IP core implementation of a self-organizing neural network

This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 14; číslo 5; s. 1085 - 1096
Hlavní autoři: Hendry, D.C., Duncan, A.A., Lightowler, N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2003
Témata:
ISSN:1045-9227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper reports on the design issues and subsequent performance of a soft intellectual property (IP) core implementation of a self-organizing neural network. The design is a development of a previous 0.65-/spl mu/m single silicon chip providing an array of 256 neurons, where each neuron stores a 16 element reference vector. Migrating the design to a soft IP core presents challenges in achieving the required performance as regards area, power, and clock speed. This same migration, however, offers opportunities for parameterizing the design in a manner which permits a single soft core to meet the requirements of many end users. Thus, the number of neurons within the single instruction multiple data (SIMD) array, the number of elements per reference vector, and the number of bits of each such element are defined by synthesis time parameters. The construction of the SIMD array of neurons is presented including performance results as regards power, area, and classifications per second . For typical parameters (256 neurons with 16 elements per reference vector) the design provides over 2 000 000 classifications per second using a mainstream 0.18-/spl mu/m digital process. A RISC processor, the array controller (AC), provides both the instruction stream and data to the SIMD array of neurons and an interface to a host processor. The design of this processor is discussed with emphasis on the control aspects which permit supply of a continuous instruction stream to the SIMD array and a flexible interface with the host processor.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1045-9227
DOI:10.1109/TNN.2003.816353