_2014_05_014 crossref_primary_10_1016_j_taml_2023_100450 crossref_primary_10_1186_s12918_016_0273_4 crossref_primary_10_1016_j_mbs_2014_03_001 crossref_primary_10_1093_bioinformatics_btn075 crossref_primary_10_1093_nar_gkt459 crossref_primary_10_1016_j_biosystems_2007_10_001 crossref_primary_10_1016_j_eswa_2017_08_018 crossref_primary_10_1007_s10441_022_09445_3 crossref_primary_10_1016_j_biotechadv_2017_09_005 crossref_primary_10_1007_s10915_014_9865_6 crossref_primary_10_1109_TCBB_2011_63 crossref_primary_10_1016_j_ejor_2017_12_011 crossref_primary_10_1371_journal_pcbi_1006181 crossref_primary_10_1371_journal_pone_0182186 crossref_primary_10_1007_s10898_025_01514_4 crossref_primary_10_1186_1471_2105_15_S12_S3 crossref_primary_10_1007_s11081_025_09978_9 crossref_primary_10_1016_j_biosystems_2011_12_004 crossref_primary_10_1002_etep_2427 crossref_primary_10_1038_s41540_020_0128_x crossref_primary_10_1016_j_compbiomed_2008_02_005 crossref_primary_10_1007_s10439_009_9651_z crossref_primary_10_1016_j_biosystems_2008_12_004 crossref_primary_10_1111_febs_12663 crossref_primary_10_1524_auto_2008_0703 crossref_primary_10_1109_TCBB_2017_2773477 crossref_primary_10_1186_1471_2105_11_36 crossref_primary_10_3389_feart_2018_00203 crossref_primary_10_1016_j_entcs_2011_09_003 crossref_primary_10_1371_journal_pcbi_1008472 crossref_primary_10_1042_BST0330520 crossref_primary_10_1155_2018_3213484 crossref_primary_10_1186_s12918_014_0102_6 crossref_primary_10_1242_dev_111930 crossref_primary_10_1016_j_renene_2011_11_027 crossref_primary_10_1016_j_jtbi_2007_10_023 crossref_primary_10_1186_1471_2105_10_140 crossref_primary_10_1016_j_camwa_2013_02_023 crossref_primary_10_1007_s10559_014_9646_0 crossref_primary_10_1371_journal_pcbi_1007575 crossref_primary_10_1186_1471_2105_15_136 crossref_primary_10_7554_eLife_10644 crossref_primary_10_1186_s12859_016_1452_4 crossref_primary_10_1186_1471_2105_15_256 crossref_primary_10_1016_j_simpat_2013_11_011 crossref_primary_10_1002_jor_23032 crossref_primary_10_1093_bib_bbv015 crossref_primary_10_1186_1755_8794_2_2 crossref_primary_10_1080_17513758_2018_1508761 crossref_primary_10_1016_j_compchemeng_2006_07_015 crossref_primary_10_1088_1478_3975_8_5_055011 crossref_primary_10_1529_biophysj_107_118380 crossref_primary_10_1016_j_bej_2016_12_022 crossref_primary_10_1016_j_ymeth_2013_05_013 crossref_primary_10_1002_bit_21679 crossref_primary_10_1016_j_ress_2021_107436 crossref_primary_10_1186_1471_2105_8_202 crossref_primary_10_1016_j_eswa_2018_09_020 crossref_primary_10_1016_j_ymeth_2013_05_012 crossref_primary_10_2174_1570164616666190401203128 crossref_primary_10_1093_bioinformatics_bti753 crossref_primary_10_1007_s11270_010_0623_6 crossref_primary_10_1016_j_bbagrm_2013_04_011 crossref_primary_10_1007_s00449_012_0789_y crossref_primary_10_1016_j_mbs_2018_11_002 crossref_primary_10_1002_ceat_202300324 crossref_primary_10_1016_j_jbiotec_2015_12_023 crossref_primary_10_1186_s12859_019_2630_y crossref_primary_10_1002_bit_22540 crossref_primary_10_1109_TCST_2018_2885694 crossref_primary_10_1186_1752_0509_8_61 crossref_primary_10_1016_j_jmbbm_2013_05_001 crossref_primary_10_1080_01621459_2013_841583 crossref_primary_10_1093_bioinformatics_btp050 crossref_primary_10_1016_j_biosystems_2004_11_003 crossref_primary_10_1016_j_bej_2015_09_026 crossref_primary_10_15252_msb_20177651 crossref_primary_10_1007_s00138_020_01109_x crossref_primary_10_1016_j_mbs_2008_06_007 crossref_primary_10_1007_s10586_017_0860_1 crossref_primary_10_1038_nbt1330 crossref_primary_10_1371_journal_pone_0083664 crossref_primary_10_1109_TCBB_2015_2424424 crossref_primary_10_1186_1752_0509_8_54 crossref_primary_10_1016_j_ifacol_2017_08_651 crossref_primary_10_1186_1752_0509_7_S6_S4 crossref_primary_10_1002_cpe_3071 crossref_primary_10_1016_j_asoc_2015_04_025 crossref_primary_10_1186_s12918_017_0406_4 crossref_primary_10_1007_s12257_011_0405_z crossref_primary_10_1111_j_1467_9868_2007_00610_x crossref_primary_10_1186_1752_0509_7_91 crossref_primary_10_1109_TCBB_2012_66 crossref_primary_10_1093_comnet_cnw019 crossref_primary_10_1016_j_bbrc_2009_10_155 crossref_primary_10_1016_j_compbiolchem_2015_10_003 crossref_primary_10_1145_3092819_3092830 crossref_primary_10_1007_s10898_020_00952_6 crossref_primary_10_1016_j_jcp_2020_110026 crossref_primary_10_1109_TCBB_2009_49 crossref_primary_10_1007_s00158_009_0414_0 crossref_primary_10_1007_s10928_012_9258_0 crossref_primary_10_1371_journal_pcbi_1005234 crossref_primary_10_1186_1752_0509_2_26 crossref_primary_10_1186_1752_0509_2_29 crossref_primary_10_1002_biot_201000059 crossref_primary_10_1111_j_1742_4658_2006_05136_x crossref_primary_10_1007_s10100_012_0237_8 crossref_primary_10_1016_j_cam_2012_02_020 crossref_primary_10_1186_s12976_018_0089_6 crossref_primary_10_1016_j_jestch_2018_03_009 crossref_primary_10_1016_j_ymeth_2006_08_003 crossref_primary_10_1111_j_1365_313X_2005_02649_x crossref_primary_10_1016_j_ifacol_2018_09_298 crossref_primary_10_1155_2010_541609 crossref_primary_10_7717_peerj_cs_74 crossref_primary_10_1016_j_bcab_2025_103651 crossref_primary_10_3390_metabo2040891 crossref_primary_10_1186_1752_0509_2_47 crossref_primary_10_3109_10409238_2011_556597 crossref_primary_10_1016_j_csbj_2017_07_005 crossref_primary_10_1016_j_ifacol_2018_09_040 crossref_primary_10_1371_journal_pcbi_1005251 crossref_primary_10_1007_s00249_009_0520_3 crossref_primary_10_1088_0266_5611_25_12_123014 crossref_primary_10_1007_s10533_016_0193_9 crossref_primary_10_1186_1752_0509_7_113 crossref_primary_10_1186_s12918_017_0428_y crossref_primary_10_1038_s41598_022_07860_7 crossref_primary_10_1038_srep39877 crossref_primary_10_3390_math10244748 crossref_primary_10_1186_1471_2105_7_540 crossref_primary_10_1186_s12915_024_02019_4 crossref_primary_10_1016_j_neucom_2005_12_109 crossref_primary_10_1016_j_febslet_2009_10_074 crossref_primary_10_1017_nws_2016_26 crossref_primary_10_1109_tcbb_2007_1051 crossref_primary_10_1007_s12351_018_0374_5 crossref_primary_10_1186_1471_2105_13_68 crossref_primary_10_1186_1471_2105_8_12 crossref_primary_10_1007_s00343_016_5068_3 crossref_primary_10_1016_j_ces_2015_05_040 crossref_primary_10_1016_j_ifacol_2018_03_073 crossref_primary_10_1371_journal_pone_0275819 crossref_primary_10_1016_j_tust_2011_05_010 crossref_primary_10_1007_s11047_010_9180_6 crossref_primary_10_1016_j_entcs_2013_02_020 crossref_primary_10_1080_03610918_2011_633200 crossref_primary_10_3389_fmolb_2022_801032 crossref_primary_10_3390_pr3030701 crossref_primary_10_1186_1471_2105_7_483 crossref_primary_10_1016_j_fuel_2017_07_092 crossref_primary_10_1007_s10533_014_0012_0 crossref_primary_10_1016_j_jpdc_2005_03_002 crossref_primary_10_1016_j_copbio_2010_09_014 crossref_primary_10_3390_math11030699 crossref_primary_10_1016_j_eswa_2024_125339 crossref_primary_10_1109_MEMB_2009_932905 crossref_primary_10_1371_journal_pone_0127918 crossref_primary_10_1016_j_jtbi_2021_110877 crossref_primary_10_1016_j_ifacol_2016_12_106 crossref_primary_10_1002_wsbm_52 crossref_primary_10_1093_bioinformatics_bti143 crossref_primary_10_1186_1471_2105_7_230 crossref_primary_10_1371_journal_pcbi_1005331 crossref_primary_10_1016_j_procbio_2010_11_017 crossref_primary_10_1016_j_ijhydene_2016_08_136 crossref_primary_10_1016_j_jtbi_2018_12_002 crossref_primary_10_1016_j_jtbi_2007_12_009 crossref_primary_10_1007_s13721_016_0128_3 crossref_primary_10_1137_120889733 crossref_primary_10_1186_1752_0509_1_22 crossref_primary_10_1007_s11538_018_0440_4 crossref_primary_10_1016_j_ifacol_2017_08_376 crossref_primary_10_1016_j_mib_2007_05_009 crossref_primary_10_1007_s00204_010_0577_x crossref_primary_10_1007_s10867_006_9016_x crossref_primary_10_1016_j_ymben_2006_04_003 crossref_primary_10_1016_j_mbs_2014_09_001 crossref_primary_10_1109_TFUZZ_2012_2187212 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1101/gr.1262503 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| ExternalDocumentID | 14559783 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAYOK AAZTW ABDIX ABDNZ ACGFO ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 NPM R.V RCX RHF RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP 7X8 ACLKE |
| ID | FETCH-LOGICAL-c470t-5a22f927e712529731268b8568b6cf2bf9aa75946bbbb69c9c47dd3e831f9bf72 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 637 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186357000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1088-9051 |
| IngestDate | Thu Oct 02 05:16:10 EDT 2025 Wed Feb 19 01:51:39 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-5a22f927e712529731268b8568b6cf2bf9aa75946bbbb69c9c47dd3e831f9bf72 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://genome.cshlp.org/content/13/11/2467.full.pdf |
| PMID | 14559783 |
| PQID | 71362864 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_71362864 pubmed_primary_14559783 |
| PublicationCentury | 2000 |
| PublicationDate | 2003-11-01 |
| PublicationDateYYYYMMDD | 2003-11-01 |
| PublicationDate_xml | – month: 11 year: 2003 text: 2003-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Genome research |
| PublicationTitleAlternate | Genome Res |
| PublicationYear | 2003 |
| References | 8293329 - Comput Appl Biosci. 1993 Oct;9(5):563-71 12552139 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1028-33 8573696 - Biosystems. 1995;36(2):157-66 17813860 - Science. 1983 May 13;220(4598):671-80 9927716 - Bioinformatics. 1998;14(10):869-83 |
| References_xml | – reference: 12552139 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1028-33 – reference: 17813860 - Science. 1983 May 13;220(4598):671-80 – reference: 8573696 - Biosystems. 1995;36(2):157-66 – reference: 9927716 - Bioinformatics. 1998;14(10):869-83 – reference: 8293329 - Comput Appl Biosci. 1993 Oct;9(5):563-71 |
| SSID | ssj0003488 |
| Score | 2.3714664 |
| SecondaryResourceType | review_article |
| Snippet | Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2467 |
| SubjectTerms | Algorithms Computational Biology - methods Computational Biology - statistics & numerical data Computer Simulation Evolution, Molecular Genetic Engineering - methods HIV Protease - chemistry HIV Protease - genetics HIV Protease - metabolism HIV Protease Inhibitors - chemistry Models, Chemical Molecular Biology - methods Molecular Biology - statistics & numerical data Nonlinear Dynamics Predictive Value of Tests Software - statistics & numerical data Stochastic Processes |
| Title | Parameter estimation in biochemical pathways: a comparison of global optimization methods |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/14559783 https://www.proquest.com/docview/71362864 |
| Volume | 13 |
| WOSCitedRecordID | wos000186357000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VCoKFR3mVpwfEFto6TpwgJFQqKgaoOoBUpshObNShSWkKqP-es5PAhBjIYGWxlNiXy3fnu-8DOJeCc41I3KFhggFKLJgjfa4cBCeBljpRmtlG4Qc-GASjUTiswXXVC2PKKiufaB11ksUmR97CYMp0UbKb6ZtjNKPM2WopoLEEdReBjLFpPvrhCndZUDTCoS0YFqqSnBRtsPU6u-xQRP5WKusXYGl_MP3N_z3aFmyUwJJ0C0vYhppKG7DTTTGonizIBbGlnjaH3oDV2-purVcJvu3Ay1CYSi1caGKoN4qeRjJOiRwbWS3LK0CMgvGnWORXRJD4W8OQZJoU1CIkQx80KZs7SaFPne_Cc__uqXfvlMoLTsx4e-54glIdUq444h-rbkX9QAYeDn6sqdShENwLmS_x8sM4xGlJ4qrA7ehQak73YDnNUnUAREsMkDDGCjylmOt7UnKReAnHSKrDaNtvwlm1qBG-rzmuEKnK3vOoWtYm7Bf7Ek0LAo7IkKublNXhn3OPYL2ovjM5k2Ooa_ym1QmsxB_zcT47tQaD42D4-AV5T8xJ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+in+biochemical+pathways%3A+a+comparison+of+global+optimization+methods&rft.jtitle=Genome+research&rft.au=Moles%2C+Carmen+G&rft.au=Mendes%2C+Pedro&rft.au=Banga%2C+Julio+R&rft.date=2003-11-01&rft.issn=1088-9051&rft.volume=13&rft.issue=11&rft.spage=2467&rft_id=info:doi/10.1101%2Fgr.1262503&rft_id=info%3Apmid%2F14559783&rft_id=info%3Apmid%2F14559783&rft.externalDocID=14559783 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |