IP core implementation of a self-organizing neural network

This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks Jg. 14; H. 5; S. 1085 - 1096
Hauptverfasser: Hendry, D.C., Duncan, A.A., Lightowler, N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.09.2003
Schlagworte:
ISSN:1045-9227
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor.
AbstractList This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor.
This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor.This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor.
This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-mum single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-mum digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor.
This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65- mu m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18- mu m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor.
Author Duncan, A.A.
Hendry, D.C.
Lightowler, N.
Author_xml – sequence: 1
  givenname: D.C.
  surname: Hendry
  fullname: Hendry, D.C.
  organization: Dept. of Eng., Univ. of Aberdeen, UK
– sequence: 2
  givenname: A.A.
  surname: Duncan
  fullname: Duncan, A.A.
– sequence: 3
  givenname: N.
  surname: Lightowler
  fullname: Lightowler, N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18244562$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPwzAUhT0U0QfMDEgoE0xp_YwdNlTxqFQVhjJHjntTGZK42KkQ_HpSpagSQ5nO8n33SPcMUa92NSB0QfCYEJxOlovFmGLMxookTLAeGhDMRZxSKvtoGMIbxoQLnJyiPlGUc5HQAbqdvUTGeYhstSmhgrrRjXV15IpIRwHKInZ-rWv7bet1VMPW67KN5tP59zN0UugywPk-R-j14X45fYrnz4-z6d08NlziJmYgODFMC6qxSkhbXLQJhhClFcVGJrlU2PBcyFVaMJ3nueapUDxnmOapZCN0093dePexhdBklQ0GylLX4LYhSzGRNOEp_peUjFOeML4jr4-SVAnOUqla8GoPbvMKVtnG20r7r-z3gy0w6QDjXQgeigOCs90uWbtLttsl63ZpDfHHMLb7euO1LY94l51nAeDQQjmThLIf_iaZDA
CODEN ITNNEP
CitedBy_id crossref_primary_10_1016_j_engappai_2014_02_008
crossref_primary_10_1016_j_micpro_2007_06_004
crossref_primary_10_1016_j_neucom_2012_11_045
crossref_primary_10_1109_TC_2013_204
crossref_primary_10_1179_174313107X176243
crossref_primary_10_1364_AO_47_000B52
crossref_primary_10_20965_jaciii_2007_p0937
crossref_primary_10_1016_j_neunet_2020_02_019
crossref_primary_10_1109_TCSII_2017_2672789
crossref_primary_10_1109_TNNLS_2015_2398932
crossref_primary_10_1049_iet_cdt_2008_0055
crossref_primary_10_1007_s00138_008_0133_3
crossref_primary_10_1109_JSSC_2024_3510877
crossref_primary_10_1109_JSSC_2014_2332134
crossref_primary_10_1364_AO_44_002366
crossref_primary_10_1016_j_neucom_2010_03_005
crossref_primary_10_1109_TCSI_2020_3046795
crossref_primary_10_1109_TNNLS_2022_3152690
crossref_primary_10_1016_j_neucom_2004_05_002
crossref_primary_10_1016_j_neunet_2005_06_012
crossref_primary_10_1109_TBCAS_2024_3370571
Cites_doi 10.1109/IJCNN.1999.831063
10.1007/978-3-642-56927-2
10.1016/0167-8191(90)90088-Q
10.4271/2002-01-1109
10.1007/BF00930664
10.1109/IJCNN.1998.682346
10.1016/0141-9331(96)82010-2
10.1109/MM.2002.1013300
10.1109/72.129410
10.4271/2003-01-0359
10.1016/s0141-9331(99)00075-7
10.1016/S0925-2312(98)00042-3
ContentType Journal Article
DBID RIA
RIE
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7QO
FR3
P64
DOI 10.1109/TNN.2003.816353
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
EndPage 1096
ExternalDocumentID 18244562
10_1109_TNN_2003_816353
1243712
Genre Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7QO
FR3
P64
ID FETCH-LOGICAL-c470t-3e541c3a52a0861244f086ec118a820c76b780c4b57d9f3abbba49584b302b973
IEDL.DBID RIE
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000186478900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
IngestDate Tue Oct 07 09:28:58 EDT 2025
Thu Sep 04 17:08:17 EDT 2025
Fri Sep 05 08:06:23 EDT 2025
Thu Apr 03 06:58:21 EDT 2025
Sat Nov 29 08:04:20 EST 2025
Tue Nov 18 22:37:42 EST 2025
Tue Aug 26 16:39:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-3e541c3a52a0861244f086ec118a820c76b780c4b57d9f3abbba49584b302b973
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18244562
PQID 28543978
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_734246340
crossref_citationtrail_10_1109_TNN_2003_816353
proquest_miscellaneous_901726490
proquest_miscellaneous_28543978
ieee_primary_1243712
crossref_primary_10_1109_TNN_2003_816353
pubmed_primary_18244562
PublicationCentury 2000
PublicationDate 2003-09-01
PublicationDateYYYYMMDD 2003-09-01
PublicationDate_xml – month: 09
  year: 2003
  text: 2003-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2003
Publisher IEEE
Publisher_xml – name: IEEE
References Mann (ref3); 2
Ruping (ref9) 1998; 21
ref12
ref14
Keating (ref18) 1999
ref10
Kohonen (ref1) 2001
Lightowler (ref17) 1997
ref8
Lightowler (ref16)
Siemon (ref4); 2
Van den Bout (ref13) 1990
Ienne (ref7) 1996; 13
ref6
Lightowler (ref11)
Allen (ref15)
Obermayer (ref2) 1990; 13
Hämäläinen (ref5) 1995; 19
References_xml – volume-title: Modular Maps: An Implementation Strategy for the Self-Organizing Map
  year: 1997
  ident: ref17
– ident: ref12
  doi: 10.1109/IJCNN.1999.831063
– volume: 2
  start-page: 643
  volume-title: Proc. Int. Neural Network Conf.
  ident: ref4
  article-title: Kohonen networks on transputers: Implementation and animation
– start-page: 130
  volume-title: Proc. WSOM’97
  ident: ref11
  article-title: A modular approach to implementation of the self-organizing map
– start-page: 219
  year: 1990
  ident: ref13
  article-title: Rapid prototyping for neural networks
  publication-title: Adv. Neural Comput.
– year: 2001
  ident: ref1
  article-title: Self-Organizing Maps
  doi: 10.1007/978-3-642-56927-2
– volume: 13
  start-page: 381
  issue: 3
  year: 1990
  ident: ref2
  article-title: Large-scale simulations of self-organizing neural networks on parallel computers: Application to biological modeling
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(90)90088-Q
– year: 1999
  ident: ref18
  article-title: Reuse Methodology Manual for System-on-a-Chip Designs
– volume: 2
  start-page: 84
  volume-title: Proc. Int. Joint Conf. Neural Networks
  ident: ref3
  article-title: A parallel implementation of Kohonen feature maps on the warp systolic computer
– volume-title: SAE World Congress
  ident: ref15
  article-title: Production electro-hydraulic variable valve train for a new generation of I.C. engines
  doi: 10.4271/2002-01-1109
– volume: 13
  start-page: 5
  year: 1996
  ident: ref7
  article-title: Special purpose digital hardware for neural networks: An architectural survey
  publication-title: J. VLSI Signal Processing Syst.
  doi: 10.1007/BF00930664
– ident: ref14
  doi: 10.1109/IJCNN.1998.682346
– volume: 19
  start-page: 447
  issue: 8
  year: 1995
  ident: ref5
  article-title: TUTNC: A general purpose parallel computer for neural network computations
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/0141-9331(96)82010-2
– ident: ref10
  doi: 10.1109/MM.2002.1013300
– ident: ref8
  doi: 10.1109/72.129410
– volume-title: SAE World Congress
  ident: ref16
  article-title: Artificial Neural Network Based Control Systems
  doi: 10.4271/2003-01-0359
– ident: ref6
  doi: 10.1016/s0141-9331(99)00075-7
– volume: 21
  start-page: 31
  year: 1998
  ident: ref9
  article-title: SOM accelerator system
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00042-3
SSID ssj0014506
Score 1.9633362
Snippet This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1085
SubjectTerms Artificial neural networks
Costs
Delay
Field programmable gate arrays
Hardware
Intellectual property
Neural networks
Neurons
Power dissipation
Silicon
Title IP core implementation of a self-organizing neural network
URI https://ieeexplore.ieee.org/document/1243712
https://www.ncbi.nlm.nih.gov/pubmed/18244562
https://www.proquest.com/docview/28543978
https://www.proquest.com/docview/734246340
https://www.proquest.com/docview/901726490
Volume 14
WOSCitedRecordID wos000186478900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  dateEnd: 20111231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014506
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4CtAMcxtYCK9vABzRxwMWNndjeDaGhTUIVB5h6i-zEkSpBOtF2Evx63nPSAhI9cEoOL4rj9yx_X_ze9wCOggrBClFymWUpV4nKuFNZxr1PhVTSiSqWR_-91MOhGY3s1RqcLGthQggx-Sz06Tae5ZeTYk6_yk4HpJ5HLYXXtc6aWq3liYFKYx9NZBcpt0miWxmfgbCn18NhFP7sGwQfqXy1A8WWKqvRZdxlLrbfN75P8LFFk-yscf9nWAt1B7pnNTLpuwf2g8X8zvjjvAPbiwYOrF3PHdh6oUbYhZ9_rhiJWrLx3SKpnLzGJhVzbBpuK960gHpEa0Y6mPjmuski34Gbi1_X579521qBF0qLGZchVYNCujRxyGloj6_wGgqkGw4xQaEzr40olE91aSvpvPcOqZRRXorEWy13YaOe1OELMJ8kVemDNwFNEA6aamBtWRH4sAly7x70F9OdF63uOLW_uM0j_xA2R_9QN0yZN_7pwfHygX-N5MZq0y554dmscUAPDhf-zHG10BGIq8NkPs2pXhQRmOkBW2GhJQWsVGK1iSXenCn6tL0mWJ4HYHAqEVLuvz2wr7AZkwFjjto32Jjdz8N3-FD8n42n9wcY1iNzEMP6CbmE8Ws
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hitRyKHS30G0L-FBVPdSL1x9J3BuqQCC2EYdtxS2yE0dCgmzF7iLRX98ZJ7u0UvfQU3KYKI5nLL8Xz7wB-BB0CFaIiqskMVxLnXCnk4R7b4TSyok6lkf_GKd5nl1f26sN-LyqhQkhxOSzMKTbeJZfTcsF_So7HpF6HrUUfma0lqKt1lqdGWgTO2kivzDcSpl2Qj4jYY8neR6lP4cZwg-j_tqDYlOV9fgy7jNnO_83wl142eFJdtIGwCvYCE0P-icNcum7R_aRxQzP-Ou8BzvLFg6sW9E92P5Dj7APXy6uGMlaspu7ZVo5-Y1Na-bYLNzWvG0C9QutGSlh4pubNo_8NXw_O518PeddcwVe6lTMuQpGj0rljHTIamiXr_EaSiQcDlFBmSY-zUSpvUkrWyvnvXdIpjLtlZDepmoPNptpE94A81LWlQ8-C2iCgDCrR9ZWNcEPK5F9D2C4nO6i7JTHqQHGbREZiLAF-of6Yaqi9c8APq0e-NmKbqw37ZMXnsxaBwzgaOnPAtcLHYK4JkwXs4IqRhGDZQNgayxSRSGrtFhvYok5J5o-bb8NlqcBZDiVCCrf_ntgR_D8fPJtXIwv8st38CKmBsaMtfewOb9fhAPYKh_mN7P7wxjcvwG6HfPK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IP+core+implementation+of+a+self-organizing+neural+network&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Hendry%2C+D+C&rft.au=Duncan%2C+A+A&rft.au=Lightowler%2C+N&rft.date=2003-09-01&rft.issn=1045-9227&rft.volume=14&rft.issue=5&rft.spage=1085&rft_id=info:doi/10.1109%2FTNN.2003.816353&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon