Parameter estimation in biochemical pathways: a comparison of global optimization methods

Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and mult...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Genome research Ročník 13; číslo 11; s. 2467
Hlavní autori: Moles, Carmen G, Mendes, Pedro, Banga, Julio R
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.11.2003
Predmet:
ISSN:1088-9051
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates.
AbstractList Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates.
Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates.Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates.
Author Banga, Julio R
Moles, Carmen G
Mendes, Pedro
Author_xml – sequence: 1
  givenname: Carmen G
  surname: Moles
  fullname: Moles, Carmen G
  organization: Process Engineering Group, Instituto de Investigaciones Marinas (CSIC), 36208 Vigo, Spain
– sequence: 2
  givenname: Pedro
  surname: Mendes
  fullname: Mendes, Pedro
– sequence: 3
  givenname: Julio R
  surname: Banga
  fullname: Banga, Julio R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14559783$$D View this record in MEDLINE/PubMed
BookMark eNo1kDtPwzAUhT0U0Qcs_ADkiS3Fjzi22VDFS6oEAwxMke3YjVESBzsVKr8eSy13uHf5ztE9ZwlmQxgsAFcYrTFG-HYX15hUhCE6AwuMhCgkYngOlil9IYRoKcQ5mOOSMckFXYDPNxVVbycboU2T79XkwwD9ALUPprW9N6qDo5raH3VId1BBE_pRRZ8yFRzcdUFnIIxZ6n-P4uzWhiZdgDOnumQvT3cFPh4f3jfPxfb16WVzvy1MydFUMEWIk4RbjgkjktP8vtCC5VUZR7STSnEmy0rnqaSRWdY01AqKndSOkxW4OfqOMXzvc4i698nYrlODDftUc0wrIqoyg9cncK9729RjzHHjof4vg_wBQBBhWA
CitedBy_id crossref_primary_10_1016_j_mbs_2009_03_002
crossref_primary_10_1016_j_compchemeng_2013_12_014
crossref_primary_10_1371_journal_pcbi_1003686
crossref_primary_10_1371_journal_pcbi_1000298
crossref_primary_10_1371_journal_pcbi_1003687
crossref_primary_10_1007_s11306_013_0564_3
crossref_primary_10_1186_1752_0509_8_5
crossref_primary_10_1371_journal_pcbi_1005627
crossref_primary_10_1007_s12559_015_9328_x
crossref_primary_10_1093_bioinformatics_btl552
crossref_primary_10_1097_SS_0b013e3181e0559a
crossref_primary_10_2134_jeq2006_0451
crossref_primary_10_1002_rnc_2793
crossref_primary_10_1002_rnc_2794
crossref_primary_10_1007_s10589_007_9092_2
crossref_primary_10_1016_j_jphotochemrev_2011_10_002
crossref_primary_10_1038_s41540_017_0023_2
crossref_primary_10_1371_journal_pcbi_1006828
crossref_primary_10_1177_117693510700300020
crossref_primary_10_1371_journal_pone_0097130
crossref_primary_10_1371_journal_pone_0088419
crossref_primary_10_3390_ijms24108734
crossref_primary_10_1007_s10898_018_0691_5
crossref_primary_10_1186_1471_2105_11_547
crossref_primary_10_1093_glycob_cwr036
crossref_primary_10_1124_jpet_107_133967
crossref_primary_10_1093_bioinformatics_btm510
crossref_primary_10_1186_1752_0509_6_142
crossref_primary_10_1186_1687_4153_2012_3
crossref_primary_10_1186_1752_0509_4_69
crossref_primary_10_1109_TCBB_2022_3225675
crossref_primary_10_1016_j_amc_2008_11_008
crossref_primary_10_1038_jes_2008_9
crossref_primary_10_1371_journal_pone_0032749
crossref_primary_10_1186_1752_0509_3_94
crossref_primary_10_1007_s10898_024_01381_5
crossref_primary_10_1016_j_apenergy_2014_12_043
crossref_primary_10_1016_j_asoc_2019_105494
crossref_primary_10_1016_j_physrep_2013_03_004
crossref_primary_10_1371_journal_pcbi_1000086
crossref_primary_10_1186_1742_4682_3_42
crossref_primary_10_1038_nrg2509
crossref_primary_10_1186_1471_2105_13_181
crossref_primary_10_3390_app11146449
crossref_primary_10_1038_srep08493
crossref_primary_10_1016_j_biosystems_2015_08_003
crossref_primary_10_1002_rnc_2797
crossref_primary_10_1007_s12021_018_9369_x
crossref_primary_10_1042_bse0450001
crossref_primary_10_1093_bioinformatics_btl443
crossref_primary_10_1155_2014_362738
crossref_primary_10_1007_s00500_014_1467_6
crossref_primary_10_1016_j_ymben_2023_03_005
crossref_primary_10_1016_j_tins_2005_08_002
crossref_primary_10_1186_s12918_016_0257_4
crossref_primary_10_3389_fbioe_2019_00122
crossref_primary_10_1186_s12918_015_0144_4
crossref_primary_10_1177_1094342016679011
crossref_primary_10_1038_s41598_022_09128_6
crossref_primary_10_1007_s40484_018_0150_9
crossref_primary_10_1016_j_cellsig_2007_01_029
crossref_primary_10_1109_TCBB_2014_2322360
crossref_primary_10_1093_bioinformatics_btm433
crossref_primary_10_3389_fpls_2021_717958
crossref_primary_10_1016_j_chemolab_2008_08_002
crossref_primary_10_3390_fermentation8090446
crossref_primary_10_1002_cjce_25445
crossref_primary_10_1093_bioinformatics_btn527
crossref_primary_10_1371_journal_pone_0013283
crossref_primary_10_1186_1471_2105_6_155
crossref_primary_10_3389_fbioe_2019_00025
crossref_primary_10_3390_w11081637
crossref_primary_10_1146_annurev_bioeng_071910_124729
crossref_primary_10_1186_s12918_017_0433_1
crossref_primary_10_1137_15M103306X
crossref_primary_10_1080_10556788_2018_1435648
crossref_primary_10_1186_s12859_024_05746_1
crossref_primary_10_1371_journal_pone_0074178
crossref_primary_10_1186_1752_0509_4_11
crossref_primary_10_1016_j_compchemeng_2014_06_013
crossref_primary_10_1038_s41598_017_07957_4
crossref_primary_10_2136_vzj2007_0021
crossref_primary_10_1007_s11081_013_9234_6
crossref_primary_10_1016_j_drudis_2013_07_014
crossref_primary_10_1016_j_tcs_2008_07_005
crossref_primary_10_1016_j_ecolmodel_2013_10_013
crossref_primary_10_1093_bioinformatics_bti099
crossref_primary_10_1371_journal_pone_0091963
crossref_primary_10_1186_s12918_018_0610_x
crossref_primary_10_1016_j_tcs_2008_07_012
crossref_primary_10_1007_s00285_010_0350_z
crossref_primary_10_1186_1752_0509_4_17
crossref_primary_10_1016_j_chroma_2023_464113
crossref_primary_10_1109_TNSE_2018_2808954
crossref_primary_10_1186_s12859_021_04255_9
crossref_primary_10_1042_bse0450195
crossref_primary_10_1162_biot_2007_2_2_183
crossref_primary_10_1186_1471_2105_16_S17_S8
crossref_primary_10_1111_j_1749_6632_2008_03945_x
crossref_primary_10_1186_1471_2105_10_343
crossref_primary_10_1371_journal_pcbi_1000696
crossref_primary_10_1007_s10898_006_9075_3
crossref_primary_10_1007_s11051_012_0821_9
crossref_primary_10_1007_s11590_008_0110_9
crossref_primary_10_1101_gr_1763203
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_1049_iet_syb_2014_0010
crossref_primary_10_3233_ISB_180470
crossref_primary_10_1016_j_jksus_2017_01_005
crossref_primary_10_1093_nar_gku616
crossref_primary_10_2118_224437_PA
crossref_primary_10_1042_BST0331427
crossref_primary_10_1016_j_cmpb_2008_12_001
crossref_primary_10_1158_0008_5472_CAN_10_0460
crossref_primary_10_1016_j_compstruct_2023_116748
crossref_primary_10_1016_j_fob_2015_03_002
crossref_primary_10_1109_TCBB_2022_3156759
crossref_primary_10_1186_1751_0473_7_9
crossref_primary_10_1016_j_febslet_2005_02_012
crossref_primary_10_1529_biophysj_106_093344
crossref_primary_10_1007_s00521_017_2908_9
crossref_primary_10_1042_EBC20180003
crossref_primary_10_1088_1742_5468_2010_12_P12034
crossref_primary_10_1002_ceat_200800544
crossref_primary_10_3389_fams_2017_00006
crossref_primary_10_3390_pr9061053
crossref_primary_10_1007_s00161_014_0367_4
crossref_primary_10_1016_j_engappai_2017_04_004
crossref_primary_10_3389_fgene_2019_00549
crossref_primary_10_1073_pnas_1004042108
crossref_primary_10_1089_brain_2012_0120
crossref_primary_10_1016_j_ejor_2024_02_020
crossref_primary_10_1177_0954408916682985
crossref_primary_10_1186_1752_0509_6_86
crossref_primary_10_3389_fsufs_2023_1083388
crossref_primary_10_1124_dmd_111_043174
crossref_primary_10_2478_pomr_2023_0020
crossref_primary_10_1002_psp4_12071
crossref_primary_10_1186_s12918_017_0431_3
crossref_primary_10_1016_j_ijhydene_2023_04_133
crossref_primary_10_1016_j_jtice_2009_05_010
crossref_primary_10_3389_fimmu_2018_00393
crossref_primary_10_1529_biophysj_104_050385
crossref_primary_10_1016_j_febslet_2012_03_063
crossref_primary_10_1371_journal_pone_0104057
crossref_primary_10_1093_bib_bbn039
crossref_primary_10_1016_j_compchemeng_2019_106665
crossref_primary_10_1016_j_jtbi_2018_10_041
crossref_primary_10_1093_bib_bbz114
crossref_primary_10_1088_1478_3975_aa868a
crossref_primary_10_1186_s13059_019_1887_9
crossref_primary_10_1016_j_jprocont_2011_10_003
crossref_primary_10_1111_j_1742_4658_2008_06844_x
crossref_primary_10_1016_j_sajce_2021_05_005
crossref_primary_10_1186_1752_0509_4_112
crossref_primary_10_1186_1687_4153_2011_7
crossref_primary_10_1371_journal_pcbi_1000534
crossref_primary_10_1007_s00449_020_02360_2
crossref_primary_10_1016_j_biosystems_2010_03_001
crossref_primary_10_1002_pmic_200600428
crossref_primary_10_3389_fmicb_2018_01690
crossref_primary_10_1109_TCBB_2010_117
crossref_primary_10_3390_metabo4041034
crossref_primary_10_1007_s12551_025_01281_2
crossref_primary_10_3390_math12152357
crossref_primary_10_1371_journal_pone_0003758
crossref_primary_10_3390_w17050703
crossref_primary_10_7554_eLife_44494
crossref_primary_10_1534_genetics_107_080069
crossref_primary_10_1186_1752_0509_5_159
crossref_primary_10_1109_TCBB_2011_154
crossref_primary_10_1038_srep02755
crossref_primary_10_1111_febs_12525
crossref_primary_10_1007_s10898_020_00883_2
crossref_primary_10_1038_nrg3885
crossref_primary_10_1016_j_compchemeng_2009_05_008
crossref_primary_10_1007_s12649_020_01337_2
crossref_primary_10_1016_j_eswa_2010_06_042
crossref_primary_10_1155_2013_698341
crossref_primary_10_1016_j_asoc_2022_109243
crossref_primary_10_1186_1471_2105_11_582
crossref_primary_10_1523_JNEUROSCI_2866_14_2015
crossref_primary_10_1016_j_ymben_2014_03_007
crossref_primary_10_1162_ARTL_a_00076
crossref_primary_10_1186_1471_2105_15_S6_S1
crossref_primary_10_1016_j_ceca_2008_07_005
crossref_primary_10_1016_j_jfoodeng_2007_03_023
crossref_primary_10_1016_j_mbs_2013_03_006
crossref_primary_10_1007_s11063_017_9711_6
crossref_primary_10_1016_j_ejor_2015_12_018
crossref_primary_10_1175_2007JTECHO535_1
crossref_primary_10_1038_ncb1497
crossref_primary_10_2166_hydro_2017_021
crossref_primary_10_1007_s13748_016_0091_3
crossref_primary_10_1186_1752_0509_4_99
crossref_primary_10_1155_2021_5513860
crossref_primary_10_1177_0748730418764540
crossref_primary_10_1016_j_agrformet_2014_10_009
crossref_primary_10_1002_btpr_2388
crossref_primary_10_1101_gr_1765703
crossref_primary_10_1007_s10462_019_09751_2
crossref_primary_10_3390_en10111763
crossref_primary_10_1016_j_matcom_2010_09_010
crossref_primary_10_1093_nar_gki791
crossref_primary_10_1016_j_ces_2012_06_063
crossref_primary_10_1186_s12918_015_0219_2
crossref_primary_10_1002_btpr_2030
crossref_primary_10_1016_j_apm_2013_07_039
crossref_primary_10_1038_ncomms1496
crossref_primary_10_1186_1471_2105_11_202
crossref_primary_10_1016_j_swevo_2015_03_001
crossref_primary_10_1007_s10479_019_03183_5
crossref_primary_10_1080_08958378_2020_1742818
crossref_primary_10_1186_s12918_015_0175_x
crossref_primary_10_1016_j_compbiomed_2011_01_004
crossref_primary_10_1088_1757_899X_546_5_052006
crossref_primary_10_1038_nrm2030
crossref_primary_10_1586_14737159_7_4_329
crossref_primary_10_1261_rna_2056010
crossref_primary_10_1371_journal_pone_0068124
crossref_primary_10_1109_TCBB_2020_3039490
crossref_primary_10_1186_s12918_016_0319_7
crossref_primary_10_1007_s00449_010_0486_7
crossref_primary_10_1016_j_wavemoti_2021_102732
crossref_primary_10_1016_j_sajce_2022_06_009
crossref_primary_10_3390_metabo2030553
crossref_primary_10_1016_j_jbiotec_2007_02_009
crossref_primary_10_1101_gr_1226004
crossref_primary_10_1016_j_biosystems_2010_09_002
crossref_primary_10_1016_j_biosystems_2005_06_016
crossref_primary_10_1016_j_mbs_2021_108716
crossref_primary_10_1016_j_cam_2019_112698
crossref_primary_10_1016_j_tim_2006_11_003
crossref_primary_10_1016_j_electacta_2025_145673
crossref_primary_10_1109_TCBB_2013_19
crossref_primary_10_2166_wst_2017_162
crossref_primary_10_1016_j_mce_2010_11_016
crossref_primary_10_1049_iet_syb_2015_0014
crossref_primary_10_1002_mma_8009
crossref_primary_10_1242_jcs_036319
crossref_primary_10_1016_j_tcs_2011_02_013
crossref_primary_10_1016_j_jtbi_2012_04_031
crossref_primary_10_1016_j_compchemeng_2012_06_001
crossref_primary_10_1016_j_ymben_2014_05_014
crossref_primary_10_1016_j_taml_2023_100450
crossref_primary_10_1186_s12918_016_0273_4
crossref_primary_10_1016_j_mbs_2014_03_001
crossref_primary_10_1093_bioinformatics_btn075
crossref_primary_10_1093_nar_gkt459
crossref_primary_10_1016_j_biosystems_2007_10_001
crossref_primary_10_1016_j_eswa_2017_08_018
crossref_primary_10_1007_s10441_022_09445_3
crossref_primary_10_1016_j_biotechadv_2017_09_005
crossref_primary_10_1007_s10915_014_9865_6
crossref_primary_10_1109_TCBB_2011_63
crossref_primary_10_1016_j_ejor_2017_12_011
crossref_primary_10_1371_journal_pcbi_1006181
crossref_primary_10_1371_journal_pone_0182186
crossref_primary_10_1007_s10898_025_01514_4
crossref_primary_10_1186_1471_2105_15_S12_S3
crossref_primary_10_1007_s11081_025_09978_9
crossref_primary_10_1016_j_biosystems_2011_12_004
crossref_primary_10_1002_etep_2427
crossref_primary_10_1038_s41540_020_0128_x
crossref_primary_10_1016_j_compbiomed_2008_02_005
crossref_primary_10_1007_s10439_009_9651_z
crossref_primary_10_1016_j_biosystems_2008_12_004
crossref_primary_10_1111_febs_12663
crossref_primary_10_1524_auto_2008_0703
crossref_primary_10_1109_TCBB_2017_2773477
crossref_primary_10_1186_1471_2105_11_36
crossref_primary_10_3389_feart_2018_00203
crossref_primary_10_1016_j_entcs_2011_09_003
crossref_primary_10_1371_journal_pcbi_1008472
crossref_primary_10_1042_BST0330520
crossref_primary_10_1155_2018_3213484
crossref_primary_10_1186_s12918_014_0102_6
crossref_primary_10_1242_dev_111930
crossref_primary_10_1016_j_renene_2011_11_027
crossref_primary_10_1016_j_jtbi_2007_10_023
crossref_primary_10_1186_1471_2105_10_140
crossref_primary_10_1016_j_camwa_2013_02_023
crossref_primary_10_1007_s10559_014_9646_0
crossref_primary_10_1371_journal_pcbi_1007575
crossref_primary_10_1186_1471_2105_15_136
crossref_primary_10_7554_eLife_10644
crossref_primary_10_1186_s12859_016_1452_4
crossref_primary_10_1186_1471_2105_15_256
crossref_primary_10_1016_j_simpat_2013_11_011
crossref_primary_10_1002_jor_23032
crossref_primary_10_1093_bib_bbv015
crossref_primary_10_1186_1755_8794_2_2
crossref_primary_10_1080_17513758_2018_1508761
crossref_primary_10_1016_j_compchemeng_2006_07_015
crossref_primary_10_1088_1478_3975_8_5_055011
crossref_primary_10_1529_biophysj_107_118380
crossref_primary_10_1016_j_bej_2016_12_022
crossref_primary_10_1016_j_ymeth_2013_05_013
crossref_primary_10_1002_bit_21679
crossref_primary_10_1016_j_ress_2021_107436
crossref_primary_10_1186_1471_2105_8_202
crossref_primary_10_1016_j_eswa_2018_09_020
crossref_primary_10_1016_j_ymeth_2013_05_012
crossref_primary_10_2174_1570164616666190401203128
crossref_primary_10_1093_bioinformatics_bti753
crossref_primary_10_1007_s11270_010_0623_6
crossref_primary_10_1016_j_bbagrm_2013_04_011
crossref_primary_10_1007_s00449_012_0789_y
crossref_primary_10_1016_j_mbs_2018_11_002
crossref_primary_10_1002_ceat_202300324
crossref_primary_10_1016_j_jbiotec_2015_12_023
crossref_primary_10_1186_s12859_019_2630_y
crossref_primary_10_1002_bit_22540
crossref_primary_10_1109_TCST_2018_2885694
crossref_primary_10_1186_1752_0509_8_61
crossref_primary_10_1016_j_jmbbm_2013_05_001
crossref_primary_10_1080_01621459_2013_841583
crossref_primary_10_1093_bioinformatics_btp050
crossref_primary_10_1016_j_biosystems_2004_11_003
crossref_primary_10_1016_j_bej_2015_09_026
crossref_primary_10_15252_msb_20177651
crossref_primary_10_1007_s00138_020_01109_x
crossref_primary_10_1016_j_mbs_2008_06_007
crossref_primary_10_1007_s10586_017_0860_1
crossref_primary_10_1038_nbt1330
crossref_primary_10_1371_journal_pone_0083664
crossref_primary_10_1109_TCBB_2015_2424424
crossref_primary_10_1186_1752_0509_8_54
crossref_primary_10_1016_j_ifacol_2017_08_651
crossref_primary_10_1186_1752_0509_7_S6_S4
crossref_primary_10_1002_cpe_3071
crossref_primary_10_1016_j_asoc_2015_04_025
crossref_primary_10_1186_s12918_017_0406_4
crossref_primary_10_1007_s12257_011_0405_z
crossref_primary_10_1111_j_1467_9868_2007_00610_x
crossref_primary_10_1186_1752_0509_7_91
crossref_primary_10_1109_TCBB_2012_66
crossref_primary_10_1093_comnet_cnw019
crossref_primary_10_1016_j_bbrc_2009_10_155
crossref_primary_10_1016_j_compbiolchem_2015_10_003
crossref_primary_10_1145_3092819_3092830
crossref_primary_10_1007_s10898_020_00952_6
crossref_primary_10_1016_j_jcp_2020_110026
crossref_primary_10_1109_TCBB_2009_49
crossref_primary_10_1007_s00158_009_0414_0
crossref_primary_10_1007_s10928_012_9258_0
crossref_primary_10_1371_journal_pcbi_1005234
crossref_primary_10_1186_1752_0509_2_26
crossref_primary_10_1186_1752_0509_2_29
crossref_primary_10_1002_biot_201000059
crossref_primary_10_1111_j_1742_4658_2006_05136_x
crossref_primary_10_1007_s10100_012_0237_8
crossref_primary_10_1016_j_cam_2012_02_020
crossref_primary_10_1186_s12976_018_0089_6
crossref_primary_10_1016_j_jestch_2018_03_009
crossref_primary_10_1016_j_ymeth_2006_08_003
crossref_primary_10_1111_j_1365_313X_2005_02649_x
crossref_primary_10_1016_j_ifacol_2018_09_298
crossref_primary_10_1155_2010_541609
crossref_primary_10_7717_peerj_cs_74
crossref_primary_10_1016_j_bcab_2025_103651
crossref_primary_10_3390_metabo2040891
crossref_primary_10_1186_1752_0509_2_47
crossref_primary_10_3109_10409238_2011_556597
crossref_primary_10_1016_j_csbj_2017_07_005
crossref_primary_10_1016_j_ifacol_2018_09_040
crossref_primary_10_1371_journal_pcbi_1005251
crossref_primary_10_1007_s00249_009_0520_3
crossref_primary_10_1088_0266_5611_25_12_123014
crossref_primary_10_1007_s10533_016_0193_9
crossref_primary_10_1186_1752_0509_7_113
crossref_primary_10_1186_s12918_017_0428_y
crossref_primary_10_1038_s41598_022_07860_7
crossref_primary_10_1038_srep39877
crossref_primary_10_3390_math10244748
crossref_primary_10_1186_1471_2105_7_540
crossref_primary_10_1186_s12915_024_02019_4
crossref_primary_10_1016_j_neucom_2005_12_109
crossref_primary_10_1016_j_febslet_2009_10_074
crossref_primary_10_1017_nws_2016_26
crossref_primary_10_1109_tcbb_2007_1051
crossref_primary_10_1007_s12351_018_0374_5
crossref_primary_10_1186_1471_2105_13_68
crossref_primary_10_1186_1471_2105_8_12
crossref_primary_10_1007_s00343_016_5068_3
crossref_primary_10_1016_j_ces_2015_05_040
crossref_primary_10_1016_j_ifacol_2018_03_073
crossref_primary_10_1371_journal_pone_0275819
crossref_primary_10_1016_j_tust_2011_05_010
crossref_primary_10_1007_s11047_010_9180_6
crossref_primary_10_1016_j_entcs_2013_02_020
crossref_primary_10_1080_03610918_2011_633200
crossref_primary_10_3389_fmolb_2022_801032
crossref_primary_10_3390_pr3030701
crossref_primary_10_1186_1471_2105_7_483
crossref_primary_10_1016_j_fuel_2017_07_092
crossref_primary_10_1007_s10533_014_0012_0
crossref_primary_10_1016_j_jpdc_2005_03_002
crossref_primary_10_1016_j_copbio_2010_09_014
crossref_primary_10_3390_math11030699
crossref_primary_10_1016_j_eswa_2024_125339
crossref_primary_10_1109_MEMB_2009_932905
crossref_primary_10_1371_journal_pone_0127918
crossref_primary_10_1016_j_jtbi_2021_110877
crossref_primary_10_1016_j_ifacol_2016_12_106
crossref_primary_10_1002_wsbm_52
crossref_primary_10_1093_bioinformatics_bti143
crossref_primary_10_1186_1471_2105_7_230
crossref_primary_10_1371_journal_pcbi_1005331
crossref_primary_10_1016_j_procbio_2010_11_017
crossref_primary_10_1016_j_ijhydene_2016_08_136
crossref_primary_10_1016_j_jtbi_2018_12_002
crossref_primary_10_1016_j_jtbi_2007_12_009
crossref_primary_10_1007_s13721_016_0128_3
crossref_primary_10_1137_120889733
crossref_primary_10_1186_1752_0509_1_22
crossref_primary_10_1007_s11538_018_0440_4
crossref_primary_10_1016_j_ifacol_2017_08_376
crossref_primary_10_1016_j_mib_2007_05_009
crossref_primary_10_1007_s00204_010_0577_x
crossref_primary_10_1007_s10867_006_9016_x
crossref_primary_10_1016_j_ymben_2006_04_003
crossref_primary_10_1016_j_mbs_2014_09_001
crossref_primary_10_1109_TFUZZ_2012_2187212
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1101/gr.1262503
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
ExternalDocumentID 14559783
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAYOK
AAZTW
ABDIX
ABDNZ
ACGFO
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
NPM
R.V
RCX
RHF
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
7X8
ACLKE
ID FETCH-LOGICAL-c470t-5a22f927e712529731268b8568b6cf2bf9aa75946bbbb69c9c47dd3e831f9bf72
IEDL.DBID 7X8
ISICitedReferencesCount 637
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186357000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-9051
IngestDate Thu Oct 02 05:16:10 EDT 2025
Wed Feb 19 01:51:39 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-5a22f927e712529731268b8568b6cf2bf9aa75946bbbb69c9c47dd3e831f9bf72
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://genome.cshlp.org/content/13/11/2467.full.pdf
PMID 14559783
PQID 71362864
PQPubID 23479
ParticipantIDs proquest_miscellaneous_71362864
pubmed_primary_14559783
PublicationCentury 2000
PublicationDate 2003-11-01
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: 2003-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2003
References 8293329 - Comput Appl Biosci. 1993 Oct;9(5):563-71
12552139 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1028-33
8573696 - Biosystems. 1995;36(2):157-66
17813860 - Science. 1983 May 13;220(4598):671-80
9927716 - Bioinformatics. 1998;14(10):869-83
References_xml – reference: 12552139 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1028-33
– reference: 17813860 - Science. 1983 May 13;220(4598):671-80
– reference: 8573696 - Biosystems. 1995;36(2):157-66
– reference: 9927716 - Bioinformatics. 1998;14(10):869-83
– reference: 8293329 - Comput Appl Biosci. 1993 Oct;9(5):563-71
SSID ssj0003488
Score 2.3714664
SecondaryResourceType review_article
Snippet Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2467
SubjectTerms Algorithms
Computational Biology - methods
Computational Biology - statistics & numerical data
Computer Simulation
Evolution, Molecular
Genetic Engineering - methods
HIV Protease - chemistry
HIV Protease - genetics
HIV Protease - metabolism
HIV Protease Inhibitors - chemistry
Models, Chemical
Molecular Biology - methods
Molecular Biology - statistics & numerical data
Nonlinear Dynamics
Predictive Value of Tests
Software - statistics & numerical data
Stochastic Processes
Title Parameter estimation in biochemical pathways: a comparison of global optimization methods
URI https://www.ncbi.nlm.nih.gov/pubmed/14559783
https://www.proquest.com/docview/71362864
Volume 13
WOSCitedRecordID wos000186357000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VCoKFR3mVpwfEFto6TpwgJFQqKgaoOoBUpshObNShSWkKqP-es5PAhBjIYGWxlNiXy3fnu-8DOJeCc41I3KFhggFKLJgjfa4cBCeBljpRmtlG4Qc-GASjUTiswXXVC2PKKiufaB11ksUmR97CYMp0UbKb6ZtjNKPM2WopoLEEdReBjLFpPvrhCndZUDTCoS0YFqqSnBRtsPU6u-xQRP5WKusXYGl_MP3N_z3aFmyUwJJ0C0vYhppKG7DTTTGonizIBbGlnjaH3oDV2-purVcJvu3Ay1CYSi1caGKoN4qeRjJOiRwbWS3LK0CMgvGnWORXRJD4W8OQZJoU1CIkQx80KZs7SaFPne_Cc__uqXfvlMoLTsx4e-54glIdUq444h-rbkX9QAYeDn6sqdShENwLmS_x8sM4xGlJ4qrA7ehQak73YDnNUnUAREsMkDDGCjylmOt7UnKReAnHSKrDaNtvwlm1qBG-rzmuEKnK3vOoWtYm7Bf7Ek0LAo7IkKublNXhn3OPYL2ovjM5k2Ooa_ym1QmsxB_zcT47tQaD42D4-AV5T8xJ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+in+biochemical+pathways%3A+a+comparison+of+global+optimization+methods&rft.jtitle=Genome+research&rft.au=Moles%2C+Carmen+G&rft.au=Mendes%2C+Pedro&rft.au=Banga%2C+Julio+R&rft.date=2003-11-01&rft.issn=1088-9051&rft.volume=13&rft.issue=11&rft.spage=2467&rft_id=info:doi/10.1101%2Fgr.1262503&rft_id=info%3Apmid%2F14559783&rft_id=info%3Apmid%2F14559783&rft.externalDocID=14559783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon