3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction

Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be form...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in bioengineering and biotechnology Ročník 10; s. 895406
Hlavní autoři: Mishchenko, Tatiana A., Klimenko, Maria O., Kuznetsova, Alisa I., Yarkov, Roman S., Savelyev, Alexander G., Sochilina, Anastasia V., Mariyanats, Alexandra O., Popov, Vladimir K., Khaydukov, Evgeny V., Zvyagin, Andrei V., Vedunova, Maria V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Frontiers Media SA 25.08.2022
Frontiers Media S.A
Témata:
ISSN:2296-4185, 2296-4185
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values ( p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs . sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca 2+ oscillations ( p < 0.05, vs . sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
AbstractList Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values ( p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs . sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations ( p < 0.05, vs . sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values ( p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs . sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca 2+ oscillations ( p < 0.05, vs . sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young's moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young's moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
Author Mishchenko, Tatiana A.
Klimenko, Maria O.
Savelyev, Alexander G.
Zvyagin, Andrei V.
Vedunova, Maria V.
Popov, Vladimir K.
Yarkov, Roman S.
Kuznetsova, Alisa I.
Mariyanats, Alexandra O.
Khaydukov, Evgeny V.
Sochilina, Anastasia V.
AuthorAffiliation 4 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS , Moscow , Russia
2 Federal Scientific Research Centre “Crystallography and Photonics” , Russian Academy of Sciences , Troitsk-Moscow , Russia
3 Sechenov First Moscow State Medical University , Moscow , Russia
5 MQ Photonics Centre , Macquarie University , Sydney , NSW , Australia
1 Institute of Biology and Biomedicine , National Research Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia
AuthorAffiliation_xml – name: 4 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS , Moscow , Russia
– name: 1 Institute of Biology and Biomedicine , National Research Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod , Russia
– name: 2 Federal Scientific Research Centre “Crystallography and Photonics” , Russian Academy of Sciences , Troitsk-Moscow , Russia
– name: 3 Sechenov First Moscow State Medical University , Moscow , Russia
– name: 5 MQ Photonics Centre , Macquarie University , Sydney , NSW , Australia
Author_xml – sequence: 1
  givenname: Tatiana A.
  surname: Mishchenko
  fullname: Mishchenko, Tatiana A.
– sequence: 2
  givenname: Maria O.
  surname: Klimenko
  fullname: Klimenko, Maria O.
– sequence: 3
  givenname: Alisa I.
  surname: Kuznetsova
  fullname: Kuznetsova, Alisa I.
– sequence: 4
  givenname: Roman S.
  surname: Yarkov
  fullname: Yarkov, Roman S.
– sequence: 5
  givenname: Alexander G.
  surname: Savelyev
  fullname: Savelyev, Alexander G.
– sequence: 6
  givenname: Anastasia V.
  surname: Sochilina
  fullname: Sochilina, Anastasia V.
– sequence: 7
  givenname: Alexandra O.
  surname: Mariyanats
  fullname: Mariyanats, Alexandra O.
– sequence: 8
  givenname: Vladimir K.
  surname: Popov
  fullname: Popov, Vladimir K.
– sequence: 9
  givenname: Evgeny V.
  surname: Khaydukov
  fullname: Khaydukov, Evgeny V.
– sequence: 10
  givenname: Andrei V.
  surname: Zvyagin
  fullname: Zvyagin, Andrei V.
– sequence: 11
  givenname: Maria V.
  surname: Vedunova
  fullname: Vedunova, Maria V.
BookMark eNp9ks1uEzEUhUeoiJbQB2A3EpsiMcH_9myQSktLpQo2sLYc-07iaGIH2wPqU_DKeJoK0S7Y-PecT_fa52VzFGKApnmN0ZJS1b8fVj7CkiBClqrnDIlnzQkhvegYVvzon_Vxc5rzFiGECZdckRfNMRWox4zhk-Y3vez2yYcCrt3cmXFKMXjbGuvnvUtxDWObrRmGOLrc-t0-wTqYWf7Ll00boDpKivtNdQ3Glphye_bx8svVu_a6jm_bIaZ2H3PpSjLTzpSqWyXjQ1t8zhO0CWwMuaTJFh_Dq-b5YMYMpw_zovl-9enbxefu9uv1zcX5bWeZRKVjUmLulKEguAEuQSFDnXNSGWcoYsJZwmGFCaGISwRY9VIxOhCqlEJA6aK5OXBdNFtdX2Bn0p2Oxuv7g5jW2qRa6whaGOEIG5QEypnBsh-M661iHBHnBKwq68OBtZ9WO3AWQm11fAR9fBP8Rq_jT90zTpUQFXD2AEjxxwS56J3PFsbRBIhT1kRiSlHPageL5s0T6TZOKdSn0pRIihQVdAbig8qmmHOC4W8xGOk5Pfo-PXpOjz6kp3rkE4_1xcx_Umv243-cfwDLrs1g
CitedBy_id crossref_primary_10_1088_2631_7990_ace56c
crossref_primary_10_3389_fchem_2024_1445664
crossref_primary_10_1002_brb3_70573
crossref_primary_10_1016_j_biomaterials_2025_123332
crossref_primary_10_1186_s42825_025_00209_6
crossref_primary_10_1186_s13287_024_03874_2
crossref_primary_10_1002_mabi_202200577
crossref_primary_10_1186_s40824_023_00460_0
crossref_primary_10_3233_JAD_230739
crossref_primary_10_1002_adfm_202419211
crossref_primary_10_3390_neurolint15030049
crossref_primary_10_1080_00914037_2024_2360956
crossref_primary_10_3390_membranes12100948
crossref_primary_10_1021_acsbiomaterials_4c02245
crossref_primary_10_3389_fbioe_2024_1515164
crossref_primary_10_1089_adt_2025_031
crossref_primary_10_4103_1673_5374_391179
crossref_primary_10_1089_neu_2024_0544
crossref_primary_10_3390_biotech14030065
crossref_primary_10_1016_j_ijbiomac_2025_142981
crossref_primary_10_3390_ijms26157262
Cites_doi 10.1002/adma.201003963
10.1016/B978-0-12-800269-8.00009-9
10.1038/nrn3379
10.1016/B978-0-444-63486-3.00003-7
10.18433/j3k89d
10.1016/j.neuron.2010.05.030
10.1056/nejmra1208708
10.1038/nrneurol.2009.54
10.1016/j.biomaterials.2016.07.028
10.3389/fphys.2018.01925
10.2144/btn-2018-0083
10.1021/bm401712q
10.1080/01616412.2020.1735819
10.1016/j.brainresbull.2017.03.003
10.1038/382080a0
10.1134/s1990747818020095
10.3109/08977194.2012.691478
10.1039/c8bm00422f
10.1016/j.wneu.2019.07.039
10.1016/j.carbpol.2017.01.009
10.1515/revneuro-2017-0017
10.3171/2020.4.JNS20701
10.1016/s0896-6273(01)00434-2
10.1155/2019/1036907
10.3390/antiox9080662
10.2174/1570159x15666170613083606
10.1055/a-0991-7585
10.3390/ijms19082295
10.1016/s0092-8674(00)81311-2
10.1021/acsbiomaterials.0c00741
10.1039/c7tb03213g
10.1007/s11095-011-0452-3
10.3389/fncel.2013.00149
10.1007/s12975-014-0327-0
10.1016/j.neures.2008.04.008
10.1007/s00441-020-03287-6
10.1007/s00441-020-03261-2
10.1016/j.actbio.2018.09.020
10.1007/s00221-018-5344-x
10.1016/j.actbio.2019.11.032
10.1016/0006-8993(81)90067-6
10.3390/cells9092113
10.1523/jneurosci.3239-09.2009
10.1159/000071817
10.3390/ijms21207777
10.1098/rstb.2013.0591
10.3390/brainsci8060109
10.1016/s0166-4328(98)00158-2
10.1177/0271678x16649964
10.17691/stm2018.10.1.11
10.1002/biot.201600671
10.1016/j.celrep.2019.11.100
10.1093/rb/rbz027
10.1016/j.jphotochem.2017.03.026
10.1146/annurev.neuro.24.1.677
10.1038/mp.2017.61
10.1242/dev.140350
10.1016/j.brainres.2017.03.029
10.3390/cells9071743
10.1088/1361-6501/ab0fb4
10.3390/ijms22041585
10.1126/sciadv.aba7406
10.3389/fbioe.2021.783834
10.1002/jbm.a.36814
10.3390/ijms19113650
10.1038/nprot.2009.148
10.1007/s10571-017-0510-4
10.1155/2015/453901
10.1212/wnl.0000000000001507
10.1242/dev.127.7.1477
10.1016/j.injury.2018.12.027
10.1016/j.biomaterials.2009.09.002
10.1016/bs.vh.2016.10.004
10.1016/j.neuropharm.2018.06.005
10.3389/fnins.2016.00026
10.1001/jamaneurol.2014.3558
10.1016/j.biomaterials.2009.05.009
10.1038/nrn812
10.3390/ijms22041885
10.24411/2500-2295-2020-10011
10.1007/s10856-018-6105-x
10.3390/bioengineering5010006
10.1007/978-981-13-0950-2_17
10.1007/978-1-4939-7571-6_1
10.1073/pnas.2131948100
10.1016/j.expneurol.2018.08.014
10.1016/j.copbio.2016.02.008
10.4103/1673-5374.198964
10.1080/14737175.2019.1582332
10.1152/ajpregu.1999.277.4.r1196
10.1038/nn1855
10.1016/j.nbd.2016.01.021
10.1039/c2sm06463d
10.3390/ijms22073582
10.3389/fcell.2020.00582
10.1007/s00005-015-0376-4
10.1089/neu.1998.15.599
ContentType Journal Article
Copyright 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova.
Copyright © 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova. 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova
Copyright_xml – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova.
– notice: Copyright © 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova. 2022 Mishchenko, Klimenko, Kuznetsova, Yarkov, Savelyev, Sochilina, Mariyanats, Popov, Khaydukov, Zvyagin and Vedunova
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3389/fbioe.2022.895406
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Mishchenko et al
EISSN 2296-4185
ExternalDocumentID oai_doaj_org_article_6a6d24f87e354a179fad9c84502dd6eb
PMC9453866
10_3389_fbioe_2022_895406
GeographicLocations United States--US
Russia
GeographicLocations_xml – name: Russia
– name: United States--US
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
K9.
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c470t-47715d8a3e65ae57e80a3ddd78ada3046dc25eb12230570e1897843f238880e33
IEDL.DBID DOA
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000891273400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-4185
IngestDate Fri Oct 03 12:53:03 EDT 2025
Tue Sep 30 16:54:04 EDT 2025
Wed Oct 01 11:51:15 EDT 2025
Mon Nov 24 21:40:58 EST 2025
Tue Nov 18 22:36:26 EST 2025
Sat Nov 29 05:42:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-47715d8a3e65ae57e80a3ddd78ada3046dc25eb12230570e1897843f238880e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Bin Li, Soochow University, China
Rami Mhanna, American University of Beirut, Lebanon
This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology
Reviewed by: Mohammad Karimipour, Tabriz University of Medical Sciences, Iran
OpenAccessLink https://doaj.org/article/6a6d24f87e354a179fad9c84502dd6eb
PMID 36091441
PQID 3273083636
PQPubID 7426804
ParticipantIDs doaj_primary_oai_doaj_org_article_6a6d24f87e354a179fad9c84502dd6eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9453866
proquest_miscellaneous_2713309484
proquest_journals_3273083636
crossref_primary_10_3389_fbioe_2022_895406
crossref_citationtrail_10_3389_fbioe_2022_895406
PublicationCentury 2000
PublicationDate 2022-08-25
PublicationDateYYYYMMDD 2022-08-25
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationYear 2022
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Xu (B97) 2012; 8
Lazaridis (B42) 2019; 145
Moshayedi (B56) 2016; 105
Beni-Adani (B5) 2001; 296
Smith (B76) 2018; 5
Ghuman (B24) 2018; 80
Senkov (B72) 2014; 214
Duarte (B19) 2012; 30
Kaur (B36) 2018; 16
Sudha (B82) 2014; 72
Mitroshina Е (B54) 2019; 18
Ladak (B41) 2019; 131
Savyuk (B71) 2020; 9
Leal (B43) 2017; 104
Kochlamazashvili (B38) 2010; 67
Novozhilova (B61) 2020; 7
Rusakov (B67) 2014; 369
Castrén (B11) 2017; 22
Colucci-D'Amato (B15) 2020; 21
Tom (B85) 2018; 236
Bobula (B6) 2017; 161
Oliveira (B63) 2018; 1078
Killen (B37) 2019; 19
Jensen (B33) 2020; 9
Später (B79) 2020; 6
Savelyev (B70) 2021; 9
Vedunova (B87) 2013; 7
Wang (B92) 2001; 32
Highley (B27) 2016; 40
Sochilina (B77) 2019; 30
Ledda (B44) 2007; 10
Benarroch (B4) 2015; 84
Ibáñez (B29) 2017; 97
Leipzig (B45) 2009; 30
Vedunova (B89) 2015; 453901
Huang (B28) 2001; 24
Nakaji-Hirabayashi (B57) 2009; 30
Doxakis (B18) 2000; 127
Nielsen (B59) 2009; 29
Burdick (B8) 2011; 23
Mitroshina (B52) 2021; 22
Zuccato (B101) 2009; 5
Cao (B10) 2008; 61
Ahmadian (B2) 2020; 70
Tajdaran (B83) 2019; 319
Vedunova (B88) 2014; 6
Mitroshina Е (B55) 2018; 19
Choi (B13) 2019; 66
Shirokova (B74) 2013; 5
Mishchenko (B51) 2019; 9
Wurzelmann (B95) 2017; 12
Mitroshina (B53) 2020; 8
Corps (B17) 2015; 72
Vilar (B90) 2016; 10
Liu (B46) 2018; 29
Fox (B23) 1998; 15
Ji (B34) 2020; 42
Ning (B60) 2017; 12
Xiao (B96) 2016; 64
Abatangelo (B1) 2020; 9
Hassannejad (B26) 2019; 5050
Park (B64) 2013; 14
Bonafina (B7) 2019; 29
Faden (B20) 1999; 277
Irala (B31) 2016; 143
Prickaerts (B66) 1999; 102
Stocchetti (B81) 2014; 370
Itami (B32) 2003; 100
Lu (B48) 2019; 6
Jing (B35) 1996; 85
Cacialli (B9) 2021; 22
Song (B78) 2018; 136
Walker (B91) 2018; 8
Mishchenko (B50) 2018; 12
Savelyev (B68) 2017; 341
Flierl (B22) 2009; 4
Zhang (B99) 2014; 5
Kowiański (B39) 2018; 38
Wang (B94) 2011; 28
Numakawa (B62) 2018; 19
Skaper (B75) 2018; 1727
Wang (B93) 2003; 12
Cook (B16) 2017; 37
Sevost'yanov (B73) 2018; 29
Lonser (B47) 2020; 10
Savelyev (B69) 2018; 10
Tan (B84) 2020; 102
Mahumane (B49) 2018; 6
Chen (B12) 2020; 6
Neuman (B58) 2015; 18
Feeney (B21) 1981; 211
Zhang (B98) 2018; 6
Zhao (B100) 2017; 15
Gustafsson (B25) 2021; 22
Perkins (B65) 2017; 28
Airaksinen (B3) 2002; 3
Cintrón-Colón (B14) 2020; 382
Ibáñez (B30) 2020; 382
Treanor (B86) 1996; 382
Spearman (B80) 2020; 108
Kufelt (B40) 2014; 15
References_xml – volume: 23
  start-page: H41
  year: 2011
  ident: B8
  article-title: Hyaluronic acid hydrogels for biomedical applications
  publication-title: Adv. Mat.
  doi: 10.1002/adma.201003963
– volume: 72
  start-page: 137
  year: 2014
  ident: B82
  article-title: Beneficial effects of hyaluronic acid
  publication-title: Adv. Food Nutr. Res.
  doi: 10.1016/B978-0-12-800269-8.00009-9
– volume: 14
  start-page: 7
  year: 2013
  ident: B64
  article-title: Neurotrophin regulation of neural circuit development and function
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3379
– volume: 214
  start-page: 53
  year: 2014
  ident: B72
  article-title: Neural ECM molecules in synaptic plasticity, learning, and memory
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-63486-3.00003-7
– volume: 18
  start-page: 53
  year: 2015
  ident: B58
  article-title: Hyaluronic acid and wound healing
  publication-title: J. Pharm. Pharm. Sci.
  doi: 10.18433/j3k89d
– volume: 67
  start-page: 116
  year: 2010
  ident: B38
  article-title: The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.05.030
– volume: 370
  start-page: 2121
  year: 2014
  ident: B81
  article-title: Traumatic intracranial hypertension
  publication-title: N. Engl. J. Med. Overseas. Ed.
  doi: 10.1056/nejmra1208708
– volume: 5
  start-page: 6
  year: 2013
  ident: B74
  article-title: Morphofunctional patterns of neuronal network developing in dissociated hippocampal cell cultures
  publication-title: Sovrem. Tehnol. V. Med.
– volume: 5
  start-page: 311
  year: 2009
  ident: B101
  article-title: Brain-derived neurotrophic factor in neurodegenerative diseases
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.54
– volume: 105
  start-page: 145
  year: 2016
  ident: B56
  article-title: Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.07.028
– volume: 9
  start-page: 1925
  year: 2019
  ident: B51
  article-title: Features of neural network formation and their functions in primary hippocampal cultures in the context of chronic TrkB receptor system influence
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01925
– volume: 66
  start-page: 40
  year: 2019
  ident: B13
  article-title: Recent advances in photo-crosslinkable hydrogels for biomedical applications
  publication-title: Biotechniques
  doi: 10.2144/btn-2018-0083
– volume: 15
  start-page: 650
  year: 2014
  ident: B40
  article-title: Hyaluronic acid based materials for scaffolding via two-photon polymerization
  publication-title: Biomacromolecules
  doi: 10.1021/bm401712q
– volume: 42
  start-page: 361
  year: 2020
  ident: B34
  article-title: Protective effect of brain-derived neurotrophic factor and neurotrophin-3 overexpression by adipose-derived stem cells combined with silk fibroin/chitosan scaffold in spinal cord injury
  publication-title: Neurol. Res.
  doi: 10.1080/01616412.2020.1735819
– volume: 136
  start-page: 101
  year: 2018
  ident: B78
  article-title: Crosstalk between glia, extracellular matrix and neurons
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2017.03.003
– volume: 382
  start-page: 80
  year: 1996
  ident: B86
  article-title: Characterization of a multicomponent receptor for GDNF
  publication-title: Nature
  doi: 10.1038/382080a0
– volume: 12
  start-page: 170
  year: 2018
  ident: B50
  article-title: Applicability of live cell imaging of mRNA expression in combination with calcium imaging for in vitro studies of neural network activity
  publication-title: Biochem. Mosc. Suppl. Ser. A
  doi: 10.1134/s1990747818020095
– volume: 30
  start-page: 242
  year: 2012
  ident: B19
  article-title: Neuroprotection by GDNF in the ischemic brain
  publication-title: Growth factors.
  doi: 10.3109/08977194.2012.691478
– volume: 6
  start-page: 2812
  year: 2018
  ident: B49
  article-title: 3D scaffolds for brain tissue regeneration: Architectural challenges
  publication-title: Biomater. Sci.
  doi: 10.1039/c8bm00422f
– volume: 131
  start-page: 126
  year: 2019
  ident: B41
  article-title: A review of the molecular mechanisms of traumatic brain injury
  publication-title: World Neurosurg. x.
  doi: 10.1016/j.wneu.2019.07.039
– volume: 161
  start-page: 277
  year: 2017
  ident: B6
  article-title: A novel photopolymerizable derivative of hyaluronan for designed hydrogel formation
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.01.009
– volume: 28
  start-page: 869
  year: 2017
  ident: B65
  article-title: Brain extracellular space, hyaluronan, and the prevention of epileptic seizures
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2017-0017
– volume: 10
  start-page: 1751
  year: 2020
  ident: B47
  article-title: Direct convective delivery of adeno-associated virus gene therapy for treatment of neurological disorders
  publication-title: J. Neurosurg.
  doi: 10.3171/2020.4.JNS20701
– volume: 32
  start-page: 99
  year: 2001
  ident: B92
  article-title: Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca(2+) channels and transmitter release
  publication-title: Neuron
  doi: 10.1016/s0896-6273(01)00434-2
– volume: 18
  start-page: 1036907
  year: 2019
  ident: B54
  article-title: Intracellular neuroprotective mechanisms in neuron-glial networks mediated by glial cell line-derived neurotrophic factor
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/1036907
– volume: 9
  start-page: 662
  year: 2020
  ident: B71
  article-title: Neuroprotective effect of HIF prolyl hydroxylase inhibition in an in vitro hypoxia model
  publication-title: Antioxidants
  doi: 10.3390/antiox9080662
– volume: 16
  start-page: 1224
  year: 2018
  ident: B36
  article-title: Recent advances in pathophysiology of traumatic brain injury
  publication-title: Curr. Neuropharmacol.
  doi: 10.2174/1570159x15666170613083606
– volume: 70
  start-page: 6
  year: 2020
  ident: B2
  article-title: The potential applications of hyaluronic acid hydrogels in biomedicine
  publication-title: Drug Res. (Stuttg).
  doi: 10.1055/a-0991-7585
– volume: 19
  start-page: 2295
  year: 2018
  ident: B55
  article-title: AAV-Syn-BDNF-EGFP virus construct exerts neuroprotective action on the hippocampal neural network during hypoxia in vitro
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19082295
– volume: 85
  start-page: 1113
  year: 1996
  ident: B35
  article-title: GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)81311-2
– volume: 6
  start-page: 5744
  year: 2020
  ident: B79
  article-title: In vitro and in vivo analysis of adhesive, anti-inflammatory, and proangiogenic properties of novel 3D printed hyaluronic acid glycidyl methacrylate hydrogel scaffolds for tissue engineering
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c00741
– volume: 6
  start-page: 2982
  year: 2018
  ident: B98
  article-title: Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury
  publication-title: J. Mat. Chem. B
  doi: 10.1039/c7tb03213g
– volume: 28
  start-page: 1406
  year: 2011
  ident: B94
  article-title: Combination of hyaluronic acid hydrogel scaffold and PLGA microspheres for supporting survival of neural stem cells
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-011-0452-3
– volume: 7
  start-page: 149
  year: 2013
  ident: B87
  article-title: Seizure-like activity in hyaluronidase-treated dissociated hippocampal cultures
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2013.00149
– volume: 5
  start-page: 454
  year: 2014
  ident: B99
  article-title: Traumatic brain injury using mouse models
  publication-title: Transl. Stroke Res.
  doi: 10.1007/s12975-014-0327-0
– volume: 61
  start-page: 390
  year: 2008
  ident: B10
  article-title: Involvement of NCAM in the effects of GDNF on the neurite outgrowth in the dopamine neurons
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2008.04.008
– volume: 382
  start-page: 47
  year: 2020
  ident: B14
  article-title: GDNF synthesis, signaling, and retrograde transport in motor neurons
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-020-03287-6
– volume: 382
  start-page: 71
  year: 2020
  ident: B30
  article-title: RET-independent signaling by GDNF ligands and GFRα receptors
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-020-03261-2
– volume: 80
  start-page: 66
  year: 2018
  ident: B24
  article-title: Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.09.020
– volume: 236
  start-page: 3077
  year: 2018
  ident: B85
  article-title: Effects of bioengineered scaffold loaded with neurotrophins and locomotor training in restoring H-reflex responses after spinal cord injury
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-018-5344-x
– volume: 102
  start-page: 1
  year: 2020
  ident: B84
  article-title: The use of bioactive matrices in regenerative therapies for traumatic brain injury
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.11.032
– volume: 211
  start-page: 67
  year: 1981
  ident: B21
  article-title: Responses to cortical injury: I. Methodology and local effects of contusions in the rat
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(81)90067-6
– volume: 9
  start-page: 2113
  year: 2020
  ident: B33
  article-title: Hyaluronic acid biomaterials for central nervous system regenerative medicine
  publication-title: Cells
  doi: 10.3390/cells9092113
– volume: 29
  start-page: 11360
  year: 2009
  ident: B59
  article-title: Role of glial cell line-derived neurotrophic factor (GDNF)-neural cell adhesion molecule (NCAM) interactions in induction of neurite outgrowth and identification of a binding site for NCAM in the heel region of GDNF
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.3239-09.2009
– volume: 12
  start-page: 78
  year: 2003
  ident: B93
  article-title: GDNF acutely potentiates Ca2+ channels and excitatory synaptic transmission in midbrain dopaminergic neurons
  publication-title: Neurosignals
  doi: 10.1159/000071817
– volume: 21
  start-page: 7777
  year: 2020
  ident: B15
  article-title: Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21207777
– volume: 369
  start-page: 20130591
  year: 2014
  ident: B67
  article-title: Brain circuitry outside the synaptic cleft
  publication-title: Phil. Trans. R. Soc. B
  doi: 10.1098/rstb.2013.0591
– volume: 8
  start-page: 109
  year: 2018
  ident: B91
  article-title: History of glial cell line-derived neurotrophic factor (GDNF) and its use for spinal cord injury repair
  publication-title: Brain Sci.
  doi: 10.3390/brainsci8060109
– volume: 102
  start-page: 73
  year: 1999
  ident: B66
  article-title: Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: A correlation analysis
  publication-title: Behav. Brain Res.
  doi: 10.1016/s0166-4328(98)00158-2
– volume: 37
  start-page: 1030
  year: 2017
  ident: B16
  article-title: Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke
  publication-title: J. Cereb. Blood Flow. Metab.
  doi: 10.1177/0271678x16649964
– volume: 10
  start-page: 88
  year: 2018
  ident: B69
  article-title: Extrusion-based 3D printing of photocurable hydrogels in presence of flavin mononucleotide for tissue engineering
  publication-title: Sovrem. Tehnol. Med.
  doi: 10.17691/stm2018.10.1.11
– volume: 12
  start-page: 1600671
  year: 2017
  ident: B60
  article-title: A brief review of extrusion-based tissue scaffold bio-printing
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201600671
– volume: 29
  start-page: 4308
  year: 2019
  ident: B7
  article-title: GDNF and GFRα1 are required for proper integration of adult-born hippocampal neurons
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.11.100
– volume: 6
  start-page: 325
  year: 2019
  ident: B48
  article-title: Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbz027
– volume: 341
  start-page: 108
  year: 2017
  ident: B68
  article-title: Flavin mononucleotide photoinitiated cross-linking of hydrogels: Polymer concentration threshold of strengthening
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2017.03.026
– volume: 24
  start-page: 677
  year: 2001
  ident: B28
  article-title: Neurotrophins: Roles in neuronal development and function
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.677
– volume: 22
  start-page: 1085
  year: 2017
  ident: B11
  article-title: Neuronal plasticity and neurotrophic factors in drug responses
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.61
– volume: 143
  start-page: 4224
  year: 2016
  ident: B31
  article-title: The GDNF-GFRα1 complex promotes the development of hippocampal dendritic arbors and spines via NCAM
  publication-title: Development
  doi: 10.1242/dev.140350
– volume: 15
  start-page: 1
  year: 2017
  ident: B100
  article-title: Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2017.03.029
– volume: 9
  start-page: 1743
  year: 2020
  ident: B1
  article-title: Hyaluronic acid: Redefining its role
  publication-title: Cells
  doi: 10.3390/cells9071743
– volume: 30
  start-page: 075102
  year: 2019
  ident: B77
  article-title: Quantitative detection of double bonds in hyaluronic acid derivative via permanganate ion reduction
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab0fb4
– volume: 22
  start-page: 1585
  year: 2021
  ident: B9
  article-title: Neurotrophins time point intervention after traumatic brain injury: From zebrafish to human
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22041585
– volume: 6
  start-page: eaba7406
  year: 2020
  ident: B12
  article-title: Noninvasive in vivo 3D bioprinting
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba7406
– volume: 9
  year: 2021
  ident: B70
  article-title: Facile cell-friendly hollow-core fiber diffusion-limited photofabrication
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.783834
– volume: 108
  start-page: 279
  year: 2020
  ident: B80
  article-title: Tunable methacrylated hyaluronic acid-based hydrogels as scaffolds for soft tissue engineering applications
  publication-title: J. Biomed. Mat. Res. A
  doi: 10.1002/jbm.a.36814
– volume: 19
  start-page: 3650
  year: 2018
  ident: B62
  article-title: Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19113650
– volume: 4
  start-page: 1328
  year: 2009
  ident: B22
  article-title: Mouse closed head injury model induced by a weight-drop device
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.148
– volume: 38
  start-page: 579
  year: 2018
  ident: B39
  article-title: Bdnf: A key factor with multipotent impact on brain signaling and synaptic plasticity
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-017-0510-4
– volume: 453901
  start-page: 453901
  year: 2015
  ident: B89
  article-title: TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2015/453901
– volume: 84
  start-page: 1693
  year: 2015
  ident: B4
  article-title: Brain-derived neurotrophic factor: Regulation, effects, and potential clinical relevance
  publication-title: Neurology
  doi: 10.1212/wnl.0000000000001507
– volume: 6
  start-page: 38
  year: 2014
  ident: B88
  article-title: Antihypoxic and neuroprotective properties of BDNF and GDNF in vitro and in vivo under hypoxic conditions
  publication-title: Sovrem. Tehnol. V. Med.
– volume: 127
  start-page: 1477
  year: 2000
  ident: B18
  article-title: Depolarisation causes reciprocal changes in GFR(alpha)-1 and GFR(alpha)-2 receptor expression and shifts responsiveness to GDNF and neurturin in developing neurons
  publication-title: Development
  doi: 10.1242/dev.127.7.1477
– volume: 5050
  start-page: 27823
  year: 2019
  ident: B26
  article-title: Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury
  publication-title: Inj. Int. J. Care Inj.
  doi: 10.1016/j.injury.2018.12.027
– volume: 30
  start-page: 6867
  year: 2009
  ident: B45
  article-title: The effect of substrate stiffness on adult neural stem cell behavior
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.002
– volume: 296
  start-page: 57
  year: 2001
  ident: B5
  article-title: A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 104
  start-page: 153
  year: 2017
  ident: B43
  article-title: BDNF and hippocampal synaptic plasticity
  publication-title: Vitam. Horm.
  doi: 10.1016/bs.vh.2016.10.004
– volume: 145
  start-page: 145
  year: 2019
  ident: B42
  article-title: Secondary brain injury: Predicting and preventing insults
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2018.06.005
– volume: 10
  start-page: 26
  year: 2016
  ident: B90
  article-title: Regulation of neurogenesis by neurotrophins during adulthood: Expected and unexpected roles
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00026
– volume: 72
  start-page: 355
  year: 2015
  ident: B17
  article-title: Inflammation and neuroprotection in traumatic brain injury
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2014.3558
– volume: 30
  start-page: 4581
  year: 2009
  ident: B57
  article-title: Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.05.009
– volume: 3
  start-page: 383
  year: 2002
  ident: B3
  article-title: The GDNF family: Signalling, biological functions and therapeutic value
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn812
– volume: 22
  start-page: 1885
  year: 2021
  ident: B52
  article-title: Neuroprotective effect of kinase inhibition in ischemic factor modeling in vitro
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22041885
– volume: 7
  start-page: 22
  year: 2020
  ident: B61
  article-title: Evaluation of the effectiveness of scaffolds based on hyaluronic acid glycidyl methacrylate as a possible platform for brain treatment
  publication-title: Opera medica physiologyca
  doi: 10.24411/2500-2295-2020-10011
– volume: 29
  start-page: 102
  year: 2018
  ident: B46
  article-title: Spatio-temporal release of NGF and GDNF from multi-layered nanofibrous bicomponent electrospun scaffolds
  publication-title: J. Mat. Sci. Mat. Med.
  doi: 10.1007/s10856-018-6105-x
– volume: 5
  start-page: 6
  year: 2018
  ident: B76
  article-title: Development of self-assembled nanoribbon bound peptide-polyaniline composite scaffolds and their interactions with neural cortical cells
  publication-title: Bioengineering
  doi: 10.3390/bioengineering5010006
– volume: 1078
  start-page: 323
  year: 2018
  ident: B63
  article-title: Biomaterials developments for brain tissue engineering
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-0950-2_17
– volume: 29
  start-page: 018
  year: 2018
  ident: B73
  article-title: Biocompatibility of new materials based on nano-structured nitinol with titanium and tantalum composite surface layers: Experimental analysis in vitro and in vivo
  publication-title: J. Mater Sci. Mater Med.
– volume: 1727
  start-page: 7571
  year: 2018
  ident: B75
  article-title: Neurotrophic factors: An overview
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7571-6_1
– volume: 100
  start-page: 13069
  year: 2003
  ident: B32
  article-title: Brain-derived neurotrophic factor-dependent unmasking of "silent" synapses in the developing mouse barrel cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2131948100
– volume: 319
  start-page: 112817
  year: 2019
  ident: B83
  article-title: Matrices, scaffolds, and carriers for protein and molecule delivery in peripheral nerve regeneration
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2018.08.014
– volume: 40
  start-page: 35
  year: 2016
  ident: B27
  article-title: Recent advances in hyaluronic acid hydrogels for biomedical applications
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.02.008
– volume: 12
  start-page: 7
  year: 2017
  ident: B95
  article-title: Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.198964
– volume: 19
  start-page: 227
  year: 2019
  ident: B37
  article-title: Metabolism and inflammation: Implications for traumatic brain injury therapeutics
  publication-title: Expert Rev. Neurother.
  doi: 10.1080/14737175.2019.1582332
– volume: 277
  start-page: R1196
  year: 1999
  ident: B20
  article-title: Novel TRH analog improves motor and cognitive recovery after traumatic brain injury in rodents
  publication-title: Am. J. Physiology-Regulatory Integr. Comp. Physiology
  doi: 10.1152/ajpregu.1999.277.4.r1196
– volume: 10
  start-page: 293
  year: 2007
  ident: B44
  article-title: GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1855
– volume: 97
  start-page: 80
  year: 2017
  ident: B29
  article-title: Biology of GDNF and its receptors - relevance for disorders of the central nervous system
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2016.01.021
– volume: 8
  start-page: 3280
  year: 2012
  ident: B97
  article-title: Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks
  publication-title: Soft Matter
  doi: 10.1039/c2sm06463d
– volume: 22
  start-page: 3582
  year: 2021
  ident: B25
  article-title: The role of BDNF in experimental and clinical traumatic brain injury
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22073582
– volume: 8
  year: 2020
  ident: B53
  article-title: Brain-Derived neurotrophic factor (BDNF) preserves the functional integrity of neural networks in the β-amyloidopathy model in vitro
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00582
– volume: 64
  start-page: 89
  year: 2016
  ident: B96
  article-title: Neurotrophic factors and their potential applications in tissue regeneration
  publication-title: Arch. Immunol. Ther. Exp. Warsz.
  doi: 10.1007/s00005-015-0376-4
– volume: 15
  start-page: 599
  year: 1998
  ident: B23
  article-title: Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse
  publication-title: J. Neurotrauma
  doi: 10.1089/neu.1998.15.599
SSID ssj0001257582
Score 2.3312445
Snippet Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC)...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 895406
SubjectTerms 3-D printers
3D printing
Biocompatibility
Biodegradation
Bioengineering and Biotechnology
brain trauma
Brain-derived neurotrophic factor
Calcium signalling
Cytotoxicity
Design
Exploratory behavior
Extracellular matrix
Glial cell line-derived neurotrophic factor
Hippocampus
Hyaluronic acid
Hydrogels
Long term memory
Mechanical properties
Neuronal-glial interactions
neurotransplantation
neurotrophic factors BDNF and GDNF
Penicillin
Potassium
Reconstructive surgery
Recovery of function
scaffold
Tissue engineering
Transplants & implants
Traumatic brain injury
SummonAdditionalLinks – databaseName: ProQuest Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVg4QAHlk8R2EVG4gCI7KaxHTun1S5L4YCqPYC0N8v1R1upJCFpkfgV_GVm3LQ0l71wqZTGURK98fjNjPOGkDdAUoUbeZ9aZVjKZSjTMlieZiXQOV8yw0L8UPirnEzU9XV51Sfcun5b5dYnRkftaos58lMG6ywqKbPirPmZYtcorK72LTRukzuoksDi1r2rvRwLkBGVb4qZEIuVp2G6qFEcM89PVAlkpRgsR1G1f0A1hxsl91ae8eH_PvND8qDnnPR8YySPyC1fPSb395QIn5A_7DLFFB_wTzr_bZbrKJlLjV3gsWvrmV_SzpoQ6qXr6OJH0_pZZXA4ZnJplMVctXUzh6v6Hj707cXlZPyBfobfdxTIMW3qbpXCK66jTiydYnsKuorQ0xiZ79Rsn5Lv40_fPn5J-14NqeUyWwHKciQc4O0LYbyQXmWGOeekMs5g9dXZXMC6AGwEGGLmRwrCV84CMAbwIJ6xZ-Sgqiv_nFCpgBUJLPBlgQcmpixknDnDOVPA3kRCsi1k2vZC5thPY6khoEGUdURZI8p6g3JC3u8uaTYqHjcNvkA72A1EAe74R93OdD-fdWEKl_OgpGeCG_BqwbjSKi6y3LnCTxNytDUJ3XuFTv-zh4S83p2G-YxFGlP5et3pHLMGEHMrnhA5sL7BAw3PVIt5VAYvOaxfRfHi5pu_JPfwdTEznosjcgDQ-mNy1_4CwNtXcQr9Ba9sKL4
  priority: 102
  providerName: ProQuest
Title 3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction
URI https://www.proquest.com/docview/3273083636
https://www.proquest.com/docview/2713309484
https://pubmed.ncbi.nlm.nih.gov/PMC9453866
https://doaj.org/article/6a6d24f87e354a179fad9c84502dd6eb
Volume 10
WOSCitedRecordID wos000891273400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: 7X7
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science Database
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: M7P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: PIMPY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxFMUlspIHAARNo3t2DlStgUkqCIEUjlZrh_bSiWpmhaJC3-Bv8yMk62aC1y4WEpsK45nJvON7XxDyDMAqcKNvE-sMizhMhRJESxP0gLgnC-YYSH-KPxRzmZqPi_Ko1RfeCaspQduJ-4sN7nLeFDSM8ENqE8wrrCKizRzLvcL_PoC6jkKptrVFYAhKmu3MSEKK87CYlUjLWaWvVYFwJS854giX38PZPaPSB75nOltcqsDi_RNO8g75Iqv7pKbRxSC98hvdp7g2hwAR7r8adb7yHVLjV3htdvWF35NG2tCqNeuoavvm62_qAw2xyVYGvksd9t6s4ReXfId-nx8Ppu-ou-gfEEB1dJN3ewSGOE-ErzSBeaVoLsoMxpD6gMN7X3ydTr58vZ90iVZSCyX6Q7EI0fCgaB8LowX0qvUMOecVMYZ3DZ1NhPwQQcYAdAu9SMFcSdnAVw9mL5n7AE5qerKPyRUKoAzAnfm0sADEwsWUs6c4ZwpgF1iQNLLGde2YyDHRBhrDZEICklHIWkUkm6FNCAvD102Lf3G3xqPUYyHhsicHW-APulOn_S_9GlATi-VQHfm3GgGIA9pvBk84-mhGgwRd1dM5et9ozMM9yFYVnxAZE95egPq11SrZaT0Ljg4njx_9D_e4DG5gZOCC9-ZOCUnoAD-Cbluf4BabIfkqpzLWKohuTaezMrPw2g7Qzz2WmL5awI15YdP5bc__LkieQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLamDgl24DeiMMBIIAEiLI3txDkgxChl1bqqhyGNk3Fju63UJaVpQfsr-E_4G3nPTUtz2W0HLpXSOIpjf37v83vJ9wh5ASRVmJa1QSY1C3ji0iB1GQ_CFOicTZlmzn8o3Ev6fXl2lg52yJ_1tzD4WuXaJnpDbYoMY-QHDPwsKimz-MPsR4BVozC7ui6hsYLFsb34BVu28n23DfP7Moo6n08_HQVVVYEg40m4gP4kLWGgZzYW2orEylAzY0witdGYJzRZJMCCgd8ELhPaloSNFmcOfBtg3WIAFEz-LgewywbZHXRPBt-2ojpAf2S0Sp_C7i89cMNJgXKcUfROpkCP4poD9HUCauS2_mrmlq_r3PrfRuk2uVmxavpxtQzukB2b3yV7W1qL98hv1g4wiAkMm44v9HTpRYGpziZ4bObFyE5pmWnniqkp6eR8NrejXGNzjFVTL_y5mBezMVxVVSmirw7b_c5b-gV-X1Og_3RWlIsAhnTplXDpEAtw0IUHN_Wxh41e733y9UpG5AFp5EVuHxKaSOB9AlOYoeOOiSFzIWdGc84k8FPRJOEaIiqrpNqxYshUwZYNUaU8qhSiSq1Q1SRvNpfMVjollzU-RNxtGqLEuP-jmI9UZbFUrGMTcScTywTXYLedNmkmuQgjY2I7bJL9NQRVZfdK9Q9_TfJ8cxosFqahdG6LZakijIuEKZe8SZIa2msdqp_JJ2OvfZ5y8NBx_Ojymz8j149OT3qq1-0fPyY38NExDxCJfdKAabZPyLXsJ0z-_Gm1gCn5ftWr4S9wuYSo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed+hyaluronic+acid+hydrogel+scaffolds+impregnated+with+neurotrophic+factors+%28BDNF%2C+GDNF%29+for+post-traumatic+brain+tissue+reconstruction&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Mishchenko%2C+Tatiana+A.&rft.au=Klimenko%2C+Maria+O.&rft.au=Kuznetsova%2C+Alisa+I.&rft.au=Yarkov%2C+Roman+S.&rft.date=2022-08-25&rft.issn=2296-4185&rft.eissn=2296-4185&rft.volume=10&rft_id=info:doi/10.3389%2Ffbioe.2022.895406&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fbioe_2022_895406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon