Prediction for the Inventory Management Chaotic Complexity System Based on the Deep Neural Network Algorithm

Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless, the complex inventory data are often chaotic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) Jg. 2023; S. 1 - 11
Hauptverfasser: Lei, Tengfei, Li, Rita Yi Man, Jotikastira, Nuttapong, Fu, Haiyan, Wang, Cong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Hindawi 12.05.2023
John Wiley & Sons, Inc
Wiley
Schlagworte:
ISSN:1076-2787, 1099-0526
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless, the complex inventory data are often chaotic and nonlinear; high data complexity raises the accuracy prediction difficulty. This study simulated inventory records by using the dynamics inventory management system. Four deep neural network models trained the data: short-term memory neural network (LSTM), convolutional neural network-long short-term memory (CNN-LSTM), bidirectional long short-term memory neural network (Bi-LSTM), and deep long-short-term memory neural network (DLSTM). Evaluating the models’ performance based on RMSE, MSE, and MAE, bi-LSTM achieved the highest prediction accuracy with the least square error of 0.14%. The results concluded that the complexity of the model was not directly related to the prediction performance. By contrasting several methods of chaotic nonlinear inventory data and neural network dynamics prediction, this study contributed to the academia. The research results provided useful advice for companies’ planned production and inventory officers when they plan for product inventory and minimize the risk of mishaps brought on by excess inventories in warehouses.
AbstractList Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless, the complex inventory data are often chaotic and nonlinear; high data complexity raises the accuracy prediction difficulty. This study simulated inventory records by using the dynamics inventory management system. Four deep neural network models trained the data: short-term memory neural network (LSTM), convolutional neural network-long short-term memory (CNN-LSTM), bidirectional long short-term memory neural network (Bi-LSTM), and deep long-short-term memory neural network (DLSTM). Evaluating the models’ performance based on RMSE, MSE, and MAE, bi-LSTM achieved the highest prediction accuracy with the least square error of 0.14%. The results concluded that the complexity of the model was not directly related to the prediction performance. By contrasting several methods of chaotic nonlinear inventory data and neural network dynamics prediction, this study contributed to the academia. The research results provided useful advice for companies’ planned production and inventory officers when they plan for product inventory and minimize the risk of mishaps brought on by excess inventories in warehouses.
Audience Academic
Author Wang, Cong
Jotikastira, Nuttapong
Fu, Haiyan
Li, Rita Yi Man
Lei, Tengfei
Author_xml – sequence: 1
  givenname: Tengfei
  orcidid: 0000-0001-5243-1046
  surname: Lei
  fullname: Lei, Tengfei
  organization: Rattanakosin International College of Creative EntrepreneurshipRajamangala University of Technology RattanakosinNakhon PathomThailandrmutr.ac.th
– sequence: 2
  givenname: Rita Yi Man
  surname: Li
  fullname: Li, Rita Yi Man
  organization: Sustainable Real Estate Research CenterDepartment of Economics and FinanceHong Kong Shue Yan UniversityNorth PointHong Kong
– sequence: 3
  givenname: Nuttapong
  surname: Jotikastira
  fullname: Jotikastira, Nuttapong
  organization: Rattanakosin International College of Creative EntrepreneurshipRajamangala University of Technology RattanakosinNakhon PathomThailandrmutr.ac.th
– sequence: 4
  givenname: Haiyan
  orcidid: 0000-0003-1739-6390
  surname: Fu
  fullname: Fu, Haiyan
  organization: Collaborative Innovation Center of Memristive Computing ApplicationQilu Institute of TechnologyShandongJinan 250200Chinaqlit.edu.cn
– sequence: 5
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: Collaborative Innovation Center of Memristive Computing ApplicationQilu Institute of TechnologyShandongJinan 250200Chinaqlit.edu.cn
BookMark eNp9UctuFDEQHKEgkQRufIAljjCJH-PXcdnwWCk8JOBsOXZ718vMePF4Cfv3eNgIBALkQ7tbVdUu11lzMqYRmuYxwReEcH5JMWWXmgmtlLrXnBKsdYs5FSfzXYqWSiUfNGfTtMUYa8HkadO_z-CjKzGNKKSMygbQavwKY0n5gN7Y0a5hqB1abmwq0aFlGnY9fIvlgD4cpgIDem4n8KjyZ-4VwA69hX22fS3lNuXPaNGvU45lMzxs7gfbT_Dorp43n16--Lh83V6_e7VaLq5b10lcWt5JGrwON8GHIDypdrBiGDgETWSQmmgtuLjhXOqglSXaMx88I1ZhcIqy82Z11PXJbs0ux8Hmg0k2mh-DlNfG5mqmB9O5KqWFC8G6DrywuJOS1yo6YPWTqtaTo9Yupy97mIrZpn0e6_MNI7hTXFBNf6HWtorGMaSSrRvi5MxCMdqpGs-MuvgLqh4PQ3Q1yxDr_DfCsyPB5TRNGcJPMwSbOXIzR27uIq9w-gfcxWLnbOue2P-L9PRI2sTR29v4_xXfAXd0u3I
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3538664
crossref_primary_10_1016_j_chaos_2024_114828
crossref_primary_10_1016_j_heliyon_2024_e34703
crossref_primary_10_3389_fpubh_2025_1393763
crossref_primary_10_7717_peerj_cs_1920
crossref_primary_10_1109_ACCESS_2024_3399548
crossref_primary_10_1057_s41599_025_04864_2
crossref_primary_10_3390_buildings14051243
crossref_primary_10_3390_fractalfract8050258
crossref_primary_10_3390_info15120785
crossref_primary_10_1016_j_engappai_2024_109946
Cites_doi 10.1016/j.ijforecast.2018.09.002
10.1002/smj.4250151011
10.1049/iet-its.2017.0313
10.1016/j.eswa.2018.12.031
10.1007/s11071-021-07192-7
10.3390/pr8060725
10.1007/bf01414032
10.2139/ssrn.3229105
10.1142/S0218127422500353
10.1109/access.2019.2961260
10.1016/j.ijepes.2021.107023
10.1007/s00500-020-05210-1
10.1109/TITS.2014.2345663
10.1609/aaai.v31i1.10735
10.2139/ssrn.3086237
10.1109/tvt.2016.2585575
10.1016/j.future.2018.10.052
10.1109/tnnls.2016.2574840
10.1155/2021/5516703
10.1002/(sici)1099-1468(199601)17:1<27::aid-mde725>3.0.co;2-b
10.1016/j.neucom.2018.09.082
10.1007/978-3-319-13132-0
10.1016/j.ijpe.2011.04.017
10.1016/j.procs.2013.05.134
10.1016/j.procir.2019.02.042
10.3390/math9192456
10.1142/s0218127415501655
10.1016/j.jksuci.2022.01.017
10.1162/neco.1997.9.8.1735
10.1016/j.chaos.2019.109521
10.3390/math9243326
10.1016/s0363-8111(96)90001-6
10.1007/s11071-020-05601-x
10.1109/jsen.2019.2933823
ContentType Journal Article
Copyright Copyright © 2023 Tengfei Lei et al.
COPYRIGHT 2023 John Wiley & Sons, Inc.
Copyright © 2023 Tengfei Lei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2023 Tengfei Lei et al.
– notice: COPYRIGHT 2023 John Wiley & Sons, Inc.
– notice: Copyright © 2023 Tengfei Lei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7X5
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K6~
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2023/9369888
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest Entrepreneurship
Advanced Technologies & Aerospace Collection
Business Premium Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Li, Chun-Biao
Editor_xml – sequence: 1
  givenname: Chun-Biao
  surname: Li
  fullname: Li, Chun-Biao
EndPage 11
ExternalDocumentID oai_doaj_org_article_4c96596cffac4ed6a04775d6a64e3009
A832481552
10_1155_2023_9369888
GrantInformation_xml – fundername: Key Technology Research and Development Program of Shandong
  grantid: 2019GGX104092
– fundername: Science and Technology Plan Projects of Universities of Shandong Province
  grantid: J18KA381
– fundername: Major Scientific and Technological Innovation Project of Shandong Province
  grantid: 2019JZZY010111
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2017PA008
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
AMVHM
CITATION
H13
ICD
O8X
PHGZM
PHGZT
PQGLB
7X5
7XB
8FK
BEZIV
JQ2
K6~
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c470t-5472fd9fbfdff6d19880830e5ef917f79199656b5579f98a19d3dfd31a80ec823
IEDL.DBID RHX
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001158189900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-2787
IngestDate Tue Oct 14 18:59:13 EDT 2025
Fri Jul 25 21:01:12 EDT 2025
Sat Nov 29 13:48:05 EST 2025
Sat Nov 29 10:31:13 EST 2025
Tue Nov 18 21:59:25 EST 2025
Sat Nov 29 03:24:46 EST 2025
Sun Jun 02 19:24:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-5472fd9fbfdff6d19880830e5ef917f79199656b5579f98a19d3dfd31a80ec823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5243-1046
0000-0003-1739-6390
OpenAccessLink https://dx.doi.org/10.1155/2023/9369888
PQID 3104856292
PQPubID 2029978
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_4c96596cffac4ed6a04775d6a64e3009
proquest_journals_3104856292
gale_infotracmisc_A832481552
gale_infotracacademiconefile_A832481552
crossref_primary_10_1155_2023_9369888
crossref_citationtrail_10_1155_2023_9369888
hindawi_primary_10_1155_2023_9369888
PublicationCentury 2000
PublicationDate 2023-05-12
PublicationDateYYYYMMDD 2023-05-12
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-12
  day: 12
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2023
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 24
25
27
28
Y. Chen (26)
E. C. Joseph (6) 1994
S. Du (22)
R. Y. M. Li (42) 2022
30
31
10
32
11
33
34
13
35
14
36
A. T. Azar (1) 2015
15
37
R. Y. M. Li (41) 2022; 134
16
A. S. Mihaita (23)
38
17
39
18
19
I. U. Haq (29) 2021; 9
2
3
4
5
7
8
9
40
T. Shimmura (12) 2013; 226
20
21
References_xml – ident: 10
  doi: 10.1016/j.ijforecast.2018.09.002
– volume: 9
  year: 2021
  ident: 29
  article-title: Sequential learning-based energy consumption prediction model for residential and commercial sectors
  publication-title: Mathematics
– ident: 3
  doi: 10.1002/smj.4250151011
– ident: 21
  doi: 10.1049/iet-its.2017.0313
– ident: 24
  doi: 10.1016/j.eswa.2018.12.031
– ident: 31
  doi: 10.1007/s11071-021-07192-7
– ident: 28
  doi: 10.3390/pr8060725
– ident: 4
  doi: 10.1007/bf01414032
– ident: 14
  doi: 10.2139/ssrn.3229105
– ident: 33
  doi: 10.1142/S0218127422500353
– volume: 226
  start-page: 679
  issue: 3
  year: 2013
  ident: 12
  article-title: Selecting rows and columns for training support vector regression models with large retail datasets
  publication-title: European Journal of Operational Research
– ident: 37
  doi: 10.1109/access.2019.2961260
– ident: 38
  doi: 10.1016/j.ijepes.2021.107023
– ident: 18
  doi: 10.1007/s00500-020-05210-1
– start-page: 1
  ident: 22
  article-title: Traffic flow forecasting based on hybrid deep learning framework
– start-page: 1010
  ident: 26
  article-title: Traffic flow prediction with big data: a deep learning based time series model
– volume-title: Current State of Art in Artificial Intelligence and Ubiquitous Cities
  year: 2022
  ident: 42
– ident: 20
  doi: 10.1109/TITS.2014.2345663
– ident: 19
  doi: 10.1609/aaai.v31i1.10735
– volume: 134
  start-page: 2247
  issue: 3
  year: 2022
  ident: 41
  article-title: Predicting carpark prices using real estate indices and AutoML
  publication-title: CMES-Computer Modeling in Engineering & Science
– ident: 9
  doi: 10.2139/ssrn.3086237
– ident: 16
  doi: 10.1109/tvt.2016.2585575
– ident: 17
  doi: 10.1016/j.future.2018.10.052
– ident: 27
  doi: 10.1109/tnnls.2016.2574840
– ident: 36
  doi: 10.1155/2021/5516703
– ident: 2
  doi: 10.1002/(sici)1099-1468(199601)17:1<27::aid-mde725>3.0.co;2-b
– ident: 40
  doi: 10.1016/j.neucom.2018.09.082
– start-page: 1
  year: 1994
  ident: 6
  article-title: Chaos & postmodernism forecasting & futuring insights
  publication-title: Futurics,Summer-Fall
– volume-title: Chaos Modeling and Control Systems Design
  year: 2015
  ident: 1
  doi: 10.1007/978-3-319-13132-0
– ident: 15
  doi: 10.1016/j.ijpe.2011.04.017
– ident: 11
  doi: 10.1016/j.procs.2013.05.134
– ident: 13
  doi: 10.1016/j.procir.2019.02.042
– ident: 30
  doi: 10.3390/math9192456
– ident: 7
  doi: 10.1142/s0218127415501655
– ident: 34
  doi: 10.1016/j.jksuci.2022.01.017
– ident: 35
  doi: 10.1162/neco.1997.9.8.1735
– ident: 8
  doi: 10.1016/j.chaos.2019.109521
– ident: 39
  doi: 10.3390/math9243326
– ident: 5
  doi: 10.1016/s0363-8111(96)90001-6
– ident: 32
  doi: 10.1007/s11071-020-05601-x
– start-page: 1683
  ident: 23
  article-title: Motorway traffic flow prediction using advanced deep learning
– ident: 25
  doi: 10.1109/jsen.2019.2933823
SSID ssj0009637
Score 2.3785632
Snippet Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It...
Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises' production efficiency. It...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Chaos theory
Complexity
Cost control
Datasets
Deep learning
Energy consumption
Error analysis
Inventory
Inventory control
Inventory management
Machine learning
Mathematical functions
Neural networks
Nonlinear dynamics
Performance evaluation
Performance prediction
Regularization methods
Research methodology
Root-mean-square errors
Safety management
Strategic management
Supply chains
Support vector machines
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFH9IUdCD2Kq4upU5VFQkNB_zedxWi4IuPSj0NmTnw11Yd0s2Wvrf971ksm0R6cVTIHmTzMz7Jm9-D-BAcod-s9QZhgoi47XJM6NJ8QqpgzbciR4y_6uaTvXZmTm90eqLasJ6eOB-4w65I8g76WKsHQ9e1jlXSuBV8lClo3u5MkMyNcDtykoNZe5CUIZfHVLrOt11WLl2QB1O_9YaP5hTHnyx-Msud87m5Ak8TlEim_Sz24V7YbUHj75tIVY3e7CbtHLD3iXo6PdPYXna0I8X2myG0ShDevalKytfN5fsutSFHc_rNb6HkTkgSMz2kvXY5ewI3ZpnOJ7GfgzhnBF-B05m2heMs8ny57pZtPNfz-DHyafvx5-z1E8hc1zlbSa4KqM3cRZ9jNIXuBsYgOVBhIhJW1SGKpKFnAmhTDS6LoyvfPRVUes8OF1Wz2FntV6FF8AK51VEV5_HMvAofB2RtzrEmZEmIo9G8GHYZOsS2Dj1vFjaLukQwhJLbGLJCN5sqc97kI1_0B0Rv7Y0BI3d3UCBsUlg7F0CM4K3xG1LCoxTcnU6h4ALIygsO0EbRwg2ohzB-BYlKp679fggycsdkx4PwmSTfdhYDKq5xtDTlC__x5pewUP6JFU1FOUYdtrmd9iH--5Pu9g0rzvVuALZyw57
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFB-0KrQHtVXp6ipzqKhIaD5mJjMn2VaLgi57UChehux8dAvbzTZJlf73vjeZ3aWIevAUSN4ML3nfycvvEXIgmIG4mcsEUgWesEqliZJoeJmQTipmeA-Z_7kcj-XpqZrEF25tbKtc-cTgqG1t8B35IaQhTEKwVvm75WWCU6Pw62ocoXGb3EGUBBzdMOHfN6C7ImBmQoUjkhw0c9X4zjnW_MUhDrOTYebKJiQF5P61f743w8r45_lvnjqEn5MH_8v4Q3I_Jp501GvKLrnlFntk58satbXdI7vR0Fv6OqJRv3lE5pMGv-Wg_CgkuBTo6afQqV4313TTPUOPZ1UN-1D0MIiy2V3THg6dHkGktBTW49r3zi0pQoIAM-O-B52O5mfAcTe7eEy-nXz4evwxiSMaEsPKtEs4K3NvlZ96672wGTxOyOlSx52HOtCXCpucuZhyXiqvZJUpW1hvi6ySqTMyL56QrUW9cPuEZsaWHrKH1OeOeW4rD-oinZ8qobyo0gF5u5KSNhG_HMdozHWoYzjXKFMdZTogL9fUyx634w90RyjwNQ2ibYcTdXOmo_FqZhB2URjvK8OcBWZYWXI4CuYKULMBeYXqotEnAEumir82wI0hupYegdtEUByeD8jwBiXYsrlx-SAq3D-YHq5UTUeX0-qNnj39--VnZBs3wxaILB-Sra65cs_JXfOjO2-bF8GCfgFx7R5L
  priority: 102
  providerName: ProQuest
Title Prediction for the Inventory Management Chaotic Complexity System Based on the Deep Neural Network Algorithm
URI https://dx.doi.org/10.1155/2023/9369888
https://www.proquest.com/docview/3104856292
https://doaj.org/article/4c96596cffac4ed6a04775d6a64e3009
Volume 2023
WOSCitedRecordID wos001158189900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: K7-
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: M2O
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbYAAkeEBsgupXKD0OAULRcbMd-bHfREKxUE0gVL1bqC63UtVMSQPv3OydxO3UTghdHSY4tx-eenHwm5EAwA34zlRGECjxihYojJVHxEiGdVMzwFjL_Sz4cyvFYjQJIUnX_Ez54O0zPs0Pcdw6StS2yJTlWbl2cjW-xdUUDjQmJjIhSEMBVffudvhuepwHoX5vhx1NMgP_M7hnkxsucPifPQnhI-y0_d8gDt9glT8_X2KrVLtkJ6ljR9wEz-sMLMh-V-MUFV5lCGEqBnn5q6smX5TW9rXGhR9NiCeNQtAOIhVlf0xa0nA7An1kK_bHvsXNXFIE7YDLDtlKc9uc_l-Wsnl6-JN9PT74dnUVhI4XIsDyuI87y1FvlJ956L2wCqwGRV-y485Ct-VxhKTIXE85z5ZUsEmUz622WFDJ2RqbZK7K9WC7ca0ITY3MPPj72qWOe28IDU6XzEyWUF0XcIR9Xi6xNQBnHzS7musk2ONfIEh1Y0iFv19RXLbrGX-gGyK81DWJiNxdATnRQMc0MgiMK431hmLMwGZbnHI6CuQykpEPeIbc1ai5MyRThBwR4MMTA0n0wbghdw9MO6W5QgsaZjdsHQV7-MenuSph0MAyVhmiaSYg5Vbr3f6Pskyd4igULSdol23X5y70hj8zvelaVPfJwcDIcXfSaVwnQfs4jaM_Tr9CO-I9eoyg3ILwC4A
linkProvider Hindawi Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VBQQcgBYQgQB7aAUIWfXHrr17QChtqRoljXooUm-Lsx9NpRCH2FDlT_EbmbHXiSoEnHrgFCkeW5vNmzcz9vgNITsp0xA3YxFAqsADlsswkAIdL0qFFZJp3kjmD7PRSJyfy9MN8rN9FwbbKltOrInaFBrvke9BGsIEBGsZf5x_C3BqFD5dbUdoNLAY2OUVlGzlh_4h_L-7cXz06ezgOPBTBQLNsrAKOMtiZ6QbO-NcaqDoFpCGhJZbB6WLyyT25fJ0zHkmnRR5JE1inEmiXIRWCxQ6AMq_xRKRoV8NsmAt8pvWGp1QUaVBDJ7QNtpzjvcYkj0cnifqGS_rEFhPCljFgzsTrMSvLn-LDHW4O3r4v23UI_LAJ9a013jCFtmws21y_2SlSltuky1PZCV969W23z0m09MFPqtCfFJI4CnY037diV8slnTdHUQPJnkB16HIoKgiWi1pI_dO9yETMBTOx3MPrZ1TlDyBxYyaHnvam17ADlWTr0_I5xvZg6dkc1bM7DNCI20yB9lR6GLLHDe5A3cQ1o1lKl2ahx3yvkWF0l6fHceETFVdp3GuEEPKY6hDdlfW80aX5A92-wiwlQ2qiddfFIsL5clJMY2ykql2LtfMGlgMyzIOnymzCcC6Q94gPBVyHixJ5_7VDfhhqB6mehAWUPSHxx3SvWYJXKWvHd7xAP_HorsttJWn1FKtcf3874dfk7vHZydDNeyPBi_IPbwwtntEcZdsVovv9iW5rX9Ul-XiVe29lHy5aS_4BTOeer4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+for+the+Inventory+Management+Chaotic+Complexity+System+Based+on+the+Deep+Neural+Network+Algorithm&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Lei%2C+Tengfei&rft.au=Li%2C+Rita+Yi+Man&rft.au=Jotikastira%2C+Nuttapong&rft.au=Fu%2C+Haiyan&rft.date=2023-05-12&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F9369888&rft.externalDocID=A832481552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon