Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach

Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 17; číslo Suppl 13; s. 357
Hlavní autori: Mete, Mutlu, Sakoglu, Unal, Spence, Jeffrey S., Devous, Michael D., Harris, Thomas S., Adinoff, Bryon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 06.10.2016
Springer Nature B.V
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2–4 week abstinent cocaine-dependent participants ( n  = 93) and healthy controls ( n  = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. Results The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. Conclusions The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants’ SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.
AbstractList Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.
Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2–4 week abstinent cocaine-dependent participants ( n  = 93) and healthy controls ( n  = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. Results The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. Conclusions The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants’ SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.
Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations.BACKGROUNDNeuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations.The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance.RESULTSThe voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance.The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.CONCLUSIONSThe SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.
Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. Results The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. Conclusions The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.
ArticleNumber 357
Author Spence, Jeffrey S.
Devous, Michael D.
Harris, Thomas S.
Adinoff, Bryon
Sakoglu, Unal
Mete, Mutlu
Author_xml – sequence: 1
  givenname: Mutlu
  surname: Mete
  fullname: Mete, Mutlu
  email: Mutlu.Mete@tamuc.edu
  organization: Department of Computer Science and Information Systems, Texas A&M University-Commerce
– sequence: 2
  givenname: Unal
  surname: Sakoglu
  fullname: Sakoglu, Unal
  organization: Computer Engineering, University of Houston – Clear Lake
– sequence: 3
  givenname: Jeffrey S.
  surname: Spence
  fullname: Spence, Jeffrey S.
  organization: Center for Brain Health, University of Texas at Dallas
– sequence: 4
  givenname: Michael D.
  surname: Devous
  fullname: Devous, Michael D.
  organization: Department of Neurology, UT Southwestern Medical Center, Avid Radiopharmaceuticals
– sequence: 5
  givenname: Thomas S.
  surname: Harris
  fullname: Harris, Thomas S.
  organization: Avid Radiopharmaceuticals
– sequence: 6
  givenname: Bryon
  surname: Adinoff
  fullname: Adinoff, Bryon
  organization: Veterans Affairs North Texas Health Care System, Department of Psychiatry, UT Southwestern Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27766943$$D View this record in MEDLINE/PubMed
BookMark eNp9kU2L1TAYhYOMOB_6A9xIwI2baj6bxoUgg18w4EJdhzR928mQm9SkFby_3tQ7I9cBXSV585zDeTnn6CSmCAg9peQlpV37qlDWSd0Q2jaU0a7ZP0BnVCjaMErkydH9FJ2XckMIVR2Rj9ApU6ptteBnKH5ZnYNSxjVgF2wpfvTOLj5FnEbskrM-Ah5ghjhAdIDX4uOE-1zn2O_sVF-vscUTRMg2-L3tA-CdddebLoDNcePtPOdUh4_Rw9GGAk9uzwv07f27r5cfm6vPHz5dvr1qnFBkacRI62IwCk0ckQP0nAitew29JU454MNIuZCOqW6QFjgB3vZWC0p0z6Cj_AK9OfjOa7-DwUFcajoz5xo5_zTJevP3T_TXZko_jCSKay2rwYtbg5y-r1AWs_PFQQg2QlqLoR2XkhHB24o-v4fepDXHut5GCaUY6zbq2XGiP1HuqqiAOgAup1IyjMb55XcTNaAPhhKzlW4OpZtautlKN_uqpPeUd-b_07CDplQ2TpCPQv9T9At4rsGO
CitedBy_id crossref_primary_10_1016_j_psychres_2019_03_001
crossref_primary_10_3389_fpsyg_2021_714333
crossref_primary_10_1016_j_smhl_2018_09_002
crossref_primary_10_1007_s11030_024_10990_x
crossref_primary_10_1016_j_drugalcdep_2021_109185
crossref_primary_10_1016_j_bpsc_2022_04_009
crossref_primary_10_1080_1062936X_2020_1862297
crossref_primary_10_3389_fgene_2021_636441
crossref_primary_10_1016_j_jad_2025_02_020
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1128_spectrum_02445_21
crossref_primary_10_1007_s11030_023_10640_8
crossref_primary_10_1016_j_biopsych_2022_09_032
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1016_j_neuroimage_2019_06_036
crossref_primary_10_46879_ukroj_2_2021_62_75
crossref_primary_10_1177_1550059420905724
crossref_primary_10_1016_j_compbiomed_2025_110130
crossref_primary_10_1017_pen_2021_2
crossref_primary_10_3389_fninf_2020_00015
crossref_primary_10_1111_adb_12705
crossref_primary_10_1109_ACCESS_2020_3041895
crossref_primary_10_1080_00952990_2021_1966435
crossref_primary_10_3390_brainsci11060809
crossref_primary_10_1080_00952990_2021_1995739
crossref_primary_10_1016_j_nexres_2025_100304
crossref_primary_10_1038_s41598_023_33199_8
crossref_primary_10_1016_j_neubiorev_2025_106311
crossref_primary_10_2147_SAR_S362861
crossref_primary_10_3389_fphar_2023_1173596
crossref_primary_10_1186_s12859_016_1213_4
crossref_primary_10_1007_s00259_023_06553_1
crossref_primary_10_3389_fnins_2022_1014539
Cites_doi 10.1145/130385.130401
10.1038/35094500
10.1176/appi.ajp.158.3.390
10.1007/s10484-005-6384-0
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2009.11.046
10.1016/j.neuroimage.2010.04.273
10.3389/fnhum.2014.00425
10.1080/01621459.1969.10500983
10.1016/S1388-2457(02)00060-3
10.1016/S1550-8579(06)80209-3
10.3109/00952990.2013.847446
10.1038/npp.2010.18
10.1038/npp.2009.110
10.1038/82959
10.1214/aoms/1177729694
10.1111/j.1369-1600.2011.00414.x
10.1111/j.1369-1600.2012.00450.x
10.1142/S0129065712500116
10.1006/cbmr.1996.0014
10.1007/978-1-4757-2440-0
10.1002/nbm.1792
10.1002/9781119998938.ch8
10.1016/j.neuroimage.2007.10.012
10.2147/SAR.S35153
10.1016/j.bbr.2013.11.003
10.1002/mds.25869
10.1007/s00234-008-0463-x
10.1016/j.neuroimage.2007.04.009
10.1093/brain/awm319
10.1007/s10334-010-0197-8
10.1148/radiol.2481070876
10.1038/sj.npp.1300543
10.1038/nrn3119
10.1002/hbm.460030304
10.1023/A:1012487302797
10.1016/j.brainres.2011.05.054
10.1002/9781119998938
10.1093/cercor/bhl078
10.1016/S0959-4388(00)00191-4
10.3389/fnsys.2012.00059
ContentType Journal Article
Copyright The Author(s). 2016
Copyright BioMed Central 2016
Copyright_xml – notice: The Author(s). 2016
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1186/s12859-016-1218-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID PMC5073995
4235525331
27766943
10_1186_s12859_016_1218_z
Genre Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA023203
– fundername: NIDA NIH HHS
  grantid: R01 DA011434
– fundername: NIDA NIH HHS
  grantid: R03 DA031292
– fundername: NCATS NIH HHS
  grantid: UL1 TR000451
– fundername: NCATS NIH HHS
  grantid: UL1 TR001105
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c470t-4f1859ef490c05deb30499b9eba0c7ce3df1345c278d5ae30e36ba94109b2e813
IEDL.DBID P5Z
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402048800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 01:48:11 EST 2025
Sun Nov 09 10:21:42 EST 2025
Tue Oct 07 05:11:48 EDT 2025
Wed Feb 19 02:17:00 EST 2025
Sat Nov 29 05:40:00 EST 2025
Tue Nov 18 22:53:30 EST 2025
Sat Sep 06 07:27:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 13
Keywords Substance use disorders
Cocaine dependence
Support vector machines
Machine learning
Classification
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-4f1859ef490c05deb30499b9eba0c7ce3df1345c278d5ae30e36ba94109b2e813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1834772286?pq-origsite=%requestingapplication%
PMID 27766943
PQID 1834772286
PQPubID 44065
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5073995
proquest_miscellaneous_1835520436
proquest_journals_1834772286
pubmed_primary_27766943
crossref_citationtrail_10_1186_s12859_016_1218_z
crossref_primary_10_1186_s12859_016_1218_z
springer_journals_10_1186_s12859_016_1218_z
PublicationCentury 2000
PublicationDate 2016-10-06
PublicationDateYYYYMMDD 2016-10-06
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2016
Publisher BioMed Central
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
References P Liu (1218_CR24) 2012; 25
VD Calhoun (1218_CR19) 2005; 30
1218_CR1
C Plant (1218_CR12) 2010; 50
1218_CR48
1218_CR47
I Guyon (1218_CR41) 2002; 46
E Aminoff (1218_CR46) 2007; 17
HW Lilliefors (1218_CR36) 1969; 64
DL Collins (1218_CR33) 1995; 3
BD Ward (1218_CR39) 2000
RW Cox (1218_CR38) 1996; 29
1218_CR7
B Magnin (1218_CR11) 2009; 51
M Ester (1218_CR40) 1996
1218_CR17
JB Colby (1218_CR14) 2012; 6
1218_CR13
V Pariyadath (1218_CR50) 2014; 8
I Guyon (1218_CR2) 2006
S Kloppel (1218_CR10) 2008; 131
Y Zhang (1218_CR49) 2011; 1402
CA Hanlon (1218_CR25) 2012; 3
Y Fan (1218_CR15) 2007; 36
JC Culham (1218_CR43) 2001; 11
B Adinoff (1218_CR23) 2012; 17
J O’Doherty (1218_CR45) 2001; 4
RZ Goldstein (1218_CR27) 2011; 12
U Sakoglu (1218_CR8) 2009; 47
A Frick (1218_CR18) 2014; 259
HM Olbrich (1218_CR20) 2002; 113
B Adinoff (1218_CR28) 2006; 3
B Adinoff (1218_CR31) 2014; 19
VN Vapnik (1218_CR3) 1995
O Demirci (1218_CR6) 2008; 39
GF Koob (1218_CR26) 2010; 35
DA Gusnard (1218_CR44) 2001; 2
O Colliot (1218_CR9) 2008; 248
1218_CR34
CC Chang (1218_CR42) 2011; 2
UR Acharya (1218_CR21) 2012; 22
1218_CR30
VD Calhoun (1218_CR22) 2004; 29
N Tzourio-Mazoyer (1218_CR35) 2002; 15
MJ McHugh (1218_CR32) 2013; 39
Y Fan (1218_CR16) 2005
BE Boser (1218_CR5) 1992
B Adinoff (1218_CR29) 2001; 158
SJ Peltier (1218_CR4) 2009; 2009
S Kullback (1218_CR37) 1951; 22
8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
17081954 - Gend Med. 2006 Sep;3(3):206-22
11135651 - Nat Neurosci. 2001 Jan;4(1):95-102
18202106 - Brain. 2008 Mar;131(Pt 3):681-9
24239689 - Behav Brain Res. 2014 Feb 1;259:330-5
19961938 - Neuroimage. 2010 Mar;50(1):162-74
18396487 - Neuroimage. 2008 Feb 15;39(4):1774-82
24200212 - Am J Drug Alcohol Abuse. 2013 Nov;39(6):424-32
18458242 - Radiology. 2008 Jul;248(1):194-201
23627627 - Int J Neural Syst. 2012 Jun;22(3):1250011
15316570 - Neuropsychopharmacology. 2004 Nov;29(11):2097-17
17512218 - Neuroimage. 2007 Jul 15;36(4):1189-99
11229979 - Am J Psychiatry. 2001 Mar;158(3):390-8
11301234 - Curr Opin Neurobiol. 2001 Apr;11(2):157-63
12048041 - Clin Neurophysiol. 2002 Jun;113(6):815-25
18846369 - Neuroradiology. 2009 Feb;51(2):73-83
22139764 - NMR Biomed. 2012 May;25(5):779-86
16167192 - Appl Psychophysiol Biofeedback. 2005 Sep;30(3):285-306
20393457 - Neuropsychopharmacology. 2010 Jun;35(7):1485-99
16990438 - Cereb Cortex. 2007 Jul;17(7):1493-503
22011681 - Nat Rev Neurosci. 2011 Oct 20;12(11):652-69
22129494 - Addict Biol. 2012 Nov;17 (6):1001-12
19710631 - Neuropsychopharmacology. 2010 Jan;35(1):217-38
24729430 - Mov Disord. 2014 Aug;29(9):1216-9
23162375 - Subst Abuse Rehabil. 2012 Sep;3(1):115-128
19963901 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5381-4
16685822 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8
22912605 - Front Syst Neurosci. 2012 Aug 16;6:59
20451620 - Neuroimage. 2011 May 15;56(2):788-96
22458709 - Addict Biol. 2014 Mar;19(2):250-61
21669407 - Brain Res. 2011 Jul 21;1402:46-53
11771995 - Neuroimage. 2002 Jan;15(1):273-89
11584306 - Nat Rev Neurosci. 2001 Oct;2(10 ):685-94
20162320 - MAGMA. 2010 Dec;23(5-6):351-66
24982629 - Front Hum Neurosci. 2014 Jun 16;8:425
References_xml – start-page: 144
  volume-title: Proceedings of the fifth annual workshop on Computational learning theory
  year: 1992
  ident: 1218_CR5
  doi: 10.1145/130385.130401
– volume: 2
  start-page: 685
  issue: 10
  year: 2001
  ident: 1218_CR44
  publication-title: Nat Rev Neurosci
  doi: 10.1038/35094500
– volume: 158
  start-page: 390
  issue: 3
  year: 2001
  ident: 1218_CR29
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.158.3.390
– volume: 30
  start-page: 285
  issue: 3
  year: 2005
  ident: 1218_CR19
  publication-title: Appl Psychophysiol Biofeedback
  doi: 10.1007/s10484-005-6384-0
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 1218_CR35
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 50
  start-page: 162
  issue: 1
  year: 2010
  ident: 1218_CR12
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.046
– ident: 1218_CR13
  doi: 10.1016/j.neuroimage.2010.04.273
– volume: 8
  start-page: 425
  year: 2014
  ident: 1218_CR50
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00425
– volume: 64
  start-page: 387
  issue: 325
  year: 1969
  ident: 1218_CR36
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1969.10500983
– volume: 113
  start-page: 815
  issue: 6
  year: 2002
  ident: 1218_CR20
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00060-3
– volume: 3
  start-page: 206
  issue: 3
  year: 2006
  ident: 1218_CR28
  publication-title: Gend Med
  doi: 10.1016/S1550-8579(06)80209-3
– volume: 39
  start-page: 424
  issue: 6
  year: 2013
  ident: 1218_CR32
  publication-title: Am J Drug Alcohol Abuse
  doi: 10.3109/00952990.2013.847446
– ident: 1218_CR30
  doi: 10.1038/npp.2010.18
– volume: 35
  start-page: 217
  issue: 1
  year: 2010
  ident: 1218_CR26
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.110
– ident: 1218_CR47
– volume-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM
  year: 2005
  ident: 1218_CR16
– volume: 4
  start-page: 95
  issue: 1
  year: 2001
  ident: 1218_CR45
  publication-title: Nat Neurosci
  doi: 10.1038/82959
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 1218_CR37
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177729694
– volume: 17
  start-page: 1001
  issue: 6
  year: 2012
  ident: 1218_CR23
  publication-title: Addict Biol
  doi: 10.1111/j.1369-1600.2011.00414.x
– volume: 19
  start-page: 250
  issue: 2
  year: 2014
  ident: 1218_CR31
  publication-title: Addict Biol
  doi: 10.1111/j.1369-1600.2012.00450.x
– volume: 22
  start-page: 1250011
  issue: 3
  year: 2012
  ident: 1218_CR21
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065712500116
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  ident: 1218_CR38
  publication-title: Comput Biomed Res
  doi: 10.1006/cbmr.1996.0014
– volume-title: SVM Application List
  year: 2006
  ident: 1218_CR2
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 1218_CR3
  doi: 10.1007/978-1-4757-2440-0
– volume: 25
  start-page: 779
  issue: 5
  year: 2012
  ident: 1218_CR24
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1792
– ident: 1218_CR48
  doi: 10.1002/9781119998938.ch8
– volume: 39
  start-page: 1774
  issue: 4
  year: 2008
  ident: 1218_CR6
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.012
– volume: 3
  start-page: 115
  issue: 1
  year: 2012
  ident: 1218_CR25
  publication-title: Substance abuse and rehabilitation
  doi: 10.2147/SAR.S35153
– volume: 259
  start-page: 330
  year: 2014
  ident: 1218_CR18
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2013.11.003
– start-page: 226
  volume-title: Kdd
  year: 1996
  ident: 1218_CR40
– ident: 1218_CR17
  doi: 10.1002/mds.25869
– volume: 51
  start-page: 73
  issue: 2
  year: 2009
  ident: 1218_CR11
  publication-title: Neuroradiology
  doi: 10.1007/s00234-008-0463-x
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 1218_CR42
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– volume: 36
  start-page: 1189
  issue: 4
  year: 2007
  ident: 1218_CR15
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.009
– volume: 131
  start-page: 681
  issue: Pt 3
  year: 2008
  ident: 1218_CR10
  publication-title: Brain
  doi: 10.1093/brain/awm319
– ident: 1218_CR7
  doi: 10.1007/s10334-010-0197-8
– volume: 248
  start-page: 194
  issue: 1
  year: 2008
  ident: 1218_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2481070876
– volume: 29
  start-page: 2097
  issue: 11
  year: 2004
  ident: 1218_CR22
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300543
– volume: 12
  start-page: 652
  issue: 11
  year: 2011
  ident: 1218_CR27
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3119
– volume: 2009
  start-page: 5381
  year: 2009
  ident: 1218_CR4
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 3
  start-page: 190
  issue: 3
  year: 1995
  ident: 1218_CR33
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.460030304
– volume-title: Simultaneous Inference for FMRI Data
  year: 2000
  ident: 1218_CR39
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 1218_CR41
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– volume: 47
  start-page: S39
  issue: 1
  year: 2009
  ident: 1218_CR8
  publication-title: Neuroimage
– volume: 1402
  start-page: 46
  year: 2011
  ident: 1218_CR49
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2011.05.054
– ident: 1218_CR1
  doi: 10.1002/9781119998938
– volume: 17
  start-page: 1493
  issue: 7
  year: 2007
  ident: 1218_CR46
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl078
– ident: 1218_CR34
– volume: 11
  start-page: 157
  issue: 2
  year: 2001
  ident: 1218_CR43
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(00)00191-4
– volume: 6
  start-page: 59
  year: 2012
  ident: 1218_CR14
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2012.00059
– reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89
– reference: 22912605 - Front Syst Neurosci. 2012 Aug 16;6:59
– reference: 24239689 - Behav Brain Res. 2014 Feb 1;259:330-5
– reference: 22129494 - Addict Biol. 2012 Nov;17 (6):1001-12
– reference: 16167192 - Appl Psychophysiol Biofeedback. 2005 Sep;30(3):285-306
– reference: 20393457 - Neuropsychopharmacology. 2010 Jun;35(7):1485-99
– reference: 15316570 - Neuropsychopharmacology. 2004 Nov;29(11):2097-17
– reference: 18202106 - Brain. 2008 Mar;131(Pt 3):681-9
– reference: 23627627 - Int J Neural Syst. 2012 Jun;22(3):1250011
– reference: 19710631 - Neuropsychopharmacology. 2010 Jan;35(1):217-38
– reference: 11229979 - Am J Psychiatry. 2001 Mar;158(3):390-8
– reference: 18396487 - Neuroimage. 2008 Feb 15;39(4):1774-82
– reference: 23162375 - Subst Abuse Rehabil. 2012 Sep;3(1):115-128
– reference: 12048041 - Clin Neurophysiol. 2002 Jun;113(6):815-25
– reference: 20162320 - MAGMA. 2010 Dec;23(5-6):351-66
– reference: 21669407 - Brain Res. 2011 Jul 21;1402:46-53
– reference: 19963901 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5381-4
– reference: 18458242 - Radiology. 2008 Jul;248(1):194-201
– reference: 20451620 - Neuroimage. 2011 May 15;56(2):788-96
– reference: 11135651 - Nat Neurosci. 2001 Jan;4(1):95-102
– reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
– reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10 ):685-94
– reference: 17081954 - Gend Med. 2006 Sep;3(3):206-22
– reference: 22139764 - NMR Biomed. 2012 May;25(5):779-86
– reference: 19961938 - Neuroimage. 2010 Mar;50(1):162-74
– reference: 16990438 - Cereb Cortex. 2007 Jul;17(7):1493-503
– reference: 22458709 - Addict Biol. 2014 Mar;19(2):250-61
– reference: 11301234 - Curr Opin Neurobiol. 2001 Apr;11(2):157-63
– reference: 24729430 - Mov Disord. 2014 Aug;29(9):1216-9
– reference: 24200212 - Am J Drug Alcohol Abuse. 2013 Nov;39(6):424-32
– reference: 22011681 - Nat Rev Neurosci. 2011 Oct 20;12(11):652-69
– reference: 17512218 - Neuroimage. 2007 Jul 15;36(4):1189-99
– reference: 24982629 - Front Hum Neurosci. 2014 Jun 16;8:425
– reference: 18846369 - Neuroradiology. 2009 Feb;51(2):73-83
– reference: 16685822 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8
SSID ssj0017805
Score 2.3653088
Snippet Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of...
Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction....
Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 357
SubjectTerms Adult
Algorithms
Bioinformatics
Biomedical and Life Sciences
Brain
Brain - diagnostic imaging
Brain - pathology
Classification
Cluster Analysis
Cocaine
Cocaine-Related Disorders - classification
Cocaine-Related Disorders - diagnostic imaging
Cocaine-Related Disorders - pathology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Drug abuse
Female
Humans
Life Sciences
Male
Microarrays
Middle Aged
Neuroimaging - methods
Proceedings
Sensitivity and Specificity
Statistical methods
Substance use
Support Vector Machine
Young Adult
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qq-CL1o_qaisRfFIWs9lks-lbkZY-lWJV-rYk2dnrwXWv9O4E-9ebyX7gWRXqcyZsNjOTyTC_zA_gXcgZisYRrNyhTqURNnV1ERRia2FtCFiilpFsQp-clOfn5rR_x70Y0O5DSTKe1NGty-LjIqNeayH1Jd6YrExv7sFWiHaacHyfz76NpQNq0t-XL_84bT0A3bpV3gZH_lYhjYHn6PF_LXkbHvX3THbQGcYT2MD2KTzomCd_PIP2bBWZEpvVjHm6QBNiKCqJzRsWDkkbbp9sYMj1yAgfP2GOCCXY9DJSG-0zyyZd12qChs2QXUZkJrKeimLCho7lz-Hr0eGXT8dpT72Qeqn5MpVNiOMGG2m456oOGTelRs6gs9xrj3ndZLlUXuiyVhZzjnnhrJEZN05gmeU7sNnOW3wJjMsQh4XXJiu5RGxcnatG5MoEcYcKE-CDPirf9yUneoxZFfOTsqi6bawIi0bbWN0k8H6cctU15fiX8O6g5Kr3z0UVDjIZ8gpRFgm8HYeDZ1G5xLY4X0UZpejpcJB50dnE-DWhdVEYmSeg16xlFKCu3esj7fQidu9WVBs1KoEPg838sqy__cSrO0m_hociGh1xCu3C5vJ6hXtw339fThfXb6K7_AQlhxWq
  priority: 102
  providerName: Springer Nature
Title Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach
URI https://link.springer.com/article/10.1186/s12859-016-1218-z
https://www.ncbi.nlm.nih.gov/pubmed/27766943
https://www.proquest.com/docview/1834772286
https://www.proquest.com/docview/1835520436
https://pubmed.ncbi.nlm.nih.gov/PMC5073995
Volume 17
WOSCitedRecordID wos000402048800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQulFchtERG4gSKmjh2HHNBULUCIVZRC2jhEtmOs6y0zZbuLhL99XicR1kqeuESKfJEiTVjz4xn8n0Az13OkNUa28q1FRGTVEW6ypxCVEWVcg6LVsyTTYjRKB-PZdEduC26tsp-T_QbdTU3eEa-70yPuUiQ5tnrsx8RskZhdbWj0NiALURJQOqGgn8bqgiI199VMpM8218kiNbmkmdknkny6GLdF10JMK_2Sf5VLPU-6Gj7f7_-Ltzpok_ypjWXe3DDNvfhVstH-esBNCcrz59Yr2bEYFiNfURedWReE7d1KheTkp4311iCXfMTopFmgkxPPeHRK6LIpMWyxoaxmSWnvl_Tko6gYkJ6HPOH8Pno8NPBu6gjZIgME_EyYrXz7tLWTMYm5pXLwzFh0tJqFRthbFrVScq4oSKvuLJpbNNMK8mSWGpq8yTdgc1m3tjHQGLmvDM1QiZ5zKytdZXymqZcOnFtuQ0g7lVTmg6tHEkzZqXPWvKsbLVZYocaarO8CODF8MhZC9VxnfBer6iyW7WL8lJLATwbht16wyKKaux85WU4xx-Kncyj1jyGt1EhskyyNACxZjiDAGJ5r4800-8e05tjxVTyAF72JvbHZ_1rEk-un8Qu3Kbe2JFaaA82l-cr-xRump_L6eI8hA0xFv6ah7D19nBUHIf-RMJdP4goxC7YIvQLyo0X7z8WX93d8cmX34v5KF8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAqIXni0EChgJLqCoiWMnMRJCCKhatawqUaTegu1MlpW22ba7C2p_FL8Rj_OApaK3Hjh78nD8eR6Z8XwAz13MkFaGysoNZqFQXIemTN2C6JJr7QwWL4Unm8gGg_zgQO0twc_uLAyVVXY60SvqcmLpH_mGg55wniDP07dHxyGxRlF2taPQaGCxg6c_XMg2fbP9wa3vC843P-6_3wpbVoHQiiyahaJyJkphJVRkI1m6YJK8fqPQ6MhmFpOyihMhLc_yUmpMIkxSo5WII2U45nHi7nsFrjo3gnNfKrjXZy2IH6DNnMZ5ujGNqTucC9aJ6SbOw7NF23fOoT1fl_lXctbbvM1b_9vXug03W--avWu2wx1YwvouXG_4Nk_vQf157vkhq_mYWQobqE7KQ5NNKuZMg3Y-N-t4gS0yOhUwZIZoNNjo0BM6vWaaDZte3VQQN0Z26OtRkbUEHEPW9WlfhS-XMtk1WK4nNT4AFgnnfXCbqTiPBGJlykRWPJHKiRuUGEDUQaGwbTd2IgUZFz4qy9OiQU9BFXiEnuIsgJf9JUdNK5KLhNc7YBStVpoWv1ERwLN-2OkTShLpGidzLyMlHZh2MvcbOPZP41mWpkokAWQLQO0FqFf54kg9-uZ7lkvKCCsZwKsO0n-81r8m8fDiSTyFG1v7n3aL3e3BziNY4X6jEY3SOizPTub4GK7Z77PR9OSJ36YMvl420n8B4h58fw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0_MAXP0-tnhrBJ6VcmyZN45uoi6IsB6dybyVJJ-vCXve43RW8v95M-oHrqSA-Z0rbzEwnw_z6-wE8Cz1D6S3Byi2qVGhuUtuUwSGm4caEgsUbEcUm1HRaHR3pg17ndDWg3YeRZPdPA7E0tev9k8Z3KV6V-6uceNdCG0waMnmVnl2ES4LQctSuH34ZxwhE2N-PMn972XYxOnfCPA-U_GVaGovQ5MZ_P_5NuN6fP9mrLmBuwQVsb8OVTpHy-x1oDzdRQdFvFszRwZqQRNF5bOlZ-HiacCplg3KuQ0a4-RmzJDTB5sdR8uglM2zWsVkTZGyB7DgiNpH1EhUzNjCZ78LnydtPr9-lvSRD6oTK1qnwob5r9EJnLpNN6MSpZbIarcmcclg0Pi-EdFxVjTRYZFiU1ujgG205VnlxF3baZYv3gWUi1GfulM6rTCB62xTS80LqYG5RYgLZ4Jva9XzlJJuxqGPfUpV1t401YdRoG-uzBJ6Pl5x0ZB1_M94bHF73ebuqwwdOhH6DV2UCT8flkHE0RjEtLjfRRkr6pTjY3OviY7wbV6ostSgSUFuRMxoQm_f2Sjv_Glm9Jc1MtUzgxRA_Pz3Wn17iwT9ZP4GrB28m9cf30w8P4RqP8UeyQ3uwsz7d4CO47L6t56vTxzGLfgCr3SFp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Successful+classification+of+cocaine+dependence+using+brain+imaging%3A+a+generalizable+machine+learning+approach&rft.jtitle=BMC+bioinformatics&rft.au=Mutlu+Mete&rft.au=Unal+Sakoglu&rft.au=Spence%2C+Jeffrey+S&rft.au=Devous%2C+Michael+D&rft.date=2016-10-06&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=17&rft_id=info:doi/10.1186%2Fs12859-016-1218-z&rft.externalDocID=4235525331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon