Human Detection and Action Recognition for Search and Rescue in Disasters Using YOLOv3 Algorithm
Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions. Manual video analysis by human observers takes time and is subject to mistakes. The human identification examination of pictures caught by drones...
Uložené v:
| Vydané v: | Journal of Electrical and Computer Engineering Ročník 2023; s. 1 - 19 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Hindawi
10.03.2023
John Wiley & Sons, Inc Wiley |
| Predmet: | |
| ISSN: | 2090-0147, 2090-0155 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions. Manual video analysis by human observers takes time and is subject to mistakes. The human identification examination of pictures caught by drones will give a practical method for saving lives who are being trapped under debris during quakes or in floods and so on. Drone investigation for research and security and search and rescue (SAR) should involve the drone to filter the impacted area using a camera and a model of unmanned area vehicles (UAVs) to identify specific locations where assistance is required. The existing methods (Balmukund et al. 2020) used were faster-region based convolutional neural networks (F-RCNNs), single shot detector (SSD), and region-based fully convolutional network (R-FCN) for the detection of human and recognition of action. Some of the existing methods used 700 images with six classes only, whereas the proposed model uses 1996 images with eight classes. The proposed model is used YOLOv3 (you only look once) algorithm for the detection and recognition of actions. In this study, we provide the fundamental ideas underlying an object detection model. To find the most effective model for human recognition and detection, we trained the YOLOv3 algorithm on the image dataset and evaluated its performance. We compared the outcomes with the existing algorithms like F-RCNN, SSD, and R-FCN. The accuracies of F-RCNN, SSD, R-FCN (existing algorithms), and YOLOv3 (proposed algorithm) are 53%, 73%, 93%, and 94.9%, respectively. Among these algorithms, the YOLOv3 algorithm gives the highest accuracy of 94.9%. The proposed work shows that existing models are inadequate for critical applications like search and rescue, which convinces us to propose a model raised by a pyramidal component extracting SSD in human localization and action recognition. The suggested model is 94.9% accurate when applied to the proposed dataset, which is an important contribution. Likewise, the suggested model succeeds in helping time for expectation in examination with the cutting-edge identification models with existing strategies. The average time taken by our proposed technique to distinguish a picture is 0.40 milisec which is a lot better than the existing method. The proposed model can likewise distinguish video and can be utilized for real-time recognition. The SSD model can likewise use to anticipate messages if present in the picture. |
|---|---|
| AbstractList | Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions. Manual video analysis by human observers takes time and is subject to mistakes. The human identification examination of pictures caught by drones will give a practical method for saving lives who are being trapped under debris during quakes or in floods and so on. Drone investigation for research and security and search and rescue (SAR) should involve the drone to filter the impacted area using a camera and a model of unmanned area vehicles (UAVs) to identify specific locations where assistance is required. The existing methods (Balmukund et al. 2020) used were faster-region based convolutional neural networks (F-RCNNs), single shot detector (SSD), and region-based fully convolutional network (R-FCN) for the detection of human and recognition of action. Some of the existing methods used 700 images with six classes only, whereas the proposed model uses 1996 images with eight classes. The proposed model is used YOLOv3 (you only look once) algorithm for the detection and recognition of actions. In this study, we provide the fundamental ideas underlying an object detection model. To find the most effective model for human recognition and detection, we trained the YOLOv3 algorithm on the image dataset and evaluated its performance. We compared the outcomes with the existing algorithms like F-RCNN, SSD, and R-FCN. The accuracies of F-RCNN, SSD, R-FCN (existing algorithms), and YOLOv3 (proposed algorithm) are 53%, 73%, 93%, and 94.9%, respectively. Among these algorithms, the YOLOv3 algorithm gives the highest accuracy of 94.9%. The proposed work shows that existing models are inadequate for critical applications like search and rescue, which convinces us to propose a model raised by a pyramidal component extracting SSD in human localization and action recognition. The suggested model is 94.9% accurate when applied to the proposed dataset, which is an important contribution. Likewise, the suggested model succeeds in helping time for expectation in examination with the cutting-edge identification models with existing strategies. The average time taken by our proposed technique to distinguish a picture is 0.40 milisec which is a lot better than the existing method. The proposed model can likewise distinguish video and can be utilized for real-time recognition. The SSD model can likewise use to anticipate messages if present in the picture. Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions. Manual video analysis by human observers takes time and is subject to mistakes. The human identification examination of pictures caught by drones will give a practical method for saving lives who are being trapped under debris during quakes or in floods and so on. Drone investigation for research and security and search and rescue (SAR) should involve the drone to filter the impacted area using a camera and a model of unmanned area vehicles (UAVs) to identify specific locations where assistance is required. The existing methods (Balmukund et al. 2020) used were faster-region based convolutional neural networks (F-RCNNs), single shot detector (SSD), and region-based fully convolutional network (R-FCN) for the detection of human and recognition of action. Some of the existing methods used 700 images with six classes only, whereas the proposed model uses 1996 images with eight classes. The proposed model is used YOLOv3 (you only look once) algorithm for the detection and recognition of actions. In this study, we provide the fundamental ideas underlying an object detection model. To find the most effective model for human recognition and detection, we trained the YOLOv3 algorithm on the image dataset and evaluated its performance. We compared the outcomes with the existing algorithms like F-RCNN, SSD, and R-FCN. The accuracies of F-RCNN, SSD, R-FCN (existing algorithms), and YOLOv3 (proposed algorithm) are 53%, 73%, 93%, and 94.9%, respectively. Among these algorithms, the YOLOv3 algorithm gives the highest accuracy of 94.9%. The proposed work shows that existing models are inadequate for critical applications like search and rescue, which convinces us to propose a model raised by a pyramidal component extracting SSD in human localization and action recognition. The suggested model is 94.9% accurate when applied to the proposed dataset, which is an important contribution. Likewise, the suggested model succeeds in helping time for expectation in examination with the cutting-edge identification models with existing strategies. The average time taken by our proposed technique to distinguish a picture is 0.40milisec which is a lot better than the existing method. The proposed model can likewise distinguish video and can be utilized for real-time recognition. The SSD model can likewise use to anticipate messages if present in the picture. |
| Audience | Academic |
| Author | Mulu, Tadesse Harold Robinson, Y. Dimple, Rajpurohit Kshitij, Jain Srinivasa Gupta, N. Arulkumaran, G. Valarmathi, B. |
| Author_xml | – sequence: 1 givenname: B. orcidid: 0000-0002-2540-121X surname: Valarmathi fullname: Valarmathi, B. organization: Department of Software and Systems EngineeringSchool of Information Technology and EngineeringVellore Institute of TechnologyVelloreTamil NaduIndiavit.ac.in – sequence: 2 givenname: Jain surname: Kshitij fullname: Kshitij, Jain organization: FSN E-Commerce (Nykaa)MumbaiMaharashtraIndia – sequence: 3 givenname: Rajpurohit surname: Dimple fullname: Dimple, Rajpurohit organization: Bank of AmericaGurugramHaryanaIndia – sequence: 4 givenname: N. orcidid: 0000-0002-7568-0894 surname: Srinivasa Gupta fullname: Srinivasa Gupta, N. organization: Department of Manufacturing EngineeringSchool of Mechanical EngineeringVellore Institute of TechnologyVelloreTamil NaduIndiavit.ac.in – sequence: 5 givenname: Y. orcidid: 0000-0002-4881-7103 surname: Harold Robinson fullname: Harold Robinson, Y. organization: Department of Computer Science and EngineeringFrancis Xavier Engineering CollegeTirunelveliIndiafrancisxavier.ac.in – sequence: 6 givenname: G. orcidid: 0000-0002-5166-3037 surname: Arulkumaran fullname: Arulkumaran, G. organization: School of Computing and Information TechnologyREVA UniversityBengaluruIndiareva.edu.in – sequence: 7 givenname: Tadesse orcidid: 0009-0002-6043-1817 surname: Mulu fullname: Mulu, Tadesse organization: Department of Information SystemsCollege of InformaticsWollo UniversityDessieEthiopiawu.edu.et |
| BookMark | eNp9kUtvEzEUhUeoSJTSHT9gJJaQ1s-xvYzKo5UiRSp0wcp47OuJo4xd7AmIf4-TKSAQYC_u1fV3jq58njYnMUVomucYXWDM-SVBhF5yhhWV7FFzSpBCC1QfTn72TDxpzkvZonqoUoLT0-bT9X40sX0NE9gppNia6Nrl3N6CTUMMx96n3L4Hk-3mSNxCsXtoQ1WGYsoEubR3JcSh_bherb_QdrkbUg7TZnzWPPZmV-D8oZ41d2_ffLi6XqzW726ulquFZQJNC65w31kEymPErOGUU-iVd-CMUL1XVnJjPWMYuc7Szh1qL2kH1FLhKKNnzc3s65LZ6vscRpO_6WSCPg5SHrTJU7A70MRjQin2vSKWsR4kJ1IQiXsPnaDgqteL2es-p897KJPepn2OdX1NhJSEKknFL2ow1TREn6Zs7BiK1UtRc1ACc1Spi79Q9ToYg60R-lDnvwnILLA5lZLBaxsmcwihCsNOY6QPeetD3voh7yp69Yfoxw_8A38545sQnfka_k9_BxGKtqs |
| CitedBy_id | crossref_primary_10_1016_j_robot_2024_104774 crossref_primary_10_1109_ACCESS_2025_3542435 crossref_primary_10_1007_s00521_025_11446_5 crossref_primary_10_1109_ACCESS_2024_3479988 crossref_primary_10_1016_j_vrih_2024_08_005 |
| Cites_doi | 10.3390/rs12030458 10.1016/j.jss.2018.12.023 10.3390/s19163542 10.1155/2021/6710074 10.1109/BIGCOMP.2016.7425814 10.1088/1742-6596/1387/1/012079 10.24191/jeesr.v18i1.012 10.1016/j.eswa.2019.01.042 10.1109/DEST.2009.5276774 10.1108/dpm-09-2019-0289 10.1186/s12911-021-01691-8 10.3390/rs14132977 10.1016/j.neucom.2017.04.083 10.1007/978-3-319-94180-6_15 10.1145/2567948.2577034 10.3390/geosciences10050177 10.1109/ICAwST.2018.8517195 10.1016/j.ijdrr.2018.04.010 10.25126/jitecs.201943128 10.1016/j.pdisas.2019.100030 10.3390/drones6080219 10.1016/j.tourman.2020.104080 10.1002/rob.22075 10.3390/drones6070154 10.1016/j.comcom.2020.03.012 10.1109/ICNC.2012.6234612 10.1109/ACCESS.2018.2812835 10.1109/GIOTS.2019.8766391 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 B. Valarmathi et al. COPYRIGHT 2023 John Wiley & Sons, Inc. Copyright © 2023 B. Valarmathi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2023 B. Valarmathi et al. – notice: COPYRIGHT 2023 John Wiley & Sons, Inc. – notice: Copyright © 2023 B. Valarmathi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1155/2023/5419384 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Middle East & Africa Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2090-0155 |
| Editor | Al-Nima, Raid |
| Editor_xml | – sequence: 1 givenname: Raid surname: Al-Nima fullname: Al-Nima, Raid |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_2f12331fb92c44be85287281bfe673ed A741997150 10_1155_2023_5419384 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | .4S .DC 188 3V. 4.4 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABJCF ABUWG ACIWK ACM ADBBV AFKRA AFPKN AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ BPHCQ CCPQU CWDGH E3Z EBS EDO ESX GROUPED_DOAJ HCIFZ I-F IAO IEA ITC J9A K6V K7- KQ8 L6V M7S MK~ ML~ M~E OK1 P62 PIMPY PQQKQ PROAC PTHSS Q2X RHU RHW RHX TR2 TUS ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY ALUQN CITATION H13 PHGZM PHGZT PQGLB 7SC 7SP 8FD AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c470t-591b6c0e9f104ca5353eb9fdeda79bf9c85acf4410d6c36d10d6b836e3c37d343 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000952966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2090-0147 |
| IngestDate | Tue Oct 14 19:02:15 EDT 2025 Fri Jul 25 12:28:36 EDT 2025 Wed Oct 16 18:02:25 EDT 2024 Tue Oct 15 04:50:12 EDT 2024 Sat Nov 29 05:55:09 EST 2025 Tue Nov 18 21:20:42 EST 2025 Sun Jun 02 19:20:55 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-591b6c0e9f104ca5353eb9fdeda79bf9c85acf4410d6c36d10d6b836e3c37d343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2540-121X 0000-0002-5166-3037 0000-0002-7568-0894 0009-0002-6043-1817 0000-0002-4881-7103 |
| OpenAccessLink | https://dx.doi.org/10.1155/2023/5419384 |
| PQID | 2788239837 |
| PQPubID | 237792 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2f12331fb92c44be85287281bfe673ed proquest_journals_2788239837 gale_infotracmisc_A741997150 gale_infotracacademiconefile_A741997150 crossref_citationtrail_10_1155_2023_5419384 crossref_primary_10_1155_2023_5419384 hindawi_primary_10_1155_2023_5419384 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-10 |
| PublicationDateYYYYMMDD | 2023-03-10 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of Electrical and Computer Engineering |
| PublicationYear | 2023 |
| Publisher | Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | 22 23 25 26 S. Nayeri (3) 2018; 29 27 29 30 31 10 11 12 13 14 15 16 17 E. J. Glantz (28) 18 19 M. Imran (24) 1 2 4 5 6 7 8 9 20 21 |
| References_xml | – ident: 9 doi: 10.3390/rs12030458 – ident: 17 doi: 10.1016/j.jss.2018.12.023 – ident: 8 doi: 10.3390/s19163542 – ident: 29 doi: 10.1155/2021/6710074 – ident: 27 doi: 10.1109/BIGCOMP.2016.7425814 – start-page: 791 ident: 24 article-title: Extracting Information Nuggets from Disaster-Related Messages in Social Media – ident: 7 doi: 10.1088/1742-6596/1387/1/012079 – ident: 1 doi: 10.24191/jeesr.v18i1.012 – ident: 14 doi: 10.1016/j.eswa.2019.01.042 – ident: 23 doi: 10.1109/DEST.2009.5276774 – ident: 16 doi: 10.1108/dpm-09-2019-0289 – ident: 11 doi: 10.1186/s12911-021-01691-8 – ident: 21 doi: 10.3390/rs14132977 – ident: 6 doi: 10.1016/j.neucom.2017.04.083 – ident: 4 doi: 10.1007/978-3-319-94180-6_15 – ident: 25 doi: 10.1145/2567948.2577034 – ident: 19 doi: 10.3390/geosciences10050177 – ident: 5 doi: 10.1109/ICAwST.2018.8517195 – ident: 13 doi: 10.1016/j.ijdrr.2018.04.010 – ident: 26 doi: 10.25126/jitecs.201943128 – ident: 15 doi: 10.1016/j.pdisas.2019.100030 – ident: 22 doi: 10.3390/drones6080219 – volume: 29 start-page: 65 year: 2018 ident: 3 article-title: Goal programming-based post-disaster decision making for allocation and scheduling the rescue units in natural disaster with time-window publication-title: International Journal of Industrial Engineering and Production Research – ident: 20 doi: 10.1016/j.tourman.2020.104080 – ident: 30 doi: 10.1002/rob.22075 – ident: 31 doi: 10.3390/drones6070154 – ident: 10 doi: 10.1016/j.comcom.2020.03.012 – start-page: 914 ident: 28 article-title: UAV Use in Disaster Management – ident: 12 doi: 10.1109/ICNC.2012.6234612 – ident: 2 doi: 10.1109/ACCESS.2018.2812835 – ident: 18 doi: 10.1109/GIOTS.2019.8766391 |
| SSID | ssj0000399753 ssib005318130 |
| Score | 2.3165717 |
| Snippet | Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions.... |
| SourceID | doaj proquest gale crossref hindawi |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Activity recognition Algorithms Analysis Artificial neural networks Datasets Detectors Disaster management Earthquakes Evacuations & rescues Floods India Natural disasters Neural networks Object recognition Search and rescue operations Searching Surveys |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIcoBQQCwvyoYgDiprEr_i4La04VC2qAJWT8bONVFK0ScvfZ-w4q10h1AunWMlEsT3j8TfJ5BuEdhvjI60NLwjsbgXVgReGC1OIUJtQheBJ-tD-7VicnDTn5_LzWqmvmBM20gOPE7dXB_CtpApG1pZS4xsGGL8GsBU8F8S76H1LIdeCqeSDYd8FID5lujMWg3yyxyjglYZu7EGJqn_lkB9cxlD4d_uXa077zdE2epyBIl6MHXyK7vluBz2ZijDgvCZ30KM1RsFn6Ed6KY8_-iGlWHVYdw4vxubZlCsEbYCqeMw0ThJnvrc3HrdwZ9vryJ3Q45RMgL-fHp_eEry4urhetsPlz-fo69Hhl4NPRS6iUFgqyqFgsjLcll4GCLysZoQRb2Rw3mkhTZC2YdoGAEWl45ZwF4-mIdwTS4QjlLxAW911518iLJMCSlNpF2ionWys9tRHCCC5L6sZ-jBNq7KZYTwWurhSKdJgTEUlqKyEGXq3kv41Mmv8Q24_amglE_mw0wmwEpWtRN1lJTP0PupXxVULXbI6_3wAA4v8V2oBwAosBtDxDM03JGG12Y3Lu9lC7uj0fDIflZ1Cr2oB4QyRDRGv_seYXqOH8ZFFSi6co61heePfoPv2dmj75du0Hv4A-2QKhQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggAQHCgXEwoJ8KOKAoiaxHccntDwqDlWLykPlZOJXu1LJlk1a_j4zjrN0hYADp402k8iRxzPfOF--IWS7Nh5lbaqMQXbLeBOqzFTSZDKUJhQheBZftH_ek_v79dGRep823LpEqxxjYgzUbmFxj3ynhFoNteqYfHn2PcOuUfh2NbXQuEquoUpCEal7Hy77Vz3C4xiZIRsPwpRlrpCPxeXIhRcCtwHYjuCAaGq-lqWimP8qZN84wWL5x_y34B0z0u7m_z7LHXI7YVE6G5znLrni2y2yOfZ5oGnZb5Fbl0QL75Gvcd-fvvF9ZHG1tGkdnQ2HhyMdCY4BDdOBzBwtDn1nzz2dw5XzrkF5ho5GvgL9crB3cMHo7PQYxtiffLtPPu2-_fj6XZb6NGSWy7zPhCpMZXOvAtR2thFMMG9UcN41UpmgbC0aGwB35a6yrHL4a2pWeWaZdIyzB2SjXbT-IaHKcm58borGBR5Kp2rbeO4RZajK58WEvBjnRdskYo69NE51LGaE0DiLOs3ihDxbWZ8N4h1_sHuFU7yyQcnt-MdieazTCtZlgCTPimBUGQdZCyg2S0D9wVeSeTchz9FBNAYGGJJt0vcN8GAosaVngN3A_QCAT8h0zRIWtF07vZ1c7B-Dno7OpVPc6fQvz3r099OPyU28WRaZiVOy0S_P_RNy3V708275NC6jn_XZHmI priority: 102 providerName: ProQuest |
| Title | Human Detection and Action Recognition for Search and Rescue in Disasters Using YOLOv3 Algorithm |
| URI | https://dx.doi.org/10.1155/2023/5419384 https://www.proquest.com/docview/2788239837 https://doaj.org/article/2f12331fb92c44be85287281bfe673ed |
| Volume | 2023 |
| WOSCitedRecordID | wos000952966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399753 issn: 2090-0147 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib005318130 issn: 2090-0147 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399753 issn: 2090-0147 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399753 issn: 2090-0147 databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399753 issn: 2090-0147 databaseCode: M7S dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399753 issn: 2090-0147 databaseCode: CWDGH dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399753 issn: 2090-0147 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399753 issn: 2090-0147 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2090-0155 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000399753 issn: 2090-0147 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbYAAkO_BggCqXyYYgDikhiO46PHXQaYnRR-aGOi4kdm0UaGWqyceNv59lxqpUJwcVN29fI7XvP73vJ188I7ebKOFmbLCJQ3SJa2ixSGVcRt6myibWG-Bvtnw_5fJ4vl6IIIknt1Vv4UO1ce05eMQpII6dbaCtnjrm1OFheDqN8QMF-AYai2-tPprFwtCvKB8r7H6fbKEZes3-9Mt88cT3xz_rKGu0Lz_49dCcgRjztXXwfXTPNDro77MaAQ3LuoNuXpAUfoK_-6jx-YzrPtWpw2VR42h8uBtIQHANmxT3l2FssTKvPDa7hk3VbOhGFFntWAT4-Ojy6IHh6-u1sVXcn3x-iT_uzj68PorCbQqQpj7uIiURlOjbCQgemS0YYMUrYylQlF8oKnbNSW0BHcZVpklXuUeUkM0QTXhFKHqHt5qwxjxEWmlJlYpWUlaU2rUSuS0ONwwIiM3EyQi-Hn1XqIDXudrw4lb7lYEw6J8jghBF6vrb-0Uts_MVuz3lobeOEsf0LECwy5JlMLZRiklglUj_JnEFLmAI2tybjxFQj9ML5V7r0hSnpMvwLAb6YE8KSU0BYED0Ak0dovGEJaac33t4NEfKPSY-H8JFhdWhlyqGvISIn_Mn_neUpuuWeRp5HOEbb3ercPEM39EVXt6sJur43mxeLib-eAOM7Hk0ch_WDG3_NYCzYF7Aq3r4vjic-d34DxPMFnQ |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAgIOFAqIhQV8aMUBRU1iJ44PCC2UqtUuW1QVVE5u7NjtSiVbNmkr_hS_kbGTLF0h4NQDp0TxJLKT5_mwJ28A1jJlHK1NGlC0bgHLbRqolKuA21jZyFpD_Ub75xEfj7ODA_FxCX50_8K4tMpOJ3pFXUy1WyPfiDFWc1x1lL85_Ra4qlFud7UrodHAYmi-X2DIVr3e2cTvux7HW-_3320HbVWBQDMe1kEiIpXq0AiLkYjOE5pQo4QtTJFzoazQWZJri15CWKSapoU7qoymhmrKC8ooPvcaXGc0425eDXlwGc9Z5457S4DWvyHCjEPh8r8Y73Lvk8QtO9CNhKEHlbEFq-iLB8xNxM1jF5xfTH4zFt4Cbq38b-_uHtxtfW0yaCbHfVgy5SqsdHUsSKvWVuHOJVLGB3Do9zXIpql9llpJ8rIgg-Z0r0u3wnP09kmTrO0l9kylzwyZ4J2TKnf0ExXx-Rjky-5o95ySwckRvpP6-OtD-HQlo34Ey-W0NI-BCM2YMqGK8sIyGxci07lhxnlRIjVh1INXHQ6kbknaXa2QE-mDtSSRDjWyRU0P1ufSpw05yR_k3jpIzWUcpbi_MJ0dyVZDydiiE0Mjq0TsO5klGEzHGNVYk3Jqih68dICUTvFhl3Te_r-BA3MUYnKAvinCHQOMHvQXJFFh6YXmtRbS_-h0vwOzbPVqJX8h-cnfm1_Are39DyM52hkPn8Jt9-DAZ2H2YbmenZlncEOf15Nq9txPYQKHV437n8kFfG0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2V8iE4UCggAgH20IoDsuJ4vbb3gFAgRFSN0qoC1HLZete7baSSlDhtxV_j1zGztkMjBJx64GTLHltr-3lmnvd5BmAj05bK2iQBx-gWxLlLAp2kOkhdpF3XOcv9RPvnYToaZfv7cncFfjT_wpCssvGJ3lEXU0PfyDsRcjWqVcfTjqtlEbv9wZvTbwF1kKKZ1qadRgWRbfv9Aulb-Xqrj896M4oG7z---xDUHQYCE6fhPBCyqxMTWumQlZhccMGtlq6wRZ5K7aTJRG4cZgxhkRieFLTUGU8sNzwteMzxvNfgeoock-SEu-LLZWxnTWruowJmAlVRzCiUpAWL00aHLwR9guAdEWM2lcVLEdI3EliEi5vHRNQvxr8FDh8NB2v_8328B3frHJz1qpfmPqzYyTqsNf0tWO3u1uHOpWKND-DQz3ewvp179dqE5ZOC9arVvUaGhevIAlgl4vYWe7Y0Z5aN8chxmVNZipJ5nQY72BnunHPWOznCezI__voQPl3JVT-C1cl0Yh8DkyaOtQ11Ny9c7KJCZia3saXsSiY27LbgVYMJZeri7dRD5ER5EieEIgSpGkEt2FxYn1ZFS_5g95bgtbChUuN-w3R2pGrPpSKHyQ3vOi0jP8hMIMmOkO04m6TcFi14SeBU5BBxSCav_-vAC6PSYqqHOStCH4lHC9pLlujIzNLujRre_xh0uwG2qv1tqX6h-snfd7-AWwh3NdwabT-F23TewIsz27A6n53ZZ3DDnM_H5ey5f5sZHF417H8CfsKFkQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Detection+and+Action+Recognition+for+Search+and+Rescue+in+Disasters+Using+YOLOv3+Algorithm&rft.jtitle=Journal+of+Electrical+and+Computer+Engineering&rft.au=Valarmathi%2C+B&rft.au=Kshitij%2C+Jain&rft.au=Dimple%2C+Rajpurohit&rft.au=Srinivasa+Gupta%2C+N&rft.date=2023-03-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2090-0147&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F5419384&rft.externalDocID=A741997150 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-0147&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-0147&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-0147&client=summon |