3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be form...
Uloženo v:
| Vydáno v: | Frontiers in bioengineering and biotechnology Ročník 10; s. 895406 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Frontiers Media SA
25.08.2022
Frontiers Media S.A |
| Témata: | |
| ISSN: | 2296-4185, 2296-4185 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent
in vitro
testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (
p
> 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm,
p
< 0.05, vs
.
sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca
2+
oscillations (
p
< 0.05, vs
.
sham).
In vivo
studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury. |
|---|---|
| AbstractList | Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury. Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values ( p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs . sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations ( p < 0.05, vs . sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury. Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values ( p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs . sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca 2+ oscillations ( p < 0.05, vs . sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury. Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young's moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young's moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury. |
| Author | Mishchenko, Tatiana A. Klimenko, Maria O. Savelyev, Alexander G. Zvyagin, Andrei V. Vedunova, Maria V. Popov, Vladimir K. Yarkov, Roman S. Kuznetsova, Alisa I. Mariyanats, Alexandra O. Khaydukov, Evgeny V. Sochilina, Anastasia V. |
| AuthorAffiliation | 4 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS , Moscow , Russia 2 Federal Scientific Research Centre “Crystallography and Photonics” , Russian Academy of Sciences , Troitsk-Moscow , Russia 3 Sechenov First Moscow State Medical University , Moscow , Russia 5 MQ Photonics Centre , Macquarie University , Sydney , NSW , Australia 1 Institute of Biology and Biomedicine , National Research Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia |
| AuthorAffiliation_xml | – name: 4 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS , Moscow , Russia – name: 1 Institute of Biology and Biomedicine , National Research Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia – name: 2 Federal Scientific Research Centre “Crystallography and Photonics” , Russian Academy of Sciences , Troitsk-Moscow , Russia – name: 3 Sechenov First Moscow State Medical University , Moscow , Russia – name: 5 MQ Photonics Centre , Macquarie University , Sydney , NSW , Australia |
| Author_xml | – sequence: 1 givenname: Tatiana A. surname: Mishchenko fullname: Mishchenko, Tatiana A. – sequence: 2 givenname: Maria O. surname: Klimenko fullname: Klimenko, Maria O. – sequence: 3 givenname: Alisa I. surname: Kuznetsova fullname: Kuznetsova, Alisa I. – sequence: 4 givenname: Roman S. surname: Yarkov fullname: Yarkov, Roman S. – sequence: 5 givenname: Alexander G. surname: Savelyev fullname: Savelyev, Alexander G. – sequence: 6 givenname: Anastasia V. surname: Sochilina fullname: Sochilina, Anastasia V. – sequence: 7 givenname: Alexandra O. surname: Mariyanats fullname: Mariyanats, Alexandra O. – sequence: 8 givenname: Vladimir K. surname: Popov fullname: Popov, Vladimir K. – sequence: 9 givenname: Evgeny V. surname: Khaydukov fullname: Khaydukov, Evgeny V. – sequence: 10 givenname: Andrei V. surname: Zvyagin fullname: Zvyagin, Andrei V. – sequence: 11 givenname: Maria V. surname: Vedunova fullname: Vedunova, Maria V. |
| BookMark | eNp9ks1uEzEUhUeoiJbQB2A3EpsiMcH_9myQSktLpQo2sLYc-07iaGIH2wPqU_DKeJoK0S7Y-PecT_fa52VzFGKApnmN0ZJS1b8fVj7CkiBClqrnDIlnzQkhvegYVvzon_Vxc5rzFiGECZdckRfNMRWox4zhk-Y3vez2yYcCrt3cmXFKMXjbGuvnvUtxDWObrRmGOLrc-t0-wTqYWf7Ll00boDpKivtNdQ3Glphye_bx8svVu_a6jm_bIaZ2H3PpSjLTzpSqWyXjQ1t8zhO0CWwMuaTJFh_Dq-b5YMYMpw_zovl-9enbxefu9uv1zcX5bWeZRKVjUmLulKEguAEuQSFDnXNSGWcoYsJZwmGFCaGISwRY9VIxOhCqlEJA6aK5OXBdNFtdX2Bn0p2Oxuv7g5jW2qRa6whaGOEIG5QEypnBsh-M661iHBHnBKwq68OBtZ9WO3AWQm11fAR9fBP8Rq_jT90zTpUQFXD2AEjxxwS56J3PFsbRBIhT1kRiSlHPageL5s0T6TZOKdSn0pRIihQVdAbig8qmmHOC4W8xGOk5Pfo-PXpOjz6kp3rkE4_1xcx_Umv243-cfwDLrs1g |
| CitedBy_id | crossref_primary_10_1088_2631_7990_ace56c crossref_primary_10_3389_fchem_2024_1445664 crossref_primary_10_1002_brb3_70573 crossref_primary_10_1016_j_biomaterials_2025_123332 crossref_primary_10_1186_s42825_025_00209_6 crossref_primary_10_1186_s13287_024_03874_2 crossref_primary_10_1002_mabi_202200577 crossref_primary_10_1186_s40824_023_00460_0 crossref_primary_10_3233_JAD_230739 crossref_primary_10_1002_adfm_202419211 crossref_primary_10_3390_neurolint15030049 crossref_primary_10_1080_00914037_2024_2360956 crossref_primary_10_3390_membranes12100948 crossref_primary_10_1021_acsbiomaterials_4c02245 crossref_primary_10_3389_fbioe_2024_1515164 crossref_primary_10_1089_adt_2025_031 crossref_primary_10_4103_1673_5374_391179 crossref_primary_10_1089_neu_2024_0544 crossref_primary_10_3390_biotech14030065 crossref_primary_10_1016_j_ijbiomac_2025_142981 crossref_primary_10_3390_ijms26157262 |
| Cites_doi | 10.1002/adma.201003963 10.1016/B978-0-12-800269-8.00009-9 10.1038/nrn3379 10.1016/B978-0-444-63486-3.00003-7 10.18433/j3k89d 10.1016/j.neuron.2010.05.030 10.1056/nejmra1208708 10.1038/nrneurol.2009.54 10.1016/j.biomaterials.2016.07.028 10.3389/fphys.2018.01925 10.2144/btn-2018-0083 10.1021/bm401712q 10.1080/01616412.2020.1735819 10.1016/j.brainresbull.2017.03.003 10.1038/382080a0 10.1134/s1990747818020095 10.3109/08977194.2012.691478 10.1039/c8bm00422f 10.1016/j.wneu.2019.07.039 10.1016/j.carbpol.2017.01.009 10.1515/revneuro-2017-0017 10.3171/2020.4.JNS20701 10.1016/s0896-6273(01)00434-2 10.1155/2019/1036907 10.3390/antiox9080662 10.2174/1570159x15666170613083606 10.1055/a-0991-7585 10.3390/ijms19082295 10.1016/s0092-8674(00)81311-2 10.1021/acsbiomaterials.0c00741 10.1039/c7tb03213g 10.1007/s11095-011-0452-3 10.3389/fncel.2013.00149 10.1007/s12975-014-0327-0 10.1016/j.neures.2008.04.008 10.1007/s00441-020-03287-6 10.1007/s00441-020-03261-2 10.1016/j.actbio.2018.09.020 10.1007/s00221-018-5344-x 10.1016/j.actbio.2019.11.032 10.1016/0006-8993(81)90067-6 10.3390/cells9092113 10.1523/jneurosci.3239-09.2009 10.1159/000071817 10.3390/ijms21207777 10.1098/rstb.2013.0591 10.3390/brainsci8060109 10.1016/s0166-4328(98)00158-2 10.1177/0271678x16649964 10.17691/stm2018.10.1.11 10.1002/biot.201600671 10.1016/j.celrep.2019.11.100 10.1093/rb/rbz027 10.1016/j.jphotochem.2017.03.026 10.1146/annurev.neuro.24.1.677 10.1038/mp.2017.61 10.1242/dev.140350 10.1016/j.brainres.2017.03.029 10.3390/cells9071743 10.1088/1361-6501/ab0fb4 10.3390/ijms22041585 10.1126/sciadv.aba7406 10.3389/fbioe.2021.783834 10.1002/jbm.a.36814 10.3390/ijms19113650 10.1038/nprot.2009.148 10.1007/s10571-017-0510-4 10.1155/2015/453901 10.1212/wnl.0000000000001507 10.1242/dev.127.7.1477 10.1016/j.injury.2018.12.027 10.1016/j.biomaterials.2009.09.002 10.1016/bs.vh.2016.10.004 10.1016/j.neuropharm.2018.06.005 10.3389/fnins.2016.00026 10.1001/jamaneurol.2014.3558 10.1016/j.biomaterials.2009.05.009 10.1038/nrn812 10.3390/ijms22041885 10.24411/2500-2295-2020-10011 10.1007/s10856-018-6105-x 10.3390/bioengineering5010006 10.1007/978-981-13-0950-2_17 10.1007/978-1-4939-7571-6_1 10.1073/pnas.2131948100 10.1016/j.expneurol.2018.08.014 10.1016/j.copbio.2016.02.008 10.4103/1673-5374.198964 10.1080/14737175.2019.1582332 10.1152/ajpregu.1999.277.4.r1196 10.1038/nn1855 10.1016/j.nbd.2016.01.021 10.1039/c2sm06463d 10.3390/ijms22073582 10.3389/fcell.2020.00582 10.1007/s00005-015-0376-4 10.1089/neu.1998.15.599 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova. Copyright © 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova. 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova |
| Copyright_xml | – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova. – notice: Copyright © 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova. 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3389/fbioe.2022.895406 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Mishchenko et al |
| EISSN | 2296-4185 |
| ExternalDocumentID | oai_doaj_org_article_6a6d24f87e354a179fad9c84502dd6eb PMC9453866 10_3389_fbioe_2022_895406 |
| GeographicLocations | United States--US Russia |
| GeographicLocations_xml | – name: Russia – name: United States--US |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GNUQQ HCIFZ K9. LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c470t-47715d8a3e65ae57e80a3ddd78ada3046dc25eb12230570e1897843f238880e33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891273400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-4185 |
| IngestDate | Fri Oct 03 12:53:03 EDT 2025 Tue Sep 30 16:54:04 EDT 2025 Wed Oct 01 11:51:15 EDT 2025 Mon Nov 24 21:40:58 EST 2025 Tue Nov 18 22:36:26 EST 2025 Sat Nov 29 05:42:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-47715d8a3e65ae57e80a3ddd78ada3046dc25eb12230570e1897843f238880e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Bin Li, Soochow University, China Rami Mhanna, American University of Beirut, Lebanon This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology Reviewed by: Mohammad Karimipour, Tabriz University of Medical Sciences, Iran |
| OpenAccessLink | https://doaj.org/article/6a6d24f87e354a179fad9c84502dd6eb |
| PMID | 36091441 |
| PQID | 3273083636 |
| PQPubID | 7426804 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6a6d24f87e354a179fad9c84502dd6eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_9453866 proquest_miscellaneous_2713309484 proquest_journals_3273083636 crossref_primary_10_3389_fbioe_2022_895406 crossref_citationtrail_10_3389_fbioe_2022_895406 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-25 |
| PublicationDateYYYYMMDD | 2022-08-25 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Frontiers in bioengineering and biotechnology |
| PublicationYear | 2022 |
| Publisher | Frontiers Media SA Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
| References | Xu (B97) 2012; 8 Lazaridis (B42) 2019; 145 Moshayedi (B56) 2016; 105 Beni-Adani (B5) 2001; 296 Smith (B76) 2018; 5 Ghuman (B24) 2018; 80 Senkov (B72) 2014; 214 Duarte (B19) 2012; 30 Kaur (B36) 2018; 16 Sudha (B82) 2014; 72 Mitroshina Е (B54) 2019; 18 Ladak (B41) 2019; 131 Savyuk (B71) 2020; 9 Leal (B43) 2017; 104 Kochlamazashvili (B38) 2010; 67 Novozhilova (B61) 2020; 7 Rusakov (B67) 2014; 369 Castrén (B11) 2017; 22 Colucci-D'Amato (B15) 2020; 21 Tom (B85) 2018; 236 Bobula (B6) 2017; 161 Oliveira (B63) 2018; 1078 Killen (B37) 2019; 19 Jensen (B33) 2020; 9 Später (B79) 2020; 6 Savelyev (B70) 2021; 9 Vedunova (B87) 2013; 7 Wang (B92) 2001; 32 Highley (B27) 2016; 40 Sochilina (B77) 2019; 30 Ledda (B44) 2007; 10 Benarroch (B4) 2015; 84 Ibáñez (B29) 2017; 97 Leipzig (B45) 2009; 30 Vedunova (B89) 2015; 453901 Huang (B28) 2001; 24 Nakaji-Hirabayashi (B57) 2009; 30 Doxakis (B18) 2000; 127 Nielsen (B59) 2009; 29 Burdick (B8) 2011; 23 Mitroshina (B52) 2021; 22 Zuccato (B101) 2009; 5 Cao (B10) 2008; 61 Ahmadian (B2) 2020; 70 Tajdaran (B83) 2019; 319 Vedunova (B88) 2014; 6 Mitroshina Е (B55) 2018; 19 Choi (B13) 2019; 66 Shirokova (B74) 2013; 5 Mishchenko (B51) 2019; 9 Wurzelmann (B95) 2017; 12 Mitroshina (B53) 2020; 8 Corps (B17) 2015; 72 Vilar (B90) 2016; 10 Liu (B46) 2018; 29 Fox (B23) 1998; 15 Ji (B34) 2020; 42 Ning (B60) 2017; 12 Xiao (B96) 2016; 64 Abatangelo (B1) 2020; 9 Hassannejad (B26) 2019; 5050 Park (B64) 2013; 14 Bonafina (B7) 2019; 29 Faden (B20) 1999; 277 Irala (B31) 2016; 143 Prickaerts (B66) 1999; 102 Stocchetti (B81) 2014; 370 Itami (B32) 2003; 100 Lu (B48) 2019; 6 Jing (B35) 1996; 85 Cacialli (B9) 2021; 22 Song (B78) 2018; 136 Walker (B91) 2018; 8 Mishchenko (B50) 2018; 12 Savelyev (B68) 2017; 341 Flierl (B22) 2009; 4 Zhang (B99) 2014; 5 Kowiański (B39) 2018; 38 Wang (B94) 2011; 28 Numakawa (B62) 2018; 19 Skaper (B75) 2018; 1727 Wang (B93) 2003; 12 Cook (B16) 2017; 37 Sevost'yanov (B73) 2018; 29 Lonser (B47) 2020; 10 Savelyev (B69) 2018; 10 Tan (B84) 2020; 102 Mahumane (B49) 2018; 6 Chen (B12) 2020; 6 Neuman (B58) 2015; 18 Feeney (B21) 1981; 211 Zhang (B98) 2018; 6 Zhao (B100) 2017; 15 Gustafsson (B25) 2021; 22 Perkins (B65) 2017; 28 Airaksinen (B3) 2002; 3 Cintrón-Colón (B14) 2020; 382 Ibáñez (B30) 2020; 382 Treanor (B86) 1996; 382 Spearman (B80) 2020; 108 Kufelt (B40) 2014; 15 |
| References_xml | – volume: 23 start-page: H41 year: 2011 ident: B8 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv. Mat. doi: 10.1002/adma.201003963 – volume: 72 start-page: 137 year: 2014 ident: B82 article-title: Beneficial effects of hyaluronic acid publication-title: Adv. Food Nutr. Res. doi: 10.1016/B978-0-12-800269-8.00009-9 – volume: 14 start-page: 7 year: 2013 ident: B64 article-title: Neurotrophin regulation of neural circuit development and function publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3379 – volume: 214 start-page: 53 year: 2014 ident: B72 article-title: Neural ECM molecules in synaptic plasticity, learning, and memory publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-63486-3.00003-7 – volume: 18 start-page: 53 year: 2015 ident: B58 article-title: Hyaluronic acid and wound healing publication-title: J. Pharm. Pharm. Sci. doi: 10.18433/j3k89d – volume: 67 start-page: 116 year: 2010 ident: B38 article-title: The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels publication-title: Neuron doi: 10.1016/j.neuron.2010.05.030 – volume: 370 start-page: 2121 year: 2014 ident: B81 article-title: Traumatic intracranial hypertension publication-title: N. Engl. J. Med. Overseas. Ed. doi: 10.1056/nejmra1208708 – volume: 5 start-page: 6 year: 2013 ident: B74 article-title: Morphofunctional patterns of neuronal network developing in dissociated hippocampal cell cultures publication-title: Sovrem. Tehnol. V. Med. – volume: 5 start-page: 311 year: 2009 ident: B101 article-title: Brain-derived neurotrophic factor in neurodegenerative diseases publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2009.54 – volume: 105 start-page: 145 year: 2016 ident: B56 article-title: Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.07.028 – volume: 9 start-page: 1925 year: 2019 ident: B51 article-title: Features of neural network formation and their functions in primary hippocampal cultures in the context of chronic TrkB receptor system influence publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01925 – volume: 66 start-page: 40 year: 2019 ident: B13 article-title: Recent advances in photo-crosslinkable hydrogels for biomedical applications publication-title: Biotechniques doi: 10.2144/btn-2018-0083 – volume: 15 start-page: 650 year: 2014 ident: B40 article-title: Hyaluronic acid based materials for scaffolding via two-photon polymerization publication-title: Biomacromolecules doi: 10.1021/bm401712q – volume: 42 start-page: 361 year: 2020 ident: B34 article-title: Protective effect of brain-derived neurotrophic factor and neurotrophin-3 overexpression by adipose-derived stem cells combined with silk fibroin/chitosan scaffold in spinal cord injury publication-title: Neurol. Res. doi: 10.1080/01616412.2020.1735819 – volume: 136 start-page: 101 year: 2018 ident: B78 article-title: Crosstalk between glia, extracellular matrix and neurons publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2017.03.003 – volume: 382 start-page: 80 year: 1996 ident: B86 article-title: Characterization of a multicomponent receptor for GDNF publication-title: Nature doi: 10.1038/382080a0 – volume: 12 start-page: 170 year: 2018 ident: B50 article-title: Applicability of live cell imaging of mRNA expression in combination with calcium imaging for in vitro studies of neural network activity publication-title: Biochem. Mosc. Suppl. Ser. A doi: 10.1134/s1990747818020095 – volume: 30 start-page: 242 year: 2012 ident: B19 article-title: Neuroprotection by GDNF in the ischemic brain publication-title: Growth factors. doi: 10.3109/08977194.2012.691478 – volume: 6 start-page: 2812 year: 2018 ident: B49 article-title: 3D scaffolds for brain tissue regeneration: Architectural challenges publication-title: Biomater. Sci. doi: 10.1039/c8bm00422f – volume: 131 start-page: 126 year: 2019 ident: B41 article-title: A review of the molecular mechanisms of traumatic brain injury publication-title: World Neurosurg. x. doi: 10.1016/j.wneu.2019.07.039 – volume: 161 start-page: 277 year: 2017 ident: B6 article-title: A novel photopolymerizable derivative of hyaluronan for designed hydrogel formation publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.01.009 – volume: 28 start-page: 869 year: 2017 ident: B65 article-title: Brain extracellular space, hyaluronan, and the prevention of epileptic seizures publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2017-0017 – volume: 10 start-page: 1751 year: 2020 ident: B47 article-title: Direct convective delivery of adeno-associated virus gene therapy for treatment of neurological disorders publication-title: J. Neurosurg. doi: 10.3171/2020.4.JNS20701 – volume: 32 start-page: 99 year: 2001 ident: B92 article-title: Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca(2+) channels and transmitter release publication-title: Neuron doi: 10.1016/s0896-6273(01)00434-2 – volume: 18 start-page: 1036907 year: 2019 ident: B54 article-title: Intracellular neuroprotective mechanisms in neuron-glial networks mediated by glial cell line-derived neurotrophic factor publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/1036907 – volume: 9 start-page: 662 year: 2020 ident: B71 article-title: Neuroprotective effect of HIF prolyl hydroxylase inhibition in an in vitro hypoxia model publication-title: Antioxidants doi: 10.3390/antiox9080662 – volume: 16 start-page: 1224 year: 2018 ident: B36 article-title: Recent advances in pathophysiology of traumatic brain injury publication-title: Curr. Neuropharmacol. doi: 10.2174/1570159x15666170613083606 – volume: 70 start-page: 6 year: 2020 ident: B2 article-title: The potential applications of hyaluronic acid hydrogels in biomedicine publication-title: Drug Res. (Stuttg). doi: 10.1055/a-0991-7585 – volume: 19 start-page: 2295 year: 2018 ident: B55 article-title: AAV-Syn-BDNF-EGFP virus construct exerts neuroprotective action on the hippocampal neural network during hypoxia in vitro publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19082295 – volume: 85 start-page: 1113 year: 1996 ident: B35 article-title: GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF publication-title: Cell doi: 10.1016/s0092-8674(00)81311-2 – volume: 6 start-page: 5744 year: 2020 ident: B79 article-title: In vitro and in vivo analysis of adhesive, anti-inflammatory, and proangiogenic properties of novel 3D printed hyaluronic acid glycidyl methacrylate hydrogel scaffolds for tissue engineering publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c00741 – volume: 6 start-page: 2982 year: 2018 ident: B98 article-title: Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury publication-title: J. Mat. Chem. B doi: 10.1039/c7tb03213g – volume: 28 start-page: 1406 year: 2011 ident: B94 article-title: Combination of hyaluronic acid hydrogel scaffold and PLGA microspheres for supporting survival of neural stem cells publication-title: Pharm. Res. doi: 10.1007/s11095-011-0452-3 – volume: 7 start-page: 149 year: 2013 ident: B87 article-title: Seizure-like activity in hyaluronidase-treated dissociated hippocampal cultures publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2013.00149 – volume: 5 start-page: 454 year: 2014 ident: B99 article-title: Traumatic brain injury using mouse models publication-title: Transl. Stroke Res. doi: 10.1007/s12975-014-0327-0 – volume: 61 start-page: 390 year: 2008 ident: B10 article-title: Involvement of NCAM in the effects of GDNF on the neurite outgrowth in the dopamine neurons publication-title: Neurosci. Res. doi: 10.1016/j.neures.2008.04.008 – volume: 382 start-page: 47 year: 2020 ident: B14 article-title: GDNF synthesis, signaling, and retrograde transport in motor neurons publication-title: Cell Tissue Res. doi: 10.1007/s00441-020-03287-6 – volume: 382 start-page: 71 year: 2020 ident: B30 article-title: RET-independent signaling by GDNF ligands and GFRα receptors publication-title: Cell Tissue Res. doi: 10.1007/s00441-020-03261-2 – volume: 80 start-page: 66 year: 2018 ident: B24 article-title: Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.09.020 – volume: 236 start-page: 3077 year: 2018 ident: B85 article-title: Effects of bioengineered scaffold loaded with neurotrophins and locomotor training in restoring H-reflex responses after spinal cord injury publication-title: Exp. Brain Res. doi: 10.1007/s00221-018-5344-x – volume: 102 start-page: 1 year: 2020 ident: B84 article-title: The use of bioactive matrices in regenerative therapies for traumatic brain injury publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.11.032 – volume: 211 start-page: 67 year: 1981 ident: B21 article-title: Responses to cortical injury: I. Methodology and local effects of contusions in the rat publication-title: Brain Res. doi: 10.1016/0006-8993(81)90067-6 – volume: 9 start-page: 2113 year: 2020 ident: B33 article-title: Hyaluronic acid biomaterials for central nervous system regenerative medicine publication-title: Cells doi: 10.3390/cells9092113 – volume: 29 start-page: 11360 year: 2009 ident: B59 article-title: Role of glial cell line-derived neurotrophic factor (GDNF)-neural cell adhesion molecule (NCAM) interactions in induction of neurite outgrowth and identification of a binding site for NCAM in the heel region of GDNF publication-title: J. Neurosci. doi: 10.1523/jneurosci.3239-09.2009 – volume: 12 start-page: 78 year: 2003 ident: B93 article-title: GDNF acutely potentiates Ca2+ channels and excitatory synaptic transmission in midbrain dopaminergic neurons publication-title: Neurosignals doi: 10.1159/000071817 – volume: 21 start-page: 7777 year: 2020 ident: B15 article-title: Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21207777 – volume: 369 start-page: 20130591 year: 2014 ident: B67 article-title: Brain circuitry outside the synaptic cleft publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2013.0591 – volume: 8 start-page: 109 year: 2018 ident: B91 article-title: History of glial cell line-derived neurotrophic factor (GDNF) and its use for spinal cord injury repair publication-title: Brain Sci. doi: 10.3390/brainsci8060109 – volume: 102 start-page: 73 year: 1999 ident: B66 article-title: Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: A correlation analysis publication-title: Behav. Brain Res. doi: 10.1016/s0166-4328(98)00158-2 – volume: 37 start-page: 1030 year: 2017 ident: B16 article-title: Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke publication-title: J. Cereb. Blood Flow. Metab. doi: 10.1177/0271678x16649964 – volume: 10 start-page: 88 year: 2018 ident: B69 article-title: Extrusion-based 3D printing of photocurable hydrogels in presence of flavin mononucleotide for tissue engineering publication-title: Sovrem. Tehnol. Med. doi: 10.17691/stm2018.10.1.11 – volume: 12 start-page: 1600671 year: 2017 ident: B60 article-title: A brief review of extrusion-based tissue scaffold bio-printing publication-title: Biotechnol. J. doi: 10.1002/biot.201600671 – volume: 29 start-page: 4308 year: 2019 ident: B7 article-title: GDNF and GFRα1 are required for proper integration of adult-born hippocampal neurons publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.11.100 – volume: 6 start-page: 325 year: 2019 ident: B48 article-title: Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats publication-title: Regen. Biomater. doi: 10.1093/rb/rbz027 – volume: 341 start-page: 108 year: 2017 ident: B68 article-title: Flavin mononucleotide photoinitiated cross-linking of hydrogels: Polymer concentration threshold of strengthening publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2017.03.026 – volume: 24 start-page: 677 year: 2001 ident: B28 article-title: Neurotrophins: Roles in neuronal development and function publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.677 – volume: 22 start-page: 1085 year: 2017 ident: B11 article-title: Neuronal plasticity and neurotrophic factors in drug responses publication-title: Mol. Psychiatry doi: 10.1038/mp.2017.61 – volume: 143 start-page: 4224 year: 2016 ident: B31 article-title: The GDNF-GFRα1 complex promotes the development of hippocampal dendritic arbors and spines via NCAM publication-title: Development doi: 10.1242/dev.140350 – volume: 15 start-page: 1 year: 2017 ident: B100 article-title: Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments publication-title: Brain Res. doi: 10.1016/j.brainres.2017.03.029 – volume: 9 start-page: 1743 year: 2020 ident: B1 article-title: Hyaluronic acid: Redefining its role publication-title: Cells doi: 10.3390/cells9071743 – volume: 30 start-page: 075102 year: 2019 ident: B77 article-title: Quantitative detection of double bonds in hyaluronic acid derivative via permanganate ion reduction publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab0fb4 – volume: 22 start-page: 1585 year: 2021 ident: B9 article-title: Neurotrophins time point intervention after traumatic brain injury: From zebrafish to human publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22041585 – volume: 6 start-page: eaba7406 year: 2020 ident: B12 article-title: Noninvasive in vivo 3D bioprinting publication-title: Sci. Adv. doi: 10.1126/sciadv.aba7406 – volume: 9 year: 2021 ident: B70 article-title: Facile cell-friendly hollow-core fiber diffusion-limited photofabrication publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.783834 – volume: 108 start-page: 279 year: 2020 ident: B80 article-title: Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications publication-title: J. Biomed. Mat. Res. A doi: 10.1002/jbm.a.36814 – volume: 19 start-page: 3650 year: 2018 ident: B62 article-title: Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19113650 – volume: 4 start-page: 1328 year: 2009 ident: B22 article-title: Mouse closed head injury model induced by a weight-drop device publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.148 – volume: 38 start-page: 579 year: 2018 ident: B39 article-title: Bdnf: A key factor with multipotent impact on brain signaling and synaptic plasticity publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-017-0510-4 – volume: 453901 start-page: 453901 year: 2015 ident: B89 article-title: TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2015/453901 – volume: 84 start-page: 1693 year: 2015 ident: B4 article-title: Brain-derived neurotrophic factor: Regulation, effects, and potential clinical relevance publication-title: Neurology doi: 10.1212/wnl.0000000000001507 – volume: 6 start-page: 38 year: 2014 ident: B88 article-title: Antihypoxic and neuroprotective properties of BDNF and GDNF in vitro and in vivo under hypoxic conditions publication-title: Sovrem. Tehnol. V. Med. – volume: 127 start-page: 1477 year: 2000 ident: B18 article-title: Depolarisation causes reciprocal changes in GFR(alpha)-1 and GFR(alpha)-2 receptor expression and shifts responsiveness to GDNF and neurturin in developing neurons publication-title: Development doi: 10.1242/dev.127.7.1477 – volume: 5050 start-page: 27823 year: 2019 ident: B26 article-title: Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury publication-title: Inj. Int. J. Care Inj. doi: 10.1016/j.injury.2018.12.027 – volume: 30 start-page: 6867 year: 2009 ident: B45 article-title: The effect of substrate stiffness on adult neural stem cell behavior publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.002 – volume: 296 start-page: 57 year: 2001 ident: B5 article-title: A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice publication-title: J. Pharmacol. Exp. Ther. – volume: 104 start-page: 153 year: 2017 ident: B43 article-title: BDNF and hippocampal synaptic plasticity publication-title: Vitam. Horm. doi: 10.1016/bs.vh.2016.10.004 – volume: 145 start-page: 145 year: 2019 ident: B42 article-title: Secondary brain injury: Predicting and preventing insults publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.06.005 – volume: 10 start-page: 26 year: 2016 ident: B90 article-title: Regulation of neurogenesis by neurotrophins during adulthood: Expected and unexpected roles publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00026 – volume: 72 start-page: 355 year: 2015 ident: B17 article-title: Inflammation and neuroprotection in traumatic brain injury publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2014.3558 – volume: 30 start-page: 4581 year: 2009 ident: B57 article-title: Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.05.009 – volume: 3 start-page: 383 year: 2002 ident: B3 article-title: The GDNF family: Signalling, biological functions and therapeutic value publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn812 – volume: 22 start-page: 1885 year: 2021 ident: B52 article-title: Neuroprotective effect of kinase inhibition in ischemic factor modeling in vitro publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22041885 – volume: 7 start-page: 22 year: 2020 ident: B61 article-title: Evaluation of the effectiveness of scaffolds based on hyaluronic acid glycidyl methacrylate as a possible platform for brain treatment publication-title: Opera medica physiologyca doi: 10.24411/2500-2295-2020-10011 – volume: 29 start-page: 102 year: 2018 ident: B46 article-title: Spatio-temporal release of NGF and GDNF from multi-layered nanofibrous bicomponent electrospun scaffolds publication-title: J. Mat. Sci. Mat. Med. doi: 10.1007/s10856-018-6105-x – volume: 5 start-page: 6 year: 2018 ident: B76 article-title: Development of self-assembled nanoribbon bound peptide-polyaniline composite scaffolds and their interactions with neural cortical cells publication-title: Bioengineering doi: 10.3390/bioengineering5010006 – volume: 1078 start-page: 323 year: 2018 ident: B63 article-title: Biomaterials developments for brain tissue engineering publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-13-0950-2_17 – volume: 29 start-page: 018 year: 2018 ident: B73 article-title: Biocompatibility of new materials based on nano-structured nitinol with titanium and tantalum composite surface layers: Experimental analysis in vitro and in vivo publication-title: J. Mater Sci. Mater Med. – volume: 1727 start-page: 7571 year: 2018 ident: B75 article-title: Neurotrophic factors: An overview publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7571-6_1 – volume: 100 start-page: 13069 year: 2003 ident: B32 article-title: Brain-derived neurotrophic factor-dependent unmasking of "silent" synapses in the developing mouse barrel cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2131948100 – volume: 319 start-page: 112817 year: 2019 ident: B83 article-title: Matrices, scaffolds, and carriers for protein and molecule delivery in peripheral nerve regeneration publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2018.08.014 – volume: 40 start-page: 35 year: 2016 ident: B27 article-title: Recent advances in hyaluronic acid hydrogels for biomedical applications publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.02.008 – volume: 12 start-page: 7 year: 2017 ident: B95 article-title: Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.198964 – volume: 19 start-page: 227 year: 2019 ident: B37 article-title: Metabolism and inflammation: Implications for traumatic brain injury therapeutics publication-title: Expert Rev. Neurother. doi: 10.1080/14737175.2019.1582332 – volume: 277 start-page: R1196 year: 1999 ident: B20 article-title: Novel TRH analog improves motor and cognitive recovery after traumatic brain injury in rodents publication-title: Am. J. Physiology-Regulatory Integr. Comp. Physiology doi: 10.1152/ajpregu.1999.277.4.r1196 – volume: 10 start-page: 293 year: 2007 ident: B44 article-title: GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion publication-title: Nat. Neurosci. doi: 10.1038/nn1855 – volume: 97 start-page: 80 year: 2017 ident: B29 article-title: Biology of GDNF and its receptors - relevance for disorders of the central nervous system publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2016.01.021 – volume: 8 start-page: 3280 year: 2012 ident: B97 article-title: Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks publication-title: Soft Matter doi: 10.1039/c2sm06463d – volume: 22 start-page: 3582 year: 2021 ident: B25 article-title: The role of BDNF in experimental and clinical traumatic brain injury publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22073582 – volume: 8 year: 2020 ident: B53 article-title: Brain-Derived neurotrophic factor (BDNF) preserves the functional integrity of neural networks in the β-amyloidopathy model in vitro publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00582 – volume: 64 start-page: 89 year: 2016 ident: B96 article-title: Neurotrophic factors and their potential applications in tissue regeneration publication-title: Arch. Immunol. Ther. Exp. Warsz. doi: 10.1007/s00005-015-0376-4 – volume: 15 start-page: 599 year: 1998 ident: B23 article-title: Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse publication-title: J. Neurotrauma doi: 10.1089/neu.1998.15.599 |
| SSID | ssj0001257582 |
| Score | 2.3312445 |
| Snippet | Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC)... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 895406 |
| SubjectTerms | 3-D printers 3D printing Biocompatibility Biodegradation Bioengineering and Biotechnology brain trauma Brain-derived neurotrophic factor Calcium signalling Cytotoxicity Design Exploratory behavior Extracellular matrix Glial cell line-derived neurotrophic factor Hippocampus Hyaluronic acid Hydrogels Long term memory Mechanical properties Neuronal-glial interactions neurotransplantation neurotrophic factors BDNF and GDNF Penicillin Potassium Reconstructive surgery Recovery of function scaffold Tissue engineering Transplants & implants Traumatic brain injury |
| SummonAdditionalLinks | – databaseName: ProQuest Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVg4QAHlk8R2EVG4gCI7KaxHTun1S5L4YCqPYC0N8v1R1upJCFpkfgV_GVm3LQ0l71wqZTGURK98fjNjPOGkDdAUoUbeZ9aZVjKZSjTMlieZiXQOV8yw0L8UPirnEzU9XV51Sfcun5b5dYnRkftaos58lMG6ywqKbPirPmZYtcorK72LTRukzuoksDi1r2rvRwLkBGVb4qZEIuVp2G6qFEcM89PVAlkpRgsR1G1f0A1hxsl91ae8eH_PvND8qDnnPR8YySPyC1fPSb395QIn5A_7DLFFB_wTzr_bZbrKJlLjV3gsWvrmV_SzpoQ6qXr6OJH0_pZZXA4ZnJplMVctXUzh6v6Hj707cXlZPyBfobfdxTIMW3qbpXCK66jTiydYnsKuorQ0xiZ79Rsn5Lv40_fPn5J-14NqeUyWwHKciQc4O0LYbyQXmWGOeekMs5g9dXZXMC6AGwEGGLmRwrCV84CMAbwIJ6xZ-Sgqiv_nFCpgBUJLPBlgQcmpixknDnDOVPA3kRCsi1k2vZC5thPY6khoEGUdURZI8p6g3JC3u8uaTYqHjcNvkA72A1EAe74R93OdD-fdWEKl_OgpGeCG_BqwbjSKi6y3LnCTxNytDUJ3XuFTv-zh4S83p2G-YxFGlP5et3pHLMGEHMrnhA5sL7BAw3PVIt5VAYvOaxfRfHi5pu_JPfwdTEznosjcgDQ-mNy1_4CwNtXcQr9Ba9sKL4 priority: 102 providerName: ProQuest |
| Title | 3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction |
| URI | https://www.proquest.com/docview/3273083636 https://www.proquest.com/docview/2713309484 https://pubmed.ncbi.nlm.nih.gov/PMC9453866 https://doaj.org/article/6a6d24f87e354a179fad9c84502dd6eb |
| Volume | 10 |
| WOSCitedRecordID | wos000891273400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-4185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257582 issn: 2296-4185 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-4185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257582 issn: 2296-4185 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2296-4185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257582 issn: 2296-4185 databaseCode: 7X7 dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science Database customDbUrl: eissn: 2296-4185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257582 issn: 2296-4185 databaseCode: M7P dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2296-4185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257582 issn: 2296-4185 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2296-4185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257582 issn: 2296-4185 databaseCode: PIMPY dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxFMUlspIHAARNo3t2DlStgUkqCIEUjlZrh_bSiWpmhaJC3-Bv8yMk62aC1y4WEpsK45nJvON7XxDyDMAqcKNvE-sMizhMhRJESxP0gLgnC-YYSH-KPxRzmZqPi_Ko1RfeCaspQduJ-4sN7nLeFDSM8ENqE8wrrCKizRzLvcL_PoC6jkKptrVFYAhKmu3MSEKK87CYlUjLWaWvVYFwJS854giX38PZPaPSB75nOltcqsDi_RNO8g75Iqv7pKbRxSC98hvdp7g2hwAR7r8adb7yHVLjV3htdvWF35NG2tCqNeuoavvm62_qAw2xyVYGvksd9t6s4ReXfId-nx8Ppu-ou-gfEEB1dJN3ewSGOE-ErzSBeaVoLsoMxpD6gMN7X3ydTr58vZ90iVZSCyX6Q7EI0fCgaB8LowX0qvUMOecVMYZ3DZ1NhPwQQcYAdAu9SMFcSdnAVw9mL5n7AE5qerKPyRUKoAzAnfm0sADEwsWUs6c4ZwpgF1iQNLLGde2YyDHRBhrDZEICklHIWkUkm6FNCAvD102Lf3G3xqPUYyHhsicHW-APulOn_S_9GlATi-VQHfm3GgGIA9pvBk84-mhGgwRd1dM5et9ozMM9yFYVnxAZE95egPq11SrZaT0Ljg4njx_9D_e4DG5gZOCC9-ZOCUnoAD-Cbluf4BabIfkqpzLWKohuTaezMrPw2g7Qzz2WmL5awI15YdP5bc__LkieQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLamDgl24DeiMMBIIAEiLI3txDkgxChl1bqqhyGNk3Fju63UJaVpQfsr-E_4G3nPTUtz2W0HLpXSOIpjf37v83vJ9wh5ASRVmJa1QSY1C3ji0iB1GQ_CFOicTZlmzn8o3Ev6fXl2lg52yJ_1tzD4WuXaJnpDbYoMY-QHDPwsKimz-MPsR4BVozC7ui6hsYLFsb34BVu28n23DfP7Moo6n08_HQVVVYEg40m4gP4kLWGgZzYW2orEylAzY0witdGYJzRZJMCCgd8ELhPaloSNFmcOfBtg3WIAFEz-LgewywbZHXRPBt-2ojpAf2S0Sp_C7i89cMNJgXKcUfROpkCP4poD9HUCauS2_mrmlq_r3PrfRuk2uVmxavpxtQzukB2b3yV7W1qL98hv1g4wiAkMm44v9HTpRYGpziZ4bObFyE5pmWnniqkp6eR8NrejXGNzjFVTL_y5mBezMVxVVSmirw7b_c5b-gV-X1Og_3RWlIsAhnTplXDpEAtw0IUHN_Wxh41e733y9UpG5AFp5EVuHxKaSOB9AlOYoeOOiSFzIWdGc84k8FPRJOEaIiqrpNqxYshUwZYNUaU8qhSiSq1Q1SRvNpfMVjollzU-RNxtGqLEuP-jmI9UZbFUrGMTcScTywTXYLedNmkmuQgjY2I7bJL9NQRVZfdK9Q9_TfJ8cxosFqahdG6LZakijIuEKZe8SZIa2msdqp_JJ2OvfZ5y8NBx_Ojymz8j149OT3qq1-0fPyY38NExDxCJfdKAabZPyLXsJ0z-_Gm1gCn5ftWr4S9wuYSo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed+hyaluronic+acid+hydrogel+scaffolds+impregnated+with+neurotrophic+factors+%28BDNF%2C+GDNF%29+for+post-traumatic+brain+tissue+reconstruction&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Mishchenko%2C+Tatiana+A.&rft.au=Klimenko%2C+Maria+O.&rft.au=Kuznetsova%2C+Alisa+I.&rft.au=Yarkov%2C+Roman+S.&rft.date=2022-08-25&rft.issn=2296-4185&rft.eissn=2296-4185&rft.volume=10&rft_id=info:doi/10.3389%2Ffbioe.2022.895406&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fbioe_2022_895406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon |