Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach
Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a...
Uložené v:
| Vydané v: | BMC bioinformatics Ročník 17; číslo Suppl 13; s. 357 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
06.10.2016
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2–4 week abstinent cocaine-dependent participants (
n
= 93) and healthy controls (
n
= 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations.
Results
The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance.
Conclusions
The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants’ SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology. |
|---|---|
| AbstractList | Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations.
The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance.
The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology. Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2–4 week abstinent cocaine-dependent participants ( n = 93) and healthy controls ( n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. Results The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. Conclusions The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants’ SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology. Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations.BACKGROUNDNeuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations.The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance.RESULTSThe voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance.The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.CONCLUSIONSThe SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology. Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. Results The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. Conclusions The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology. |
| ArticleNumber | 357 |
| Author | Spence, Jeffrey S. Devous, Michael D. Harris, Thomas S. Adinoff, Bryon Sakoglu, Unal Mete, Mutlu |
| Author_xml | – sequence: 1 givenname: Mutlu surname: Mete fullname: Mete, Mutlu email: Mutlu.Mete@tamuc.edu organization: Department of Computer Science and Information Systems, Texas A&M University-Commerce – sequence: 2 givenname: Unal surname: Sakoglu fullname: Sakoglu, Unal organization: Computer Engineering, University of Houston – Clear Lake – sequence: 3 givenname: Jeffrey S. surname: Spence fullname: Spence, Jeffrey S. organization: Center for Brain Health, University of Texas at Dallas – sequence: 4 givenname: Michael D. surname: Devous fullname: Devous, Michael D. organization: Department of Neurology, UT Southwestern Medical Center, Avid Radiopharmaceuticals – sequence: 5 givenname: Thomas S. surname: Harris fullname: Harris, Thomas S. organization: Avid Radiopharmaceuticals – sequence: 6 givenname: Bryon surname: Adinoff fullname: Adinoff, Bryon organization: Veterans Affairs North Texas Health Care System, Department of Psychiatry, UT Southwestern Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27766943$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU2L1TAYhYOMOB_6A9xIwI2baj6bxoUgg18w4EJdhzR928mQm9SkFby_3tQ7I9cBXSV585zDeTnn6CSmCAg9peQlpV37qlDWSd0Q2jaU0a7ZP0BnVCjaMErkydH9FJ2XckMIVR2Rj9ApU6ptteBnKH5ZnYNSxjVgF2wpfvTOLj5FnEbskrM-Ah5ghjhAdIDX4uOE-1zn2O_sVF-vscUTRMg2-L3tA-CdddebLoDNcePtPOdUh4_Rw9GGAk9uzwv07f27r5cfm6vPHz5dvr1qnFBkacRI62IwCk0ckQP0nAitew29JU454MNIuZCOqW6QFjgB3vZWC0p0z6Cj_AK9OfjOa7-DwUFcajoz5xo5_zTJevP3T_TXZko_jCSKay2rwYtbg5y-r1AWs_PFQQg2QlqLoR2XkhHB24o-v4fepDXHut5GCaUY6zbq2XGiP1HuqqiAOgAup1IyjMb55XcTNaAPhhKzlW4OpZtautlKN_uqpPeUd-b_07CDplQ2TpCPQv9T9At4rsGO |
| CitedBy_id | crossref_primary_10_1016_j_psychres_2019_03_001 crossref_primary_10_3389_fpsyg_2021_714333 crossref_primary_10_1016_j_smhl_2018_09_002 crossref_primary_10_1007_s11030_024_10990_x crossref_primary_10_1016_j_drugalcdep_2021_109185 crossref_primary_10_1016_j_bpsc_2022_04_009 crossref_primary_10_1080_1062936X_2020_1862297 crossref_primary_10_3389_fgene_2021_636441 crossref_primary_10_1016_j_jad_2025_02_020 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1128_spectrum_02445_21 crossref_primary_10_1007_s11030_023_10640_8 crossref_primary_10_1016_j_biopsych_2022_09_032 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1016_j_neuroimage_2019_06_036 crossref_primary_10_46879_ukroj_2_2021_62_75 crossref_primary_10_1177_1550059420905724 crossref_primary_10_1016_j_compbiomed_2025_110130 crossref_primary_10_1017_pen_2021_2 crossref_primary_10_3389_fninf_2020_00015 crossref_primary_10_1111_adb_12705 crossref_primary_10_1109_ACCESS_2020_3041895 crossref_primary_10_1080_00952990_2021_1966435 crossref_primary_10_3390_brainsci11060809 crossref_primary_10_1080_00952990_2021_1995739 crossref_primary_10_1016_j_nexres_2025_100304 crossref_primary_10_1038_s41598_023_33199_8 crossref_primary_10_1016_j_neubiorev_2025_106311 crossref_primary_10_2147_SAR_S362861 crossref_primary_10_3389_fphar_2023_1173596 crossref_primary_10_1186_s12859_016_1213_4 crossref_primary_10_1007_s00259_023_06553_1 crossref_primary_10_3389_fnins_2022_1014539 |
| Cites_doi | 10.1145/130385.130401 10.1038/35094500 10.1176/appi.ajp.158.3.390 10.1007/s10484-005-6384-0 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2009.11.046 10.1016/j.neuroimage.2010.04.273 10.3389/fnhum.2014.00425 10.1080/01621459.1969.10500983 10.1016/S1388-2457(02)00060-3 10.1016/S1550-8579(06)80209-3 10.3109/00952990.2013.847446 10.1038/npp.2010.18 10.1038/npp.2009.110 10.1038/82959 10.1214/aoms/1177729694 10.1111/j.1369-1600.2011.00414.x 10.1111/j.1369-1600.2012.00450.x 10.1142/S0129065712500116 10.1006/cbmr.1996.0014 10.1007/978-1-4757-2440-0 10.1002/nbm.1792 10.1002/9781119998938.ch8 10.1016/j.neuroimage.2007.10.012 10.2147/SAR.S35153 10.1016/j.bbr.2013.11.003 10.1002/mds.25869 10.1007/s00234-008-0463-x 10.1016/j.neuroimage.2007.04.009 10.1093/brain/awm319 10.1007/s10334-010-0197-8 10.1148/radiol.2481070876 10.1038/sj.npp.1300543 10.1038/nrn3119 10.1002/hbm.460030304 10.1023/A:1012487302797 10.1016/j.brainres.2011.05.054 10.1002/9781119998938 10.1093/cercor/bhl078 10.1016/S0959-4388(00)00191-4 10.3389/fnsys.2012.00059 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2016 Copyright BioMed Central 2016 |
| Copyright_xml | – notice: The Author(s). 2016 – notice: Copyright BioMed Central 2016 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1186/s12859-016-1218-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| ExternalDocumentID | PMC5073995 4235525331 27766943 10_1186_s12859_016_1218_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA023203 – fundername: NIDA NIH HHS grantid: R01 DA011434 – fundername: NIDA NIH HHS grantid: R03 DA031292 – fundername: NCATS NIH HHS grantid: UL1 TR000451 – fundername: NCATS NIH HHS grantid: UL1 TR001105 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c470t-4f1859ef490c05deb30499b9eba0c7ce3df1345c278d5ae30e36ba94109b2e813 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402048800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Tue Nov 04 01:48:11 EST 2025 Sun Nov 09 10:21:42 EST 2025 Tue Oct 07 05:11:48 EDT 2025 Wed Feb 19 02:17:00 EST 2025 Sat Nov 29 05:40:00 EST 2025 Tue Nov 18 22:53:30 EST 2025 Sat Sep 06 07:27:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 13 |
| Keywords | Substance use disorders Cocaine dependence Support vector machines Machine learning Classification |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-4f1859ef490c05deb30499b9eba0c7ce3df1345c278d5ae30e36ba94109b2e813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1834772286?pq-origsite=%requestingapplication% |
| PMID | 27766943 |
| PQID | 1834772286 |
| PQPubID | 44065 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5073995 proquest_miscellaneous_1835520436 proquest_journals_1834772286 pubmed_primary_27766943 crossref_citationtrail_10_1186_s12859_016_1218_z crossref_primary_10_1186_s12859_016_1218_z springer_journals_10_1186_s12859_016_1218_z |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-06 |
| PublicationDateYYYYMMDD | 2016-10-06 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2016 |
| Publisher | BioMed Central Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V |
| References | P Liu (1218_CR24) 2012; 25 VD Calhoun (1218_CR19) 2005; 30 1218_CR1 C Plant (1218_CR12) 2010; 50 1218_CR48 1218_CR47 I Guyon (1218_CR41) 2002; 46 E Aminoff (1218_CR46) 2007; 17 HW Lilliefors (1218_CR36) 1969; 64 DL Collins (1218_CR33) 1995; 3 BD Ward (1218_CR39) 2000 RW Cox (1218_CR38) 1996; 29 1218_CR7 B Magnin (1218_CR11) 2009; 51 M Ester (1218_CR40) 1996 1218_CR17 JB Colby (1218_CR14) 2012; 6 1218_CR13 V Pariyadath (1218_CR50) 2014; 8 I Guyon (1218_CR2) 2006 S Kloppel (1218_CR10) 2008; 131 Y Zhang (1218_CR49) 2011; 1402 CA Hanlon (1218_CR25) 2012; 3 Y Fan (1218_CR15) 2007; 36 JC Culham (1218_CR43) 2001; 11 B Adinoff (1218_CR23) 2012; 17 J O’Doherty (1218_CR45) 2001; 4 RZ Goldstein (1218_CR27) 2011; 12 U Sakoglu (1218_CR8) 2009; 47 A Frick (1218_CR18) 2014; 259 HM Olbrich (1218_CR20) 2002; 113 B Adinoff (1218_CR28) 2006; 3 B Adinoff (1218_CR31) 2014; 19 VN Vapnik (1218_CR3) 1995 O Demirci (1218_CR6) 2008; 39 GF Koob (1218_CR26) 2010; 35 DA Gusnard (1218_CR44) 2001; 2 O Colliot (1218_CR9) 2008; 248 1218_CR34 CC Chang (1218_CR42) 2011; 2 UR Acharya (1218_CR21) 2012; 22 1218_CR30 VD Calhoun (1218_CR22) 2004; 29 N Tzourio-Mazoyer (1218_CR35) 2002; 15 MJ McHugh (1218_CR32) 2013; 39 Y Fan (1218_CR16) 2005 BE Boser (1218_CR5) 1992 B Adinoff (1218_CR29) 2001; 158 SJ Peltier (1218_CR4) 2009; 2009 S Kullback (1218_CR37) 1951; 22 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 17081954 - Gend Med. 2006 Sep;3(3):206-22 11135651 - Nat Neurosci. 2001 Jan;4(1):95-102 18202106 - Brain. 2008 Mar;131(Pt 3):681-9 24239689 - Behav Brain Res. 2014 Feb 1;259:330-5 19961938 - Neuroimage. 2010 Mar;50(1):162-74 18396487 - Neuroimage. 2008 Feb 15;39(4):1774-82 24200212 - Am J Drug Alcohol Abuse. 2013 Nov;39(6):424-32 18458242 - Radiology. 2008 Jul;248(1):194-201 23627627 - Int J Neural Syst. 2012 Jun;22(3):1250011 15316570 - Neuropsychopharmacology. 2004 Nov;29(11):2097-17 17512218 - Neuroimage. 2007 Jul 15;36(4):1189-99 11229979 - Am J Psychiatry. 2001 Mar;158(3):390-8 11301234 - Curr Opin Neurobiol. 2001 Apr;11(2):157-63 12048041 - Clin Neurophysiol. 2002 Jun;113(6):815-25 18846369 - Neuroradiology. 2009 Feb;51(2):73-83 22139764 - NMR Biomed. 2012 May;25(5):779-86 16167192 - Appl Psychophysiol Biofeedback. 2005 Sep;30(3):285-306 20393457 - Neuropsychopharmacology. 2010 Jun;35(7):1485-99 16990438 - Cereb Cortex. 2007 Jul;17(7):1493-503 22011681 - Nat Rev Neurosci. 2011 Oct 20;12(11):652-69 22129494 - Addict Biol. 2012 Nov;17 (6):1001-12 19710631 - Neuropsychopharmacology. 2010 Jan;35(1):217-38 24729430 - Mov Disord. 2014 Aug;29(9):1216-9 23162375 - Subst Abuse Rehabil. 2012 Sep;3(1):115-128 19963901 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5381-4 16685822 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8 22912605 - Front Syst Neurosci. 2012 Aug 16;6:59 20451620 - Neuroimage. 2011 May 15;56(2):788-96 22458709 - Addict Biol. 2014 Mar;19(2):250-61 21669407 - Brain Res. 2011 Jul 21;1402:46-53 11771995 - Neuroimage. 2002 Jan;15(1):273-89 11584306 - Nat Rev Neurosci. 2001 Oct;2(10 ):685-94 20162320 - MAGMA. 2010 Dec;23(5-6):351-66 24982629 - Front Hum Neurosci. 2014 Jun 16;8:425 |
| References_xml | – start-page: 144 volume-title: Proceedings of the fifth annual workshop on Computational learning theory year: 1992 ident: 1218_CR5 doi: 10.1145/130385.130401 – volume: 2 start-page: 685 issue: 10 year: 2001 ident: 1218_CR44 publication-title: Nat Rev Neurosci doi: 10.1038/35094500 – volume: 158 start-page: 390 issue: 3 year: 2001 ident: 1218_CR29 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.158.3.390 – volume: 30 start-page: 285 issue: 3 year: 2005 ident: 1218_CR19 publication-title: Appl Psychophysiol Biofeedback doi: 10.1007/s10484-005-6384-0 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 1218_CR35 publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 50 start-page: 162 issue: 1 year: 2010 ident: 1218_CR12 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.046 – ident: 1218_CR13 doi: 10.1016/j.neuroimage.2010.04.273 – volume: 8 start-page: 425 year: 2014 ident: 1218_CR50 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.00425 – volume: 64 start-page: 387 issue: 325 year: 1969 ident: 1218_CR36 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1969.10500983 – volume: 113 start-page: 815 issue: 6 year: 2002 ident: 1218_CR20 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00060-3 – volume: 3 start-page: 206 issue: 3 year: 2006 ident: 1218_CR28 publication-title: Gend Med doi: 10.1016/S1550-8579(06)80209-3 – volume: 39 start-page: 424 issue: 6 year: 2013 ident: 1218_CR32 publication-title: Am J Drug Alcohol Abuse doi: 10.3109/00952990.2013.847446 – ident: 1218_CR30 doi: 10.1038/npp.2010.18 – volume: 35 start-page: 217 issue: 1 year: 2010 ident: 1218_CR26 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.110 – ident: 1218_CR47 – volume-title: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM year: 2005 ident: 1218_CR16 – volume: 4 start-page: 95 issue: 1 year: 2001 ident: 1218_CR45 publication-title: Nat Neurosci doi: 10.1038/82959 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 1218_CR37 publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177729694 – volume: 17 start-page: 1001 issue: 6 year: 2012 ident: 1218_CR23 publication-title: Addict Biol doi: 10.1111/j.1369-1600.2011.00414.x – volume: 19 start-page: 250 issue: 2 year: 2014 ident: 1218_CR31 publication-title: Addict Biol doi: 10.1111/j.1369-1600.2012.00450.x – volume: 22 start-page: 1250011 issue: 3 year: 2012 ident: 1218_CR21 publication-title: Int J Neural Syst doi: 10.1142/S0129065712500116 – volume: 29 start-page: 162 issue: 3 year: 1996 ident: 1218_CR38 publication-title: Comput Biomed Res doi: 10.1006/cbmr.1996.0014 – volume-title: SVM Application List year: 2006 ident: 1218_CR2 – volume-title: The nature of statistical learning theory year: 1995 ident: 1218_CR3 doi: 10.1007/978-1-4757-2440-0 – volume: 25 start-page: 779 issue: 5 year: 2012 ident: 1218_CR24 publication-title: NMR Biomed doi: 10.1002/nbm.1792 – ident: 1218_CR48 doi: 10.1002/9781119998938.ch8 – volume: 39 start-page: 1774 issue: 4 year: 2008 ident: 1218_CR6 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.012 – volume: 3 start-page: 115 issue: 1 year: 2012 ident: 1218_CR25 publication-title: Substance abuse and rehabilitation doi: 10.2147/SAR.S35153 – volume: 259 start-page: 330 year: 2014 ident: 1218_CR18 publication-title: Behav Brain Res doi: 10.1016/j.bbr.2013.11.003 – start-page: 226 volume-title: Kdd year: 1996 ident: 1218_CR40 – ident: 1218_CR17 doi: 10.1002/mds.25869 – volume: 51 start-page: 73 issue: 2 year: 2009 ident: 1218_CR11 publication-title: Neuroradiology doi: 10.1007/s00234-008-0463-x – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 1218_CR42 publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – volume: 36 start-page: 1189 issue: 4 year: 2007 ident: 1218_CR15 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.04.009 – volume: 131 start-page: 681 issue: Pt 3 year: 2008 ident: 1218_CR10 publication-title: Brain doi: 10.1093/brain/awm319 – ident: 1218_CR7 doi: 10.1007/s10334-010-0197-8 – volume: 248 start-page: 194 issue: 1 year: 2008 ident: 1218_CR9 publication-title: Radiology doi: 10.1148/radiol.2481070876 – volume: 29 start-page: 2097 issue: 11 year: 2004 ident: 1218_CR22 publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300543 – volume: 12 start-page: 652 issue: 11 year: 2011 ident: 1218_CR27 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3119 – volume: 2009 start-page: 5381 year: 2009 ident: 1218_CR4 publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 3 start-page: 190 issue: 3 year: 1995 ident: 1218_CR33 publication-title: Hum Brain Mapp doi: 10.1002/hbm.460030304 – volume-title: Simultaneous Inference for FMRI Data year: 2000 ident: 1218_CR39 – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 1218_CR41 publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 47 start-page: S39 issue: 1 year: 2009 ident: 1218_CR8 publication-title: Neuroimage – volume: 1402 start-page: 46 year: 2011 ident: 1218_CR49 publication-title: Brain Res doi: 10.1016/j.brainres.2011.05.054 – ident: 1218_CR1 doi: 10.1002/9781119998938 – volume: 17 start-page: 1493 issue: 7 year: 2007 ident: 1218_CR46 publication-title: Cereb Cortex doi: 10.1093/cercor/bhl078 – ident: 1218_CR34 – volume: 11 start-page: 157 issue: 2 year: 2001 ident: 1218_CR43 publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(00)00191-4 – volume: 6 start-page: 59 year: 2012 ident: 1218_CR14 publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2012.00059 – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 22912605 - Front Syst Neurosci. 2012 Aug 16;6:59 – reference: 24239689 - Behav Brain Res. 2014 Feb 1;259:330-5 – reference: 22129494 - Addict Biol. 2012 Nov;17 (6):1001-12 – reference: 16167192 - Appl Psychophysiol Biofeedback. 2005 Sep;30(3):285-306 – reference: 20393457 - Neuropsychopharmacology. 2010 Jun;35(7):1485-99 – reference: 15316570 - Neuropsychopharmacology. 2004 Nov;29(11):2097-17 – reference: 18202106 - Brain. 2008 Mar;131(Pt 3):681-9 – reference: 23627627 - Int J Neural Syst. 2012 Jun;22(3):1250011 – reference: 19710631 - Neuropsychopharmacology. 2010 Jan;35(1):217-38 – reference: 11229979 - Am J Psychiatry. 2001 Mar;158(3):390-8 – reference: 18396487 - Neuroimage. 2008 Feb 15;39(4):1774-82 – reference: 23162375 - Subst Abuse Rehabil. 2012 Sep;3(1):115-128 – reference: 12048041 - Clin Neurophysiol. 2002 Jun;113(6):815-25 – reference: 20162320 - MAGMA. 2010 Dec;23(5-6):351-66 – reference: 21669407 - Brain Res. 2011 Jul 21;1402:46-53 – reference: 19963901 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5381-4 – reference: 18458242 - Radiology. 2008 Jul;248(1):194-201 – reference: 20451620 - Neuroimage. 2011 May 15;56(2):788-96 – reference: 11135651 - Nat Neurosci. 2001 Jan;4(1):95-102 – reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 – reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10 ):685-94 – reference: 17081954 - Gend Med. 2006 Sep;3(3):206-22 – reference: 22139764 - NMR Biomed. 2012 May;25(5):779-86 – reference: 19961938 - Neuroimage. 2010 Mar;50(1):162-74 – reference: 16990438 - Cereb Cortex. 2007 Jul;17(7):1493-503 – reference: 22458709 - Addict Biol. 2014 Mar;19(2):250-61 – reference: 11301234 - Curr Opin Neurobiol. 2001 Apr;11(2):157-63 – reference: 24729430 - Mov Disord. 2014 Aug;29(9):1216-9 – reference: 24200212 - Am J Drug Alcohol Abuse. 2013 Nov;39(6):424-32 – reference: 22011681 - Nat Rev Neurosci. 2011 Oct 20;12(11):652-69 – reference: 17512218 - Neuroimage. 2007 Jul 15;36(4):1189-99 – reference: 24982629 - Front Hum Neurosci. 2014 Jun 16;8:425 – reference: 18846369 - Neuroradiology. 2009 Feb;51(2):73-83 – reference: 16685822 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):1-8 |
| SSID | ssj0017805 |
| Score | 2.3653088 |
| Snippet | Background
Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of... Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction.... Background Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 357 |
| SubjectTerms | Adult Algorithms Bioinformatics Biomedical and Life Sciences Brain Brain - diagnostic imaging Brain - pathology Classification Cluster Analysis Cocaine Cocaine-Related Disorders - classification Cocaine-Related Disorders - diagnostic imaging Cocaine-Related Disorders - pathology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Drug abuse Female Humans Life Sciences Male Microarrays Middle Aged Neuroimaging - methods Proceedings Sensitivity and Specificity Statistical methods Substance use Support Vector Machine Young Adult |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qq-CL1o_qaisRfFIWs9lks-lbkZY-lWJV-rYk2dnrwXWv9O4E-9ebyX7gWRXqcyZsNjOTyTC_zA_gXcgZisYRrNyhTqURNnV1ERRia2FtCFiilpFsQp-clOfn5rR_x70Y0O5DSTKe1NGty-LjIqNeayH1Jd6YrExv7sFWiHaacHyfz76NpQNq0t-XL_84bT0A3bpV3gZH_lYhjYHn6PF_LXkbHvX3THbQGcYT2MD2KTzomCd_PIP2bBWZEpvVjHm6QBNiKCqJzRsWDkkbbp9sYMj1yAgfP2GOCCXY9DJSG-0zyyZd12qChs2QXUZkJrKeimLCho7lz-Hr0eGXT8dpT72Qeqn5MpVNiOMGG2m456oOGTelRs6gs9xrj3ndZLlUXuiyVhZzjnnhrJEZN05gmeU7sNnOW3wJjMsQh4XXJiu5RGxcnatG5MoEcYcKE-CDPirf9yUneoxZFfOTsqi6bawIi0bbWN0k8H6cctU15fiX8O6g5Kr3z0UVDjIZ8gpRFgm8HYeDZ1G5xLY4X0UZpejpcJB50dnE-DWhdVEYmSeg16xlFKCu3esj7fQidu9WVBs1KoEPg838sqy__cSrO0m_hociGh1xCu3C5vJ6hXtw339fThfXb6K7_AQlhxWq priority: 102 providerName: Springer Nature |
| Title | Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach |
| URI | https://link.springer.com/article/10.1186/s12859-016-1218-z https://www.ncbi.nlm.nih.gov/pubmed/27766943 https://www.proquest.com/docview/1834772286 https://www.proquest.com/docview/1835520436 https://pubmed.ncbi.nlm.nih.gov/PMC5073995 |
| Volume | 17 |
| WOSCitedRecordID | wos000402048800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQulFchtERG4gSKmjh2HHNBULUCIVZRC2jhEtmOs6y0zZbuLhL99XicR1kqeuESKfJEiTVjz4xn8n0Az13OkNUa28q1FRGTVEW6ypxCVEWVcg6LVsyTTYjRKB-PZdEduC26tsp-T_QbdTU3eEa-70yPuUiQ5tnrsx8RskZhdbWj0NiALURJQOqGgn8bqgiI199VMpM8218kiNbmkmdknkny6GLdF10JMK_2Sf5VLPU-6Gj7f7_-Ltzpok_ypjWXe3DDNvfhVstH-esBNCcrz59Yr2bEYFiNfURedWReE7d1KheTkp4311iCXfMTopFmgkxPPeHRK6LIpMWyxoaxmSWnvl_Tko6gYkJ6HPOH8Pno8NPBu6gjZIgME_EyYrXz7tLWTMYm5pXLwzFh0tJqFRthbFrVScq4oSKvuLJpbNNMK8mSWGpq8yTdgc1m3tjHQGLmvDM1QiZ5zKytdZXymqZcOnFtuQ0g7lVTmg6tHEkzZqXPWvKsbLVZYocaarO8CODF8MhZC9VxnfBer6iyW7WL8lJLATwbht16wyKKaux85WU4xx-Kncyj1jyGt1EhskyyNACxZjiDAGJ5r4800-8e05tjxVTyAF72JvbHZ_1rEk-un8Qu3Kbe2JFaaA82l-cr-xRump_L6eI8hA0xFv6ah7D19nBUHIf-RMJdP4goxC7YIvQLyo0X7z8WX93d8cmX34v5KF8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAqIXni0EChgJLqCoiWMnMRJCCKhatawqUaTegu1MlpW22ba7C2p_FL8Rj_OApaK3Hjh78nD8eR6Z8XwAz13MkFaGysoNZqFQXIemTN2C6JJr7QwWL4Unm8gGg_zgQO0twc_uLAyVVXY60SvqcmLpH_mGg55wniDP07dHxyGxRlF2taPQaGCxg6c_XMg2fbP9wa3vC843P-6_3wpbVoHQiiyahaJyJkphJVRkI1m6YJK8fqPQ6MhmFpOyihMhLc_yUmpMIkxSo5WII2U45nHi7nsFrjo3gnNfKrjXZy2IH6DNnMZ5ujGNqTucC9aJ6SbOw7NF23fOoT1fl_lXctbbvM1b_9vXug03W--avWu2wx1YwvouXG_4Nk_vQf157vkhq_mYWQobqE7KQ5NNKuZMg3Y-N-t4gS0yOhUwZIZoNNjo0BM6vWaaDZte3VQQN0Z26OtRkbUEHEPW9WlfhS-XMtk1WK4nNT4AFgnnfXCbqTiPBGJlykRWPJHKiRuUGEDUQaGwbTd2IgUZFz4qy9OiQU9BFXiEnuIsgJf9JUdNK5KLhNc7YBStVpoWv1ERwLN-2OkTShLpGidzLyMlHZh2MvcbOPZP41mWpkokAWQLQO0FqFf54kg9-uZ7lkvKCCsZwKsO0n-81r8m8fDiSTyFG1v7n3aL3e3BziNY4X6jEY3SOizPTub4GK7Z77PR9OSJ36YMvl420n8B4h58fw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0_MAXP0-tnhrBJ6VcmyZN45uoi6IsB6dybyVJJ-vCXve43RW8v95M-oHrqSA-Z0rbzEwnw_z6-wE8Cz1D6S3Byi2qVGhuUtuUwSGm4caEgsUbEcUm1HRaHR3pg17ndDWg3YeRZPdPA7E0tev9k8Z3KV6V-6uceNdCG0waMnmVnl2ES4LQctSuH34ZxwhE2N-PMn972XYxOnfCPA-U_GVaGovQ5MZ_P_5NuN6fP9mrLmBuwQVsb8OVTpHy-x1oDzdRQdFvFszRwZqQRNF5bOlZ-HiacCplg3KuQ0a4-RmzJDTB5sdR8uglM2zWsVkTZGyB7DgiNpH1EhUzNjCZ78LnydtPr9-lvSRD6oTK1qnwob5r9EJnLpNN6MSpZbIarcmcclg0Pi-EdFxVjTRYZFiU1ujgG205VnlxF3baZYv3gWUi1GfulM6rTCB62xTS80LqYG5RYgLZ4Jva9XzlJJuxqGPfUpV1t401YdRoG-uzBJ6Pl5x0ZB1_M94bHF73ebuqwwdOhH6DV2UCT8flkHE0RjEtLjfRRkr6pTjY3OviY7wbV6ostSgSUFuRMxoQm_f2Sjv_Glm9Jc1MtUzgxRA_Pz3Wn17iwT9ZP4GrB28m9cf30w8P4RqP8UeyQ3uwsz7d4CO47L6t56vTxzGLfgCr3SFp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Successful+classification+of+cocaine+dependence+using+brain+imaging%3A+a+generalizable+machine+learning+approach&rft.jtitle=BMC+bioinformatics&rft.au=Mutlu+Mete&rft.au=Unal+Sakoglu&rft.au=Spence%2C+Jeffrey+S&rft.au=Devous%2C+Michael+D&rft.date=2016-10-06&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=17&rft_id=info:doi/10.1186%2Fs12859-016-1218-z&rft.externalDocID=4235525331 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |