IP core implementation of a self-organizing neural network
This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a...
Uloženo v:
| Vydáno v: | IEEE transactions on neural networks Ročník 14; číslo 5; s. 1085 - 1096 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.09.2003
|
| Témata: | |
| ISSN: | 1045-9227 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor. |
|---|---|
| AbstractList | This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor. This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor.This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor. This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-mum single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-mum digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor. This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65- mu m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18- mu m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor. |
| Author | Duncan, A.A. Hendry, D.C. Lightowler, N. |
| Author_xml | – sequence: 1 givenname: D.C. surname: Hendry fullname: Hendry, D.C. organization: Dept. of Eng., Univ. of Aberdeen, UK – sequence: 2 givenname: A.A. surname: Duncan fullname: Duncan, A.A. – sequence: 3 givenname: N. surname: Lightowler fullname: Lightowler, N. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18244562$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkTtPwzAUhT0U0QfMDEgoE0xp_YwdNlTxqFQVhjJHjntTGZK42KkQ_HpSpagSQ5nO8n33SPcMUa92NSB0QfCYEJxOlovFmGLMxookTLAeGhDMRZxSKvtoGMIbxoQLnJyiPlGUc5HQAbqdvUTGeYhstSmhgrrRjXV15IpIRwHKInZ-rWv7bet1VMPW67KN5tP59zN0UugywPk-R-j14X45fYrnz4-z6d08NlziJmYgODFMC6qxSkhbXLQJhhClFcVGJrlU2PBcyFVaMJ3nueapUDxnmOapZCN0093dePexhdBklQ0GylLX4LYhSzGRNOEp_peUjFOeML4jr4-SVAnOUqla8GoPbvMKVtnG20r7r-z3gy0w6QDjXQgeigOCs90uWbtLttsl63ZpDfHHMLb7euO1LY94l51nAeDQQjmThLIf_iaZDA |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2014_02_008 crossref_primary_10_1016_j_micpro_2007_06_004 crossref_primary_10_1016_j_neucom_2012_11_045 crossref_primary_10_1109_TC_2013_204 crossref_primary_10_1179_174313107X176243 crossref_primary_10_1364_AO_47_000B52 crossref_primary_10_20965_jaciii_2007_p0937 crossref_primary_10_1016_j_neunet_2020_02_019 crossref_primary_10_1109_TCSII_2017_2672789 crossref_primary_10_1109_TNNLS_2015_2398932 crossref_primary_10_1049_iet_cdt_2008_0055 crossref_primary_10_1007_s00138_008_0133_3 crossref_primary_10_1109_JSSC_2024_3510877 crossref_primary_10_1109_JSSC_2014_2332134 crossref_primary_10_1364_AO_44_002366 crossref_primary_10_1016_j_neucom_2010_03_005 crossref_primary_10_1109_TCSI_2020_3046795 crossref_primary_10_1109_TNNLS_2022_3152690 crossref_primary_10_1016_j_neucom_2004_05_002 crossref_primary_10_1016_j_neunet_2005_06_012 crossref_primary_10_1109_TBCAS_2024_3370571 |
| Cites_doi | 10.1109/IJCNN.1999.831063 10.1007/978-3-642-56927-2 10.1016/0167-8191(90)90088-Q 10.4271/2002-01-1109 10.1007/BF00930664 10.1109/IJCNN.1998.682346 10.1016/0141-9331(96)82010-2 10.1109/MM.2002.1013300 10.1109/72.129410 10.4271/2003-01-0359 10.1016/s0141-9331(99)00075-7 10.1016/S0925-2312(98)00042-3 |
| ContentType | Journal Article |
| DBID | RIA RIE AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 7QO FR3 P64 |
| DOI | 10.1109/TNN.2003.816353 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | PubMed MEDLINE - Academic Computer and Information Systems Abstracts Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science |
| EndPage | 1096 |
| ExternalDocumentID | 18244562 10_1109_TNN_2003_816353 1243712 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7SC 8FD JQ2 L7M L~C L~D 7X8 7QO FR3 P64 |
| ID | FETCH-LOGICAL-c470t-3e541c3a52a0861244f086ec118a820c76b780c4b57d9f3abbba49584b302b973 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186478900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9227 |
| IngestDate | Tue Oct 07 09:28:58 EDT 2025 Thu Sep 04 17:08:17 EDT 2025 Fri Sep 05 08:06:23 EDT 2025 Thu Apr 03 06:58:21 EDT 2025 Sat Nov 29 08:04:20 EST 2025 Tue Nov 18 22:37:42 EST 2025 Tue Aug 26 16:39:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-3e541c3a52a0861244f086ec118a820c76b780c4b57d9f3abbba49584b302b973 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 18244562 |
| PQID | 28543978 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_734246340 crossref_citationtrail_10_1109_TNN_2003_816353 proquest_miscellaneous_901726490 proquest_miscellaneous_28543978 ieee_primary_1243712 crossref_primary_10_1109_TNN_2003_816353 pubmed_primary_18244562 |
| PublicationCentury | 2000 |
| PublicationDate | 2003-09-01 |
| PublicationDateYYYYMMDD | 2003-09-01 |
| PublicationDate_xml | – month: 09 year: 2003 text: 2003-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 2003 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | Mann (ref3); 2 Ruping (ref9) 1998; 21 ref12 ref14 Keating (ref18) 1999 ref10 Kohonen (ref1) 2001 Lightowler (ref17) 1997 ref8 Lightowler (ref16) Siemon (ref4); 2 Van den Bout (ref13) 1990 Ienne (ref7) 1996; 13 ref6 Lightowler (ref11) Allen (ref15) Obermayer (ref2) 1990; 13 Hämäläinen (ref5) 1995; 19 |
| References_xml | – volume-title: Modular Maps: An Implementation Strategy for the Self-Organizing Map year: 1997 ident: ref17 – ident: ref12 doi: 10.1109/IJCNN.1999.831063 – volume: 2 start-page: 643 volume-title: Proc. Int. Neural Network Conf. ident: ref4 article-title: Kohonen networks on transputers: Implementation and animation – start-page: 130 volume-title: Proc. WSOM’97 ident: ref11 article-title: A modular approach to implementation of the self-organizing map – start-page: 219 year: 1990 ident: ref13 article-title: Rapid prototyping for neural networks publication-title: Adv. Neural Comput. – year: 2001 ident: ref1 article-title: Self-Organizing Maps doi: 10.1007/978-3-642-56927-2 – volume: 13 start-page: 381 issue: 3 year: 1990 ident: ref2 article-title: Large-scale simulations of self-organizing neural networks on parallel computers: Application to biological modeling publication-title: Parallel Comput. doi: 10.1016/0167-8191(90)90088-Q – year: 1999 ident: ref18 article-title: Reuse Methodology Manual for System-on-a-Chip Designs – volume: 2 start-page: 84 volume-title: Proc. Int. Joint Conf. Neural Networks ident: ref3 article-title: A parallel implementation of Kohonen feature maps on the warp systolic computer – volume-title: SAE World Congress ident: ref15 article-title: Production electro-hydraulic variable valve train for a new generation of I.C. engines doi: 10.4271/2002-01-1109 – volume: 13 start-page: 5 year: 1996 ident: ref7 article-title: Special purpose digital hardware for neural networks: An architectural survey publication-title: J. VLSI Signal Processing Syst. doi: 10.1007/BF00930664 – ident: ref14 doi: 10.1109/IJCNN.1998.682346 – volume: 19 start-page: 447 issue: 8 year: 1995 ident: ref5 article-title: TUTNC: A general purpose parallel computer for neural network computations publication-title: Microprocess. Microsyst. doi: 10.1016/0141-9331(96)82010-2 – ident: ref10 doi: 10.1109/MM.2002.1013300 – ident: ref8 doi: 10.1109/72.129410 – volume-title: SAE World Congress ident: ref16 article-title: Artificial Neural Network Based Control Systems doi: 10.4271/2003-01-0359 – ident: ref6 doi: 10.1016/s0141-9331(99)00075-7 – volume: 21 start-page: 31 year: 1998 ident: ref9 article-title: SOM accelerator system publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00042-3 |
| SSID | ssj0014506 |
| Score | 1.9632336 |
| Snippet | This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1085 |
| SubjectTerms | Artificial neural networks Costs Delay Field programmable gate arrays Hardware Intellectual property Neural networks Neurons Power dissipation Silicon |
| Title | IP core implementation of a self-organizing neural network |
| URI | https://ieeexplore.ieee.org/document/1243712 https://www.ncbi.nlm.nih.gov/pubmed/18244562 https://www.proquest.com/docview/28543978 https://www.proquest.com/docview/734246340 https://www.proquest.com/docview/901726490 |
| Volume | 14 |
| WOSCitedRecordID | wos000186478900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) issn: 1045-9227 databaseCode: RIE dateStart: 19900101 customDbUrl: isFulltext: true dateEnd: 20111231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014506 providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6oeNCDPzZ_zJ85iHiws0vSJvEmoijI8KCyW0nSFAbaidsE_et9Sbup4A6e2sMLDf0S8r7k5fsAjriTutDSRLHmRcQVdzjnqIxyySk2YFyHrYGnO9Htyl5P3c_B6fQujHMuFJ-5tn8NZ_n5wI79VtlZx6vneUvheSHS6q7W9MSAJ8FHE9lFEilKRS3j04nV2UO3G4Q_2xKTj4T9WoGCpcrs7DKsMter_-vfGqzU2SS5qOBfhzlXNqB5USKTfvkgxyTUd4aN8wasTgwcSD2fG7D8Q42wCee398SLWpL-y6So3KNGBgXRZOiei6iygPrEaOJ1MPHLZVVFvgGP11cPlzdRba0QWS7iUcRcwjuW6YRq5DR-jS_w6SzSDY05gRWpETK23CQiVwXTxhiNVEpyw2JqlGCbsFAOSrcNhImCdlLqZKIsTwvh5XYctnY0zfPcmha0J787s7XuuLe_eM4C_4hVhvh4N0yWVfi04GTa4LWS3Jgd2vQofIdVALTgcIJnhrPFH4Ho0g3Gw8zfF8UMTLaAzIgQjFOeMh7PDlGeN6dcYchWNVi-OyDxV2JKufN3x3ZhKRQDhhq1PVgYvY3dPiza91F_-HaAw7onD8Kw_gI6K_JL |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB0hFonlwEe7QHcX8AEhDpuS2k5s7w2tQCBKxKEgbpHtOFIlSBFtkeDX79hJC0jbw56Sw1i2PLY8z555D-CQO6lLLU0Ua15GXHGHe47KqJCcYgPGdbgauOuLLJP39-pmCX7Na2GccyH5zHX9b3jLL0Z26q_KTnqePc9LCn_xylmqrtaavxnwJChpIr5IIkWpaIh8erE6GWRZoP7sSgw_EvbpDAqiKovjy3DOnG_83wg3Yb2JJ8lpvQC2YMlVLWifVoilH1_JEQkZnuHqvAUbMwkH0uzoFqx94CNsw-_LG-JpLcnwcZZW7v1GRiXRZOweyqgWgXpDa-KZMLHnqs4j_wa352eDPxdRI64QWS7iScRcwnuW6YRqRDX-lC_x6ywCDo1RgRWpETK23CSiUCXTxhiNYEpyw2JqlGDbsFyNKrcLhImS9lLqZKIsT0vhCXcctnY0LYrCmg50Z9Od24Z53AtgPOQBgcQqR_94PUyW1_7pwPG8wVNNurHYtO298G5WO6ADBzN_5rhf_COIrtxoOs59xSjGYLIDZIGFYJzylPF4sYnyyDnlCk126sXyPgCJU4lB5fd_D-wAVi8G1_28f5ld_YCvITUwZKz9hOXJ89TtwYp9mQzHz_thcf8FWKv0sg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IP+core+implementation+of+a+self-organizing+neural+network&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Hendry%2C+D+C&rft.au=Duncan%2C+A+A&rft.au=Lightowler%2C+N&rft.date=2003-09-01&rft.issn=1045-9227&rft.volume=14&rft.issue=5&rft.spage=1085&rft.epage=1096&rft_id=info:doi/10.1109%2FTNN.2003.816353&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |