Prediction for the Inventory Management Chaotic Complexity System Based on the Deep Neural Network Algorithm
Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless, the complex inventory data are often chaotic a...
Gespeichert in:
| Veröffentlicht in: | Complexity (New York, N.Y.) Jg. 2023; S. 1 - 11 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Hindawi
12.05.2023
John Wiley & Sons, Inc Wiley |
| Schlagworte: | |
| ISSN: | 1076-2787, 1099-0526 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless, the complex inventory data are often chaotic and nonlinear; high data complexity raises the accuracy prediction difficulty. This study simulated inventory records by using the dynamics inventory management system. Four deep neural network models trained the data: short-term memory neural network (LSTM), convolutional neural network-long short-term memory (CNN-LSTM), bidirectional long short-term memory neural network (Bi-LSTM), and deep long-short-term memory neural network (DLSTM). Evaluating the models’ performance based on RMSE, MSE, and MAE, bi-LSTM achieved the highest prediction accuracy with the least square error of 0.14%. The results concluded that the complexity of the model was not directly related to the prediction performance. By contrasting several methods of chaotic nonlinear inventory data and neural network dynamics prediction, this study contributed to the academia. The research results provided useful advice for companies’ planned production and inventory officers when they plan for product inventory and minimize the risk of mishaps brought on by excess inventories in warehouses. |
|---|---|
| AbstractList | Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It is also essential to control costs and optimize the supply chain’s performance. Nevertheless, the complex inventory data are often chaotic and nonlinear; high data complexity raises the accuracy prediction difficulty. This study simulated inventory records by using the dynamics inventory management system. Four deep neural network models trained the data: short-term memory neural network (LSTM), convolutional neural network-long short-term memory (CNN-LSTM), bidirectional long short-term memory neural network (Bi-LSTM), and deep long-short-term memory neural network (DLSTM). Evaluating the models’ performance based on RMSE, MSE, and MAE, bi-LSTM achieved the highest prediction accuracy with the least square error of 0.14%. The results concluded that the complexity of the model was not directly related to the prediction performance. By contrasting several methods of chaotic nonlinear inventory data and neural network dynamics prediction, this study contributed to the academia. The research results provided useful advice for companies’ planned production and inventory officers when they plan for product inventory and minimize the risk of mishaps brought on by excess inventories in warehouses. |
| Audience | Academic |
| Author | Wang, Cong Jotikastira, Nuttapong Fu, Haiyan Li, Rita Yi Man Lei, Tengfei |
| Author_xml | – sequence: 1 givenname: Tengfei orcidid: 0000-0001-5243-1046 surname: Lei fullname: Lei, Tengfei organization: Rattanakosin International College of Creative EntrepreneurshipRajamangala University of Technology RattanakosinNakhon PathomThailandrmutr.ac.th – sequence: 2 givenname: Rita Yi Man surname: Li fullname: Li, Rita Yi Man organization: Sustainable Real Estate Research CenterDepartment of Economics and FinanceHong Kong Shue Yan UniversityNorth PointHong Kong – sequence: 3 givenname: Nuttapong surname: Jotikastira fullname: Jotikastira, Nuttapong organization: Rattanakosin International College of Creative EntrepreneurshipRajamangala University of Technology RattanakosinNakhon PathomThailandrmutr.ac.th – sequence: 4 givenname: Haiyan orcidid: 0000-0003-1739-6390 surname: Fu fullname: Fu, Haiyan organization: Collaborative Innovation Center of Memristive Computing ApplicationQilu Institute of TechnologyShandongJinan 250200Chinaqlit.edu.cn – sequence: 5 givenname: Cong surname: Wang fullname: Wang, Cong organization: Collaborative Innovation Center of Memristive Computing ApplicationQilu Institute of TechnologyShandongJinan 250200Chinaqlit.edu.cn |
| BookMark | eNp9UctuFDEQHKEgkQRufIAljjCJH-PXcdnwWCk8JOBsOXZ718vMePF4Cfv3eNgIBALkQ7tbVdUu11lzMqYRmuYxwReEcH5JMWWXmgmtlLrXnBKsdYs5FSfzXYqWSiUfNGfTtMUYa8HkadO_z-CjKzGNKKSMygbQavwKY0n5gN7Y0a5hqB1abmwq0aFlGnY9fIvlgD4cpgIDem4n8KjyZ-4VwA69hX22fS3lNuXPaNGvU45lMzxs7gfbT_Dorp43n16--Lh83V6_e7VaLq5b10lcWt5JGrwON8GHIDypdrBiGDgETWSQmmgtuLjhXOqglSXaMx88I1ZhcIqy82Z11PXJbs0ux8Hmg0k2mh-DlNfG5mqmB9O5KqWFC8G6DrywuJOS1yo6YPWTqtaTo9Yupy97mIrZpn0e6_MNI7hTXFBNf6HWtorGMaSSrRvi5MxCMdqpGs-MuvgLqh4PQ3Q1yxDr_DfCsyPB5TRNGcJPMwSbOXIzR27uIq9w-gfcxWLnbOue2P-L9PRI2sTR29v4_xXfAXd0u3I |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3538664 crossref_primary_10_1016_j_chaos_2024_114828 crossref_primary_10_1016_j_heliyon_2024_e34703 crossref_primary_10_3389_fpubh_2025_1393763 crossref_primary_10_7717_peerj_cs_1920 crossref_primary_10_1109_ACCESS_2024_3399548 crossref_primary_10_1057_s41599_025_04864_2 crossref_primary_10_3390_buildings14051243 crossref_primary_10_3390_fractalfract8050258 crossref_primary_10_3390_info15120785 crossref_primary_10_1016_j_engappai_2024_109946 |
| Cites_doi | 10.1016/j.ijforecast.2018.09.002 10.1002/smj.4250151011 10.1049/iet-its.2017.0313 10.1016/j.eswa.2018.12.031 10.1007/s11071-021-07192-7 10.3390/pr8060725 10.1007/bf01414032 10.2139/ssrn.3229105 10.1142/S0218127422500353 10.1109/access.2019.2961260 10.1016/j.ijepes.2021.107023 10.1007/s00500-020-05210-1 10.1109/TITS.2014.2345663 10.1609/aaai.v31i1.10735 10.2139/ssrn.3086237 10.1109/tvt.2016.2585575 10.1016/j.future.2018.10.052 10.1109/tnnls.2016.2574840 10.1155/2021/5516703 10.1002/(sici)1099-1468(199601)17:1<27::aid-mde725>3.0.co;2-b 10.1016/j.neucom.2018.09.082 10.1007/978-3-319-13132-0 10.1016/j.ijpe.2011.04.017 10.1016/j.procs.2013.05.134 10.1016/j.procir.2019.02.042 10.3390/math9192456 10.1142/s0218127415501655 10.1016/j.jksuci.2022.01.017 10.1162/neco.1997.9.8.1735 10.1016/j.chaos.2019.109521 10.3390/math9243326 10.1016/s0363-8111(96)90001-6 10.1007/s11071-020-05601-x 10.1109/jsen.2019.2933823 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Tengfei Lei et al. COPYRIGHT 2023 John Wiley & Sons, Inc. Copyright © 2023 Tengfei Lei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2023 Tengfei Lei et al. – notice: COPYRIGHT 2023 John Wiley & Sons, Inc. – notice: Copyright © 2023 Tengfei Lei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7X5 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K6~ K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1155/2023/9369888 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Entrepreneurship Database ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest Entrepreneurship Advanced Technologies & Aerospace Collection Business Premium Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Research Library Prep |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1099-0526 |
| Editor | Li, Chun-Biao |
| Editor_xml | – sequence: 1 givenname: Chun-Biao surname: Li fullname: Li, Chun-Biao |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_4c96596cffac4ed6a04775d6a64e3009 A832481552 10_1155_2023_9369888 |
| GrantInformation_xml | – fundername: Key Technology Research and Development Program of Shandong grantid: 2019GGX104092 – fundername: Science and Technology Plan Projects of Universities of Shandong Province grantid: J18KA381 – fundername: Major Scientific and Technological Innovation Project of Shandong Province grantid: 2019JZZY010111 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2017PA008 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HBH HCIFZ HHY HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC XBAML XG1 XPP XSW XV2 ~IA ~WT 24P AAMMB AAYXX ACCMX AEFGJ AFFHD AGXDD AIDQK AIDYY ALUQN AMVHM CITATION H13 ICD O8X PHGZM PHGZT PQGLB 7X5 7XB 8FK BEZIV JQ2 K6~ MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c470t-5472fd9fbfdff6d19880830e5ef917f79199656b5579f98a19d3dfd31a80ec823 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001158189900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-2787 |
| IngestDate | Tue Oct 14 18:59:13 EDT 2025 Fri Jul 25 21:01:12 EDT 2025 Sat Nov 29 13:48:05 EST 2025 Sat Nov 29 10:31:13 EST 2025 Tue Nov 18 21:59:25 EST 2025 Sat Nov 29 03:24:46 EST 2025 Sun Jun 02 19:24:26 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-5472fd9fbfdff6d19880830e5ef917f79199656b5579f98a19d3dfd31a80ec823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5243-1046 0000-0003-1739-6390 |
| OpenAccessLink | https://dx.doi.org/10.1155/2023/9369888 |
| PQID | 3104856292 |
| PQPubID | 2029978 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4c96596cffac4ed6a04775d6a64e3009 proquest_journals_3104856292 gale_infotracmisc_A832481552 gale_infotracacademiconefile_A832481552 crossref_primary_10_1155_2023_9369888 crossref_citationtrail_10_1155_2023_9369888 hindawi_primary_10_1155_2023_9369888 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-12 |
| PublicationDateYYYYMMDD | 2023-05-12 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Complexity (New York, N.Y.) |
| PublicationYear | 2023 |
| Publisher | Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | 24 25 27 28 Y. Chen (26) E. C. Joseph (6) 1994 S. Du (22) R. Y. M. Li (42) 2022 30 31 10 32 11 33 34 13 35 14 36 A. T. Azar (1) 2015 15 37 R. Y. M. Li (41) 2022; 134 16 A. S. Mihaita (23) 38 17 39 18 19 I. U. Haq (29) 2021; 9 2 3 4 5 7 8 9 40 T. Shimmura (12) 2013; 226 20 21 |
| References_xml | – ident: 10 doi: 10.1016/j.ijforecast.2018.09.002 – volume: 9 year: 2021 ident: 29 article-title: Sequential learning-based energy consumption prediction model for residential and commercial sectors publication-title: Mathematics – ident: 3 doi: 10.1002/smj.4250151011 – ident: 21 doi: 10.1049/iet-its.2017.0313 – ident: 24 doi: 10.1016/j.eswa.2018.12.031 – ident: 31 doi: 10.1007/s11071-021-07192-7 – ident: 28 doi: 10.3390/pr8060725 – ident: 4 doi: 10.1007/bf01414032 – ident: 14 doi: 10.2139/ssrn.3229105 – ident: 33 doi: 10.1142/S0218127422500353 – volume: 226 start-page: 679 issue: 3 year: 2013 ident: 12 article-title: Selecting rows and columns for training support vector regression models with large retail datasets publication-title: European Journal of Operational Research – ident: 37 doi: 10.1109/access.2019.2961260 – ident: 38 doi: 10.1016/j.ijepes.2021.107023 – ident: 18 doi: 10.1007/s00500-020-05210-1 – start-page: 1 ident: 22 article-title: Traffic flow forecasting based on hybrid deep learning framework – start-page: 1010 ident: 26 article-title: Traffic flow prediction with big data: a deep learning based time series model – volume-title: Current State of Art in Artificial Intelligence and Ubiquitous Cities year: 2022 ident: 42 – ident: 20 doi: 10.1109/TITS.2014.2345663 – ident: 19 doi: 10.1609/aaai.v31i1.10735 – volume: 134 start-page: 2247 issue: 3 year: 2022 ident: 41 article-title: Predicting carpark prices using real estate indices and AutoML publication-title: CMES-Computer Modeling in Engineering & Science – ident: 9 doi: 10.2139/ssrn.3086237 – ident: 16 doi: 10.1109/tvt.2016.2585575 – ident: 17 doi: 10.1016/j.future.2018.10.052 – ident: 27 doi: 10.1109/tnnls.2016.2574840 – ident: 36 doi: 10.1155/2021/5516703 – ident: 2 doi: 10.1002/(sici)1099-1468(199601)17:1<27::aid-mde725>3.0.co;2-b – ident: 40 doi: 10.1016/j.neucom.2018.09.082 – start-page: 1 year: 1994 ident: 6 article-title: Chaos & postmodernism forecasting & futuring insights publication-title: Futurics,Summer-Fall – volume-title: Chaos Modeling and Control Systems Design year: 2015 ident: 1 doi: 10.1007/978-3-319-13132-0 – ident: 15 doi: 10.1016/j.ijpe.2011.04.017 – ident: 11 doi: 10.1016/j.procs.2013.05.134 – ident: 13 doi: 10.1016/j.procir.2019.02.042 – ident: 30 doi: 10.3390/math9192456 – ident: 7 doi: 10.1142/s0218127415501655 – ident: 34 doi: 10.1016/j.jksuci.2022.01.017 – ident: 35 doi: 10.1162/neco.1997.9.8.1735 – ident: 8 doi: 10.1016/j.chaos.2019.109521 – ident: 39 doi: 10.3390/math9243326 – ident: 5 doi: 10.1016/s0363-8111(96)90001-6 – ident: 32 doi: 10.1007/s11071-020-05601-x – start-page: 1683 ident: 23 article-title: Motorway traffic flow prediction using advanced deep learning – ident: 25 doi: 10.1109/jsen.2019.2933823 |
| SSID | ssj0009637 |
| Score | 2.3785632 |
| Snippet | Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises’ production efficiency. It... Precise inventory prediction is the key to goods inventory and safety management. Accurate inventory prediction improves enterprises' production efficiency. It... |
| SourceID | doaj proquest gale crossref hindawi |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Chaos theory Complexity Cost control Datasets Deep learning Energy consumption Error analysis Inventory Inventory control Inventory management Machine learning Mathematical functions Neural networks Nonlinear dynamics Performance evaluation Performance prediction Regularization methods Research methodology Root-mean-square errors Safety management Strategic management Supply chains Support vector machines Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFH9IUdCD2Kq4upU5VFQkNB_zedxWi4IuPSj0NmTnw11Yd0s2Wvrf971ksm0R6cVTIHmTzMz7Jm9-D-BAcod-s9QZhgoi47XJM6NJ8QqpgzbciR4y_6uaTvXZmTm90eqLasJ6eOB-4w65I8g76WKsHQ9e1jlXSuBV8lClo3u5MkMyNcDtykoNZe5CUIZfHVLrOt11WLl2QB1O_9YaP5hTHnyx-Msud87m5Ak8TlEim_Sz24V7YbUHj75tIVY3e7CbtHLD3iXo6PdPYXna0I8X2myG0ShDevalKytfN5fsutSFHc_rNb6HkTkgSMz2kvXY5ewI3ZpnOJ7GfgzhnBF-B05m2heMs8ny57pZtPNfz-DHyafvx5-z1E8hc1zlbSa4KqM3cRZ9jNIXuBsYgOVBhIhJW1SGKpKFnAmhTDS6LoyvfPRVUes8OF1Wz2FntV6FF8AK51VEV5_HMvAofB2RtzrEmZEmIo9G8GHYZOsS2Dj1vFjaLukQwhJLbGLJCN5sqc97kI1_0B0Rv7Y0BI3d3UCBsUlg7F0CM4K3xG1LCoxTcnU6h4ALIygsO0EbRwg2ohzB-BYlKp679fggycsdkx4PwmSTfdhYDKq5xtDTlC__x5pewUP6JFU1FOUYdtrmd9iH--5Pu9g0rzvVuALZyw57 priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFB-0KrQHtVXp6ipzqKhIaD5mJjMn2VaLgi57UChehux8dAvbzTZJlf73vjeZ3aWIevAUSN4ML3nfycvvEXIgmIG4mcsEUgWesEqliZJoeJmQTipmeA-Z_7kcj-XpqZrEF25tbKtc-cTgqG1t8B35IaQhTEKwVvm75WWCU6Pw62ocoXGb3EGUBBzdMOHfN6C7ImBmQoUjkhw0c9X4zjnW_MUhDrOTYebKJiQF5P61f743w8r45_lvnjqEn5MH_8v4Q3I_Jp501GvKLrnlFntk58satbXdI7vR0Fv6OqJRv3lE5pMGv-Wg_CgkuBTo6afQqV4313TTPUOPZ1UN-1D0MIiy2V3THg6dHkGktBTW49r3zi0pQoIAM-O-B52O5mfAcTe7eEy-nXz4evwxiSMaEsPKtEs4K3NvlZ96672wGTxOyOlSx52HOtCXCpucuZhyXiqvZJUpW1hvi6ySqTMyL56QrUW9cPuEZsaWHrKH1OeOeW4rD-oinZ8qobyo0gF5u5KSNhG_HMdozHWoYzjXKFMdZTogL9fUyx634w90RyjwNQ2ibYcTdXOmo_FqZhB2URjvK8OcBWZYWXI4CuYKULMBeYXqotEnAEumir82wI0hupYegdtEUByeD8jwBiXYsrlx-SAq3D-YHq5UTUeX0-qNnj39--VnZBs3wxaILB-Sra65cs_JXfOjO2-bF8GCfgFx7R5L priority: 102 providerName: ProQuest |
| Title | Prediction for the Inventory Management Chaotic Complexity System Based on the Deep Neural Network Algorithm |
| URI | https://dx.doi.org/10.1155/2023/9369888 https://www.proquest.com/docview/3104856292 https://doaj.org/article/4c96596cffac4ed6a04775d6a64e3009 |
| Volume | 2023 |
| WOSCitedRecordID | wos001158189900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: K7- dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: M2O dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbYAAkeEBsgupXKD0OAULRcbMd-bHfREKxUE0gVL1bqC63UtVMSQPv3OydxO3UTghdHSY4tx-eenHwm5EAwA34zlRGECjxihYojJVHxEiGdVMzwFjL_Sz4cyvFYjQJIUnX_Ez54O0zPs0Pcdw6StS2yJTlWbl2cjW-xdUUDjQmJjIhSEMBVffudvhuepwHoX5vhx1NMgP_M7hnkxsucPifPQnhI-y0_d8gDt9glT8_X2KrVLtkJ6ljR9wEz-sMLMh-V-MUFV5lCGEqBnn5q6smX5TW9rXGhR9NiCeNQtAOIhVlf0xa0nA7An1kK_bHvsXNXFIE7YDLDtlKc9uc_l-Wsnl6-JN9PT74dnUVhI4XIsDyuI87y1FvlJ956L2wCqwGRV-y485Ct-VxhKTIXE85z5ZUsEmUz622WFDJ2RqbZK7K9WC7ca0ITY3MPPj72qWOe28IDU6XzEyWUF0XcIR9Xi6xNQBnHzS7musk2ONfIEh1Y0iFv19RXLbrGX-gGyK81DWJiNxdATnRQMc0MgiMK431hmLMwGZbnHI6CuQykpEPeIbc1ai5MyRThBwR4MMTA0n0wbghdw9MO6W5QgsaZjdsHQV7-MenuSph0MAyVhmiaSYg5Vbr3f6Pskyd4igULSdol23X5y70hj8zvelaVPfJwcDIcXfSaVwnQfs4jaM_Tr9CO-I9eoyg3ILwC4A |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF1VBQQcgBYQgQB7aAUIWfXHrr17QChtqRoljXooUm-Lsx9NpRCH2FDlT_EbmbHXiSoEnHrgFCkeW5vNmzcz9vgNITsp0xA3YxFAqsADlsswkAIdL0qFFZJp3kjmD7PRSJyfy9MN8rN9FwbbKltOrInaFBrvke9BGsIEBGsZf5x_C3BqFD5dbUdoNLAY2OUVlGzlh_4h_L-7cXz06ezgOPBTBQLNsrAKOMtiZ6QbO-NcaqDoFpCGhJZbB6WLyyT25fJ0zHkmnRR5JE1inEmiXIRWCxQ6AMq_xRKRoV8NsmAt8pvWGp1QUaVBDJ7QNtpzjvcYkj0cnifqGS_rEFhPCljFgzsTrMSvLn-LDHW4O3r4v23UI_LAJ9a013jCFtmws21y_2SlSltuky1PZCV969W23z0m09MFPqtCfFJI4CnY037diV8slnTdHUQPJnkB16HIoKgiWi1pI_dO9yETMBTOx3MPrZ1TlDyBxYyaHnvam17ADlWTr0_I5xvZg6dkc1bM7DNCI20yB9lR6GLLHDe5A3cQ1o1lKl2ahx3yvkWF0l6fHceETFVdp3GuEEPKY6hDdlfW80aX5A92-wiwlQ2qiddfFIsL5clJMY2ykql2LtfMGlgMyzIOnymzCcC6Q94gPBVyHixJ5_7VDfhhqB6mehAWUPSHxx3SvWYJXKWvHd7xAP_HorsttJWn1FKtcf3874dfk7vHZydDNeyPBi_IPbwwtntEcZdsVovv9iW5rX9Ul-XiVe29lHy5aS_4BTOeer4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+for+the+Inventory+Management+Chaotic+Complexity+System+Based+on+the+Deep+Neural+Network+Algorithm&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Lei%2C+Tengfei&rft.au=Li%2C+Rita+Yi+Man&rft.au=Jotikastira%2C+Nuttapong&rft.au=Fu%2C+Haiyan&rft.date=2023-05-12&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F9369888&rft.externalDocID=A832481552 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |