Human Detection and Action Recognition for Search and Rescue in Disasters Using YOLOv3 Algorithm

Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions. Manual video analysis by human observers takes time and is subject to mistakes. The human identification examination of pictures caught by drones...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Electrical and Computer Engineering Ročník 2023; s. 1 - 19
Hlavní autori: Valarmathi, B., Kshitij, Jain, Dimple, Rajpurohit, Srinivasa Gupta, N., Harold Robinson, Y., Arulkumaran, G., Mulu, Tadesse
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Hindawi 10.03.2023
John Wiley & Sons, Inc
Wiley
Predmet:
ISSN:2090-0147, 2090-0155
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions. Manual video analysis by human observers takes time and is subject to mistakes. The human identification examination of pictures caught by drones will give a practical method for saving lives who are being trapped under debris during quakes or in floods and so on. Drone investigation for research and security and search and rescue (SAR) should involve the drone to filter the impacted area using a camera and a model of unmanned area vehicles (UAVs) to identify specific locations where assistance is required. The existing methods (Balmukund et al. 2020) used were faster-region based convolutional neural networks (F-RCNNs), single shot detector (SSD), and region-based fully convolutional network (R-FCN) for the detection of human and recognition of action. Some of the existing methods used 700 images with six classes only, whereas the proposed model uses 1996 images with eight classes. The proposed model is used YOLOv3 (you only look once) algorithm for the detection and recognition of actions. In this study, we provide the fundamental ideas underlying an object detection model. To find the most effective model for human recognition and detection, we trained the YOLOv3 algorithm on the image dataset and evaluated its performance. We compared the outcomes with the existing algorithms like F-RCNN, SSD, and R-FCN. The accuracies of F-RCNN, SSD, R-FCN (existing algorithms), and YOLOv3 (proposed algorithm) are 53%, 73%, 93%, and 94.9%, respectively. Among these algorithms, the YOLOv3 algorithm gives the highest accuracy of 94.9%. The proposed work shows that existing models are inadequate for critical applications like search and rescue, which convinces us to propose a model raised by a pyramidal component extracting SSD in human localization and action recognition. The suggested model is 94.9% accurate when applied to the proposed dataset, which is an important contribution. Likewise, the suggested model succeeds in helping time for expectation in examination with the cutting-edge identification models with existing strategies. The average time taken by our proposed technique to distinguish a picture is 0.40 milisec which is a lot better than the existing method. The proposed model can likewise distinguish video and can be utilized for real-time recognition. The SSD model can likewise use to anticipate messages if present in the picture.
AbstractList Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions. Manual video analysis by human observers takes time and is subject to mistakes. The human identification examination of pictures caught by drones will give a practical method for saving lives who are being trapped under debris during quakes or in floods and so on. Drone investigation for research and security and search and rescue (SAR) should involve the drone to filter the impacted area using a camera and a model of unmanned area vehicles (UAVs) to identify specific locations where assistance is required. The existing methods (Balmukund et al. 2020) used were faster-region based convolutional neural networks (F-RCNNs), single shot detector (SSD), and region-based fully convolutional network (R-FCN) for the detection of human and recognition of action. Some of the existing methods used 700 images with six classes only, whereas the proposed model uses 1996 images with eight classes. The proposed model is used YOLOv3 (you only look once) algorithm for the detection and recognition of actions. In this study, we provide the fundamental ideas underlying an object detection model. To find the most effective model for human recognition and detection, we trained the YOLOv3 algorithm on the image dataset and evaluated its performance. We compared the outcomes with the existing algorithms like F-RCNN, SSD, and R-FCN. The accuracies of F-RCNN, SSD, R-FCN (existing algorithms), and YOLOv3 (proposed algorithm) are 53%, 73%, 93%, and 94.9%, respectively. Among these algorithms, the YOLOv3 algorithm gives the highest accuracy of 94.9%. The proposed work shows that existing models are inadequate for critical applications like search and rescue, which convinces us to propose a model raised by a pyramidal component extracting SSD in human localization and action recognition. The suggested model is 94.9% accurate when applied to the proposed dataset, which is an important contribution. Likewise, the suggested model succeeds in helping time for expectation in examination with the cutting-edge identification models with existing strategies. The average time taken by our proposed technique to distinguish a picture is 0.40 milisec which is a lot better than the existing method. The proposed model can likewise distinguish video and can be utilized for real-time recognition. The SSD model can likewise use to anticipate messages if present in the picture.
Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions. Manual video analysis by human observers takes time and is subject to mistakes. The human identification examination of pictures caught by drones will give a practical method for saving lives who are being trapped under debris during quakes or in floods and so on. Drone investigation for research and security and search and rescue (SAR) should involve the drone to filter the impacted area using a camera and a model of unmanned area vehicles (UAVs) to identify specific locations where assistance is required. The existing methods (Balmukund et al. 2020) used were faster-region based convolutional neural networks (F-RCNNs), single shot detector (SSD), and region-based fully convolutional network (R-FCN) for the detection of human and recognition of action. Some of the existing methods used 700 images with six classes only, whereas the proposed model uses 1996 images with eight classes. The proposed model is used YOLOv3 (you only look once) algorithm for the detection and recognition of actions. In this study, we provide the fundamental ideas underlying an object detection model. To find the most effective model for human recognition and detection, we trained the YOLOv3 algorithm on the image dataset and evaluated its performance. We compared the outcomes with the existing algorithms like F-RCNN, SSD, and R-FCN. The accuracies of F-RCNN, SSD, R-FCN (existing algorithms), and YOLOv3 (proposed algorithm) are 53%, 73%, 93%, and 94.9%, respectively. Among these algorithms, the YOLOv3 algorithm gives the highest accuracy of 94.9%. The proposed work shows that existing models are inadequate for critical applications like search and rescue, which convinces us to propose a model raised by a pyramidal component extracting SSD in human localization and action recognition. The suggested model is 94.9% accurate when applied to the proposed dataset, which is an important contribution. Likewise, the suggested model succeeds in helping time for expectation in examination with the cutting-edge identification models with existing strategies. The average time taken by our proposed technique to distinguish a picture is 0.40milisec which is a lot better than the existing method. The proposed model can likewise distinguish video and can be utilized for real-time recognition. The SSD model can likewise use to anticipate messages if present in the picture.
Audience Academic
Author Mulu, Tadesse
Harold Robinson, Y.
Dimple, Rajpurohit
Kshitij, Jain
Srinivasa Gupta, N.
Arulkumaran, G.
Valarmathi, B.
Author_xml – sequence: 1
  givenname: B.
  orcidid: 0000-0002-2540-121X
  surname: Valarmathi
  fullname: Valarmathi, B.
  organization: Department of Software and Systems EngineeringSchool of Information Technology and EngineeringVellore Institute of TechnologyVelloreTamil NaduIndiavit.ac.in
– sequence: 2
  givenname: Jain
  surname: Kshitij
  fullname: Kshitij, Jain
  organization: FSN E-Commerce (Nykaa)MumbaiMaharashtraIndia
– sequence: 3
  givenname: Rajpurohit
  surname: Dimple
  fullname: Dimple, Rajpurohit
  organization: Bank of AmericaGurugramHaryanaIndia
– sequence: 4
  givenname: N.
  orcidid: 0000-0002-7568-0894
  surname: Srinivasa Gupta
  fullname: Srinivasa Gupta, N.
  organization: Department of Manufacturing EngineeringSchool of Mechanical EngineeringVellore Institute of TechnologyVelloreTamil NaduIndiavit.ac.in
– sequence: 5
  givenname: Y.
  orcidid: 0000-0002-4881-7103
  surname: Harold Robinson
  fullname: Harold Robinson, Y.
  organization: Department of Computer Science and EngineeringFrancis Xavier Engineering CollegeTirunelveliIndiafrancisxavier.ac.in
– sequence: 6
  givenname: G.
  orcidid: 0000-0002-5166-3037
  surname: Arulkumaran
  fullname: Arulkumaran, G.
  organization: School of Computing and Information TechnologyREVA UniversityBengaluruIndiareva.edu.in
– sequence: 7
  givenname: Tadesse
  orcidid: 0009-0002-6043-1817
  surname: Mulu
  fullname: Mulu, Tadesse
  organization: Department of Information SystemsCollege of InformaticsWollo UniversityDessieEthiopiawu.edu.et
BookMark eNp9kUtvEzEUhUeoSJTSHT9gJJaQ1s-xvYzKo5UiRSp0wcp47OuJo4xd7AmIf4-TKSAQYC_u1fV3jq58njYnMUVomucYXWDM-SVBhF5yhhWV7FFzSpBCC1QfTn72TDxpzkvZonqoUoLT0-bT9X40sX0NE9gppNia6Nrl3N6CTUMMx96n3L4Hk-3mSNxCsXtoQ1WGYsoEubR3JcSh_bherb_QdrkbUg7TZnzWPPZmV-D8oZ41d2_ffLi6XqzW726ulquFZQJNC65w31kEymPErOGUU-iVd-CMUL1XVnJjPWMYuc7Szh1qL2kH1FLhKKNnzc3s65LZ6vscRpO_6WSCPg5SHrTJU7A70MRjQin2vSKWsR4kJ1IQiXsPnaDgqteL2es-p897KJPepn2OdX1NhJSEKknFL2ow1TREn6Zs7BiK1UtRc1ACc1Spi79Q9ToYg60R-lDnvwnILLA5lZLBaxsmcwihCsNOY6QPeetD3voh7yp69Yfoxw_8A38545sQnfka_k9_BxGKtqs
CitedBy_id crossref_primary_10_1016_j_robot_2024_104774
crossref_primary_10_1109_ACCESS_2025_3542435
crossref_primary_10_1007_s00521_025_11446_5
crossref_primary_10_1109_ACCESS_2024_3479988
crossref_primary_10_1016_j_vrih_2024_08_005
Cites_doi 10.3390/rs12030458
10.1016/j.jss.2018.12.023
10.3390/s19163542
10.1155/2021/6710074
10.1109/BIGCOMP.2016.7425814
10.1088/1742-6596/1387/1/012079
10.24191/jeesr.v18i1.012
10.1016/j.eswa.2019.01.042
10.1109/DEST.2009.5276774
10.1108/dpm-09-2019-0289
10.1186/s12911-021-01691-8
10.3390/rs14132977
10.1016/j.neucom.2017.04.083
10.1007/978-3-319-94180-6_15
10.1145/2567948.2577034
10.3390/geosciences10050177
10.1109/ICAwST.2018.8517195
10.1016/j.ijdrr.2018.04.010
10.25126/jitecs.201943128
10.1016/j.pdisas.2019.100030
10.3390/drones6080219
10.1016/j.tourman.2020.104080
10.1002/rob.22075
10.3390/drones6070154
10.1016/j.comcom.2020.03.012
10.1109/ICNC.2012.6234612
10.1109/ACCESS.2018.2812835
10.1109/GIOTS.2019.8766391
ContentType Journal Article
Copyright Copyright © 2023 B. Valarmathi et al.
COPYRIGHT 2023 John Wiley & Sons, Inc.
Copyright © 2023 B. Valarmathi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2023 B. Valarmathi et al.
– notice: COPYRIGHT 2023 John Wiley & Sons, Inc.
– notice: Copyright © 2023 B. Valarmathi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1155/2023/5419384
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2090-0155
Editor Al-Nima, Raid
Editor_xml – sequence: 1
  givenname: Raid
  surname: Al-Nima
  fullname: Al-Nima, Raid
EndPage 19
ExternalDocumentID oai_doaj_org_article_2f12331fb92c44be85287281bfe673ed
A741997150
10_1155_2023_5419384
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID .4S
.DC
188
3V.
4.4
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABJCF
ABUWG
ACIWK
ACM
ADBBV
AFKRA
AFPKN
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CWDGH
E3Z
EBS
EDO
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IEA
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MK~
ML~
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RHU
RHW
RHX
TR2
TUS
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
PHGZM
PHGZT
PQGLB
7SC
7SP
8FD
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c470t-591b6c0e9f104ca5353eb9fdeda79bf9c85acf4410d6c36d10d6b836e3c37d343
IEDL.DBID RHX
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000952966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2090-0147
IngestDate Tue Oct 14 19:02:15 EDT 2025
Fri Jul 25 12:28:36 EDT 2025
Wed Oct 16 18:02:25 EDT 2024
Tue Oct 15 04:50:12 EDT 2024
Sat Nov 29 05:55:09 EST 2025
Tue Nov 18 21:20:42 EST 2025
Sun Jun 02 19:20:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-591b6c0e9f104ca5353eb9fdeda79bf9c85acf4410d6c36d10d6b836e3c37d343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2540-121X
0000-0002-5166-3037
0000-0002-7568-0894
0009-0002-6043-1817
0000-0002-4881-7103
OpenAccessLink https://dx.doi.org/10.1155/2023/5419384
PQID 2788239837
PQPubID 237792
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_2f12331fb92c44be85287281bfe673ed
proquest_journals_2788239837
gale_infotracmisc_A741997150
gale_infotracacademiconefile_A741997150
crossref_citationtrail_10_1155_2023_5419384
crossref_primary_10_1155_2023_5419384
hindawi_primary_10_1155_2023_5419384
PublicationCentury 2000
PublicationDate 2023-03-10
PublicationDateYYYYMMDD 2023-03-10
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-10
  day: 10
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of Electrical and Computer Engineering
PublicationYear 2023
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
23
25
26
S. Nayeri (3) 2018; 29
27
29
30
31
10
11
12
13
14
15
16
17
E. J. Glantz (28)
18
19
M. Imran (24)
1
2
4
5
6
7
8
9
20
21
References_xml – ident: 9
  doi: 10.3390/rs12030458
– ident: 17
  doi: 10.1016/j.jss.2018.12.023
– ident: 8
  doi: 10.3390/s19163542
– ident: 29
  doi: 10.1155/2021/6710074
– ident: 27
  doi: 10.1109/BIGCOMP.2016.7425814
– start-page: 791
  ident: 24
  article-title: Extracting Information Nuggets from Disaster-Related Messages in Social Media
– ident: 7
  doi: 10.1088/1742-6596/1387/1/012079
– ident: 1
  doi: 10.24191/jeesr.v18i1.012
– ident: 14
  doi: 10.1016/j.eswa.2019.01.042
– ident: 23
  doi: 10.1109/DEST.2009.5276774
– ident: 16
  doi: 10.1108/dpm-09-2019-0289
– ident: 11
  doi: 10.1186/s12911-021-01691-8
– ident: 21
  doi: 10.3390/rs14132977
– ident: 6
  doi: 10.1016/j.neucom.2017.04.083
– ident: 4
  doi: 10.1007/978-3-319-94180-6_15
– ident: 25
  doi: 10.1145/2567948.2577034
– ident: 19
  doi: 10.3390/geosciences10050177
– ident: 5
  doi: 10.1109/ICAwST.2018.8517195
– ident: 13
  doi: 10.1016/j.ijdrr.2018.04.010
– ident: 26
  doi: 10.25126/jitecs.201943128
– ident: 15
  doi: 10.1016/j.pdisas.2019.100030
– ident: 22
  doi: 10.3390/drones6080219
– volume: 29
  start-page: 65
  year: 2018
  ident: 3
  article-title: Goal programming-based post-disaster decision making for allocation and scheduling the rescue units in natural disaster with time-window
  publication-title: International Journal of Industrial Engineering and Production Research
– ident: 20
  doi: 10.1016/j.tourman.2020.104080
– ident: 30
  doi: 10.1002/rob.22075
– ident: 31
  doi: 10.3390/drones6070154
– ident: 10
  doi: 10.1016/j.comcom.2020.03.012
– start-page: 914
  ident: 28
  article-title: UAV Use in Disaster Management
– ident: 12
  doi: 10.1109/ICNC.2012.6234612
– ident: 2
  doi: 10.1109/ACCESS.2018.2812835
– ident: 18
  doi: 10.1109/GIOTS.2019.8766391
SSID ssj0000399753
ssib005318130
Score 2.3165717
Snippet Drone examination has been overall quickly embraced by NDMM (natural disaster mitigation and management) division to survey the state of impacted regions....
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Activity recognition
Algorithms
Analysis
Artificial neural networks
Datasets
Detectors
Disaster management
Earthquakes
Evacuations & rescues
Floods
India
Natural disasters
Neural networks
Object recognition
Search and rescue operations
Searching
Surveys
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIcoBQQCwvyoYgDiprEr_i4La04VC2qAJWT8bONVFK0ScvfZ-w4q10h1AunWMlEsT3j8TfJ5BuEdhvjI60NLwjsbgXVgReGC1OIUJtQheBJ-tD-7VicnDTn5_LzWqmvmBM20gOPE7dXB_CtpApG1pZS4xsGGL8GsBU8F8S76H1LIdeCqeSDYd8FID5lujMWg3yyxyjglYZu7EGJqn_lkB9cxlD4d_uXa077zdE2epyBIl6MHXyK7vluBz2ZijDgvCZ30KM1RsFn6Ed6KY8_-iGlWHVYdw4vxubZlCsEbYCqeMw0ThJnvrc3HrdwZ9vryJ3Q45RMgL-fHp_eEry4urhetsPlz-fo69Hhl4NPRS6iUFgqyqFgsjLcll4GCLysZoQRb2Rw3mkhTZC2YdoGAEWl45ZwF4-mIdwTS4QjlLxAW911518iLJMCSlNpF2ionWys9tRHCCC5L6sZ-jBNq7KZYTwWurhSKdJgTEUlqKyEGXq3kv41Mmv8Q24_amglE_mw0wmwEpWtRN1lJTP0PupXxVULXbI6_3wAA4v8V2oBwAosBtDxDM03JGG12Y3Lu9lC7uj0fDIflZ1Cr2oB4QyRDRGv_seYXqOH8ZFFSi6co61heePfoPv2dmj75du0Hv4A-2QKhQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggAQHCgXEwoJ8KOKAoiaxHccntDwqDlWLykPlZOJXu1LJlk1a_j4zjrN0hYADp402k8iRxzPfOF--IWS7Nh5lbaqMQXbLeBOqzFTSZDKUJhQheBZftH_ek_v79dGRep823LpEqxxjYgzUbmFxj3ynhFoNteqYfHn2PcOuUfh2NbXQuEquoUpCEal7Hy77Vz3C4xiZIRsPwpRlrpCPxeXIhRcCtwHYjuCAaGq-lqWimP8qZN84wWL5x_y34B0z0u7m_z7LHXI7YVE6G5znLrni2y2yOfZ5oGnZb5Fbl0QL75Gvcd-fvvF9ZHG1tGkdnQ2HhyMdCY4BDdOBzBwtDn1nzz2dw5XzrkF5ho5GvgL9crB3cMHo7PQYxtiffLtPPu2-_fj6XZb6NGSWy7zPhCpMZXOvAtR2thFMMG9UcN41UpmgbC0aGwB35a6yrHL4a2pWeWaZdIyzB2SjXbT-IaHKcm58borGBR5Kp2rbeO4RZajK58WEvBjnRdskYo69NE51LGaE0DiLOs3ihDxbWZ8N4h1_sHuFU7yyQcnt-MdieazTCtZlgCTPimBUGQdZCyg2S0D9wVeSeTchz9FBNAYGGJJt0vcN8GAosaVngN3A_QCAT8h0zRIWtF07vZ1c7B-Dno7OpVPc6fQvz3r099OPyU28WRaZiVOy0S_P_RNy3V708275NC6jn_XZHmI
  priority: 102
  providerName: ProQuest
Title Human Detection and Action Recognition for Search and Rescue in Disasters Using YOLOv3 Algorithm
URI https://dx.doi.org/10.1155/2023/5419384
https://www.proquest.com/docview/2788239837
https://doaj.org/article/2f12331fb92c44be85287281bfe673ed
Volume 2023
WOSCitedRecordID wos000952966500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399753
  issn: 2090-0147
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib005318130
  issn: 2090-0147
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399753
  issn: 2090-0147
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399753
  issn: 2090-0147
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399753
  issn: 2090-0147
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399753
  issn: 2090-0147
  databaseCode: CWDGH
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399753
  issn: 2090-0147
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399753
  issn: 2090-0147
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2090-0155
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000399753
  issn: 2090-0147
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbYAAkO_BggCqXyYYgDikhiO46PHXQaYnRR-aGOi4kdm0UaGWqyceNv59lxqpUJwcVN29fI7XvP73vJ188I7ebKOFmbLCJQ3SJa2ixSGVcRt6myibWG-Bvtnw_5fJ4vl6IIIknt1Vv4UO1ce05eMQpII6dbaCtnjrm1OFheDqN8QMF-AYai2-tPprFwtCvKB8r7H6fbKEZes3-9Mt88cT3xz_rKGu0Lz_49dCcgRjztXXwfXTPNDro77MaAQ3LuoNuXpAUfoK_-6jx-YzrPtWpw2VR42h8uBtIQHANmxT3l2FssTKvPDa7hk3VbOhGFFntWAT4-Ojy6IHh6-u1sVXcn3x-iT_uzj68PorCbQqQpj7uIiURlOjbCQgemS0YYMUrYylQlF8oKnbNSW0BHcZVpklXuUeUkM0QTXhFKHqHt5qwxjxEWmlJlYpWUlaU2rUSuS0ONwwIiM3EyQi-Hn1XqIDXudrw4lb7lYEw6J8jghBF6vrb-0Uts_MVuz3lobeOEsf0LECwy5JlMLZRiklglUj_JnEFLmAI2tybjxFQj9ML5V7r0hSnpMvwLAb6YE8KSU0BYED0Ak0dovGEJaac33t4NEfKPSY-H8JFhdWhlyqGvISIn_Mn_neUpuuWeRp5HOEbb3ercPEM39EVXt6sJur43mxeLib-eAOM7Hk0ch_WDG3_NYCzYF7Aq3r4vjic-d34DxPMFnQ
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAgIOFAqIhQV8aMUBRU1iJ44PCC2UqtUuW1QVVE5u7NjtSiVbNmkr_hS_kbGTLF0h4NQDp0TxJLKT5_mwJ28A1jJlHK1NGlC0bgHLbRqolKuA21jZyFpD_Ub75xEfj7ODA_FxCX50_8K4tMpOJ3pFXUy1WyPfiDFWc1x1lL85_Ra4qlFud7UrodHAYmi-X2DIVr3e2cTvux7HW-_3320HbVWBQDMe1kEiIpXq0AiLkYjOE5pQo4QtTJFzoazQWZJri15CWKSapoU7qoymhmrKC8ooPvcaXGc0425eDXlwGc9Z5457S4DWvyHCjEPh8r8Y73Lvk8QtO9CNhKEHlbEFq-iLB8xNxM1jF5xfTH4zFt4Cbq38b-_uHtxtfW0yaCbHfVgy5SqsdHUsSKvWVuHOJVLGB3Do9zXIpql9llpJ8rIgg-Z0r0u3wnP09kmTrO0l9kylzwyZ4J2TKnf0ExXx-Rjky-5o95ySwckRvpP6-OtD-HQlo34Ey-W0NI-BCM2YMqGK8sIyGxci07lhxnlRIjVh1INXHQ6kbknaXa2QE-mDtSSRDjWyRU0P1ufSpw05yR_k3jpIzWUcpbi_MJ0dyVZDydiiE0Mjq0TsO5klGEzHGNVYk3Jqih68dICUTvFhl3Te_r-BA3MUYnKAvinCHQOMHvQXJFFh6YXmtRbS_-h0vwOzbPVqJX8h-cnfm1_Are39DyM52hkPn8Jt9-DAZ2H2YbmenZlncEOf15Nq9txPYQKHV437n8kFfG0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2V8iE4UCggAgH20IoDsuJ4vbb3gFAgRFSN0qoC1HLZete7baSSlDhtxV_j1zGztkMjBJx64GTLHltr-3lmnvd5BmAj05bK2iQBx-gWxLlLAp2kOkhdpF3XOcv9RPvnYToaZfv7cncFfjT_wpCssvGJ3lEXU0PfyDsRcjWqVcfTjqtlEbv9wZvTbwF1kKKZ1qadRgWRbfv9Aulb-Xqrj896M4oG7z---xDUHQYCE6fhPBCyqxMTWumQlZhccMGtlq6wRZ5K7aTJRG4cZgxhkRieFLTUGU8sNzwteMzxvNfgeoock-SEu-LLZWxnTWruowJmAlVRzCiUpAWL00aHLwR9guAdEWM2lcVLEdI3EliEi5vHRNQvxr8FDh8NB2v_8328B3frHJz1qpfmPqzYyTqsNf0tWO3u1uHOpWKND-DQz3ewvp179dqE5ZOC9arVvUaGhevIAlgl4vYWe7Y0Z5aN8chxmVNZipJ5nQY72BnunHPWOznCezI__voQPl3JVT-C1cl0Yh8DkyaOtQ11Ny9c7KJCZia3saXsSiY27LbgVYMJZeri7dRD5ER5EieEIgSpGkEt2FxYn1ZFS_5g95bgtbChUuN-w3R2pGrPpSKHyQ3vOi0jP8hMIMmOkO04m6TcFi14SeBU5BBxSCav_-vAC6PSYqqHOStCH4lHC9pLlujIzNLujRre_xh0uwG2qv1tqX6h-snfd7-AWwh3NdwabT-F23TewIsz27A6n53ZZ3DDnM_H5ey5f5sZHF417H8CfsKFkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Detection+and+Action+Recognition+for+Search+and+Rescue+in+Disasters+Using+YOLOv3+Algorithm&rft.jtitle=Journal+of+Electrical+and+Computer+Engineering&rft.au=Valarmathi%2C+B&rft.au=Kshitij%2C+Jain&rft.au=Dimple%2C+Rajpurohit&rft.au=Srinivasa+Gupta%2C+N&rft.date=2023-03-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2090-0147&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F5419384&rft.externalDocID=A741997150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-0147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-0147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-0147&client=summon