Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche
The ability of breast cancer cells to interconvert between epithelial and mesenchymal states contributes to their metastatic potential. As opposed to cell autonomous effects, the impact of epithelial–mesenchymal plasticity (EMP) on primary and metastatic tumor microenvironments remains poorly charac...
Gespeichert in:
| Veröffentlicht in: | Oncogenesis (New York, NY) Jg. 9; H. 2; S. 16 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
13.02.2020
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 2157-9024, 2157-9024 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The ability of breast cancer cells to interconvert between epithelial and mesenchymal states contributes to their metastatic potential. As opposed to cell autonomous effects, the impact of epithelial–mesenchymal plasticity (EMP) on primary and metastatic tumor microenvironments remains poorly characterized. Herein we utilize global gene expression analyses to characterize a metastatic model of EMP as compared to their non-metastatic counterparts. Using this approach, we demonstrate that upregulation of the extracellular matrix crosslinking enzyme tissue transglutaminase-2 (TG2) is part of a novel gene signature that only emerges in metastatic cells that have undergone induction and reversion of epithelial–mesenchymal transition (EMT). Consistent with our model system, patient survival is diminished when primary tumors demonstrate enhanced levels of TG2 in conjunction with its substrate, fibronectin. Targeted depletion of TG2 inhibits metastasis, while overexpression of TG2 is sufficient to enhance this process. In addition to being present within cells, we demonstrate a robust increase in the amount of TG2 and crosslinked fibronectin present within extracellular vesicle (EV) fractions derived from metastatic breast cancer cells. Confocal microscopy of these EVs suggests that FN undergoes fibrillogenesis on their surface via a TG2 and Tensin1-dependent process. Upon in vivo administration, the ability of tumor-derived EVs to induce metastatic niche formation and enhance subsequent pulmonary tumor growth requires the presence and activity of TG2. Finally, we develop a novel 3D model of the metastatic niche to demonstrate that conditioning of pulmonary fibroblasts via pretreatment with tumor-derived EVs promotes subsequent growth of breast cancer cells in a TG2-dependent fashion. Overall, our studies illustrate a novel mechanism through which EMP contributes to metastatic niche development and distant metastasis via tumor-derived EVs containing aberrant levels of TG2 and fibrillar FN. |
|---|---|
| AbstractList | The ability of breast cancer cells to interconvert between epithelial and mesenchymal states contributes to their metastatic potential. As opposed to cell autonomous effects, the impact of epithelial-mesenchymal plasticity (EMP) on primary and metastatic tumor microenvironments remains poorly characterized. Herein we utilize global gene expression analyses to characterize a metastatic model of EMP as compared to their non-metastatic counterparts. Using this approach, we demonstrate that upregulation of the extracellular matrix crosslinking enzyme tissue transglutaminase-2 (TG2) is part of a novel gene signature that only emerges in metastatic cells that have undergone induction and reversion of epithelial-mesenchymal transition (EMT). Consistent with our model system, patient survival is diminished when primary tumors demonstrate enhanced levels of TG2 in conjunction with its substrate, fibronectin. Targeted depletion of TG2 inhibits metastasis, while overexpression of TG2 is sufficient to enhance this process. In addition to being present within cells, we demonstrate a robust increase in the amount of TG2 and crosslinked fibronectin present within extracellular vesicle (EV) fractions derived from metastatic breast cancer cells. Confocal microscopy of these EVs suggests that FN undergoes fibrillogenesis on their surface via a TG2 and Tensin1-dependent process. Upon in vivo administration, the ability of tumor-derived EVs to induce metastatic niche formation and enhance subsequent pulmonary tumor growth requires the presence and activity of TG2. Finally, we develop a novel 3D model of the metastatic niche to demonstrate that conditioning of pulmonary fibroblasts via pretreatment with tumor-derived EVs promotes subsequent growth of breast cancer cells in a TG2-dependent fashion. Overall, our studies illustrate a novel mechanism through which EMP contributes to metastatic niche development and distant metastasis via tumor-derived EVs containing aberrant levels of TG2 and fibrillar FN.The ability of breast cancer cells to interconvert between epithelial and mesenchymal states contributes to their metastatic potential. As opposed to cell autonomous effects, the impact of epithelial-mesenchymal plasticity (EMP) on primary and metastatic tumor microenvironments remains poorly characterized. Herein we utilize global gene expression analyses to characterize a metastatic model of EMP as compared to their non-metastatic counterparts. Using this approach, we demonstrate that upregulation of the extracellular matrix crosslinking enzyme tissue transglutaminase-2 (TG2) is part of a novel gene signature that only emerges in metastatic cells that have undergone induction and reversion of epithelial-mesenchymal transition (EMT). Consistent with our model system, patient survival is diminished when primary tumors demonstrate enhanced levels of TG2 in conjunction with its substrate, fibronectin. Targeted depletion of TG2 inhibits metastasis, while overexpression of TG2 is sufficient to enhance this process. In addition to being present within cells, we demonstrate a robust increase in the amount of TG2 and crosslinked fibronectin present within extracellular vesicle (EV) fractions derived from metastatic breast cancer cells. Confocal microscopy of these EVs suggests that FN undergoes fibrillogenesis on their surface via a TG2 and Tensin1-dependent process. Upon in vivo administration, the ability of tumor-derived EVs to induce metastatic niche formation and enhance subsequent pulmonary tumor growth requires the presence and activity of TG2. Finally, we develop a novel 3D model of the metastatic niche to demonstrate that conditioning of pulmonary fibroblasts via pretreatment with tumor-derived EVs promotes subsequent growth of breast cancer cells in a TG2-dependent fashion. Overall, our studies illustrate a novel mechanism through which EMP contributes to metastatic niche development and distant metastasis via tumor-derived EVs containing aberrant levels of TG2 and fibrillar FN. The ability of breast cancer cells to interconvert between epithelial and mesenchymal states contributes to their metastatic potential. As opposed to cell autonomous effects, the impact of epithelial–mesenchymal plasticity (EMP) on primary and metastatic tumor microenvironments remains poorly characterized. Herein we utilize global gene expression analyses to characterize a metastatic model of EMP as compared to their non-metastatic counterparts. Using this approach, we demonstrate that upregulation of the extracellular matrix crosslinking enzyme tissue transglutaminase-2 (TG2) is part of a novel gene signature that only emerges in metastatic cells that have undergone induction and reversion of epithelial–mesenchymal transition (EMT). Consistent with our model system, patient survival is diminished when primary tumors demonstrate enhanced levels of TG2 in conjunction with its substrate, fibronectin. Targeted depletion of TG2 inhibits metastasis, while overexpression of TG2 is sufficient to enhance this process. In addition to being present within cells, we demonstrate a robust increase in the amount of TG2 and crosslinked fibronectin present within extracellular vesicle (EV) fractions derived from metastatic breast cancer cells. Confocal microscopy of these EVs suggests that FN undergoes fibrillogenesis on their surface via a TG2 and Tensin1-dependent process. Upon in vivo administration, the ability of tumor-derived EVs to induce metastatic niche formation and enhance subsequent pulmonary tumor growth requires the presence and activity of TG2. Finally, we develop a novel 3D model of the metastatic niche to demonstrate that conditioning of pulmonary fibroblasts via pretreatment with tumor-derived EVs promotes subsequent growth of breast cancer cells in a TG2-dependent fashion. Overall, our studies illustrate a novel mechanism through which EMP contributes to metastatic niche development and distant metastasis via tumor-derived EVs containing aberrant levels of TG2 and fibrillar FN. |
| ArticleNumber | 16 |
| Author | Shinde, Aparna Hopkins, Kelsey Paez, Juan Sebastian Libring, Sarah Solorio, Luis Wendt, Michael K. |
| Author_xml | – sequence: 1 givenname: Aparna surname: Shinde fullname: Shinde, Aparna organization: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University – sequence: 2 givenname: Juan Sebastian surname: Paez fullname: Paez, Juan Sebastian organization: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University – sequence: 3 givenname: Sarah surname: Libring fullname: Libring, Sarah organization: Department of Biomedical Engineering, Purdue University – sequence: 4 givenname: Kelsey surname: Hopkins fullname: Hopkins, Kelsey organization: Department of Biomedical Engineering, Purdue University – sequence: 5 givenname: Luis surname: Solorio fullname: Solorio, Luis email: lsolorio@purdue.edu organization: Department of Biomedical Engineering, Purdue University, Purdue Center for Cancer Research, Purdue University – sequence: 6 givenname: Michael K. orcidid: 0000-0002-3665-7413 surname: Wendt fullname: Wendt, Michael K. email: mwendt@purdue.edu organization: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Purdue Center for Cancer Research, Purdue University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32054828$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UcFqFTEUDVKx9dkPcCMDbtyM3swkk8xGkGJVKLip63An7857KZlMTTKl_r0ZXltrQQOXhOScm3PuecmOwhyIsdcc3nNo9YckeKv7GhpYS9TyGTtpuFR1D404enQ-ZqcpXUFZsuOdlC_YcduAFLrRJ8xeRgxp55eMkwuYqG6qEa3zLmOmVNFtjmjJ-8VjrG4oOeupnmjryvO2opRx8C7tJwq5mscq76maKGO5z85Wwdk9vWLPR_SJTu_2Dftx_vny7Gt98f3Lt7NPF7UVCnLdcgkdbbcgEJWyUkjZjQOhAtEj9QJQAx9x0IMlJYYegDqBMPRWg-3KTDbs46Hv9TIUhbZIiujNdXQTxl9mRmf-fglub3bzjVHAtZKiNHh31yDOP5fizUwureYx0Lwk07RS9q1WZfIb9vYJ9GpeYij2VlTxo1vRF9Sbx4oepNzPvwD4AWDjnFKk8QHCwawxm0PMpkS8ljCycNQTjl3DcvNqyvn_MpsDM5Vfwo7iH9H_Jv0GTlu9Nw |
| CitedBy_id | crossref_primary_10_3389_fnut_2021_800990 crossref_primary_10_3390_cancers12092553 crossref_primary_10_1016_j_ejpb_2020_11_017 crossref_primary_10_1016_j_phymed_2021_153711 crossref_primary_10_7554_eLife_74433 crossref_primary_10_3390_cancers12061697 crossref_primary_10_3390_ijms21218023 crossref_primary_10_1016_j_semcancer_2023_05_003 crossref_primary_10_3389_fonc_2022_839880 crossref_primary_10_1042_BSR20201910 crossref_primary_10_1016_j_canlet_2020_10_023 crossref_primary_10_3390_cancers15112886 crossref_primary_10_1016_j_matbio_2023_12_006 crossref_primary_10_3389_fimmu_2024_1324552 crossref_primary_10_1111_febs_16931 crossref_primary_10_1002_adfm_202005021 crossref_primary_10_1016_j_canlet_2020_08_006 crossref_primary_10_1016_j_canlet_2020_10_019 crossref_primary_10_1016_j_ejpb_2021_01_009 crossref_primary_10_2174_0109298673273299231121044055 crossref_primary_10_1038_s41551_025_01446_0 crossref_primary_10_3390_jcm9082674 crossref_primary_10_3389_fcell_2024_1485258 crossref_primary_10_1146_annurev_bioeng_081623_025834 crossref_primary_10_1002_med_21761 crossref_primary_10_1371_journal_pone_0295641 crossref_primary_10_3390_jcm9082418 crossref_primary_10_1016_j_ejmech_2022_114172 crossref_primary_10_1016_j_molstruc_2025_143045 crossref_primary_10_1016_j_jmb_2024_168569 crossref_primary_10_1016_j_tice_2021_101581 crossref_primary_10_3389_fcell_2024_1363004 crossref_primary_10_3390_cancers13112788 crossref_primary_10_1007_s12032_022_01837_2 crossref_primary_10_3389_fonc_2021_650963 crossref_primary_10_1186_s12885_021_08729_0 crossref_primary_10_3390_cancers12051270 crossref_primary_10_3390_biology10030215 crossref_primary_10_1038_s41568_020_00329_7 crossref_primary_10_1186_s43556_022_00079_y crossref_primary_10_1111_febs_17373 crossref_primary_10_1002_sstr_202000137 crossref_primary_10_1016_j_phrs_2020_105159 crossref_primary_10_1016_j_nbd_2025_106909 crossref_primary_10_1186_s12885_020_07379_y crossref_primary_10_3390_cells10123429 crossref_primary_10_1002_jev2_12234 crossref_primary_10_1002_pmic_202000221 crossref_primary_10_1016_j_phrs_2020_105085 crossref_primary_10_1038_s44276_023_00030_w crossref_primary_10_1111_jcmm_17714 crossref_primary_10_1186_s13046_021_01908_8 crossref_primary_10_1038_s44341_025_00015_5 crossref_primary_10_1007_s10439_022_03073_1 crossref_primary_10_1016_j_jconrel_2021_10_002 crossref_primary_10_1016_j_semcancer_2020_05_015 crossref_primary_10_1038_s41419_023_05818_9 crossref_primary_10_1002_cncr_33567 crossref_primary_10_1007_s10585_024_10269_3 crossref_primary_10_3390_ijms21186837 crossref_primary_10_1186_s12885_020_07515_8 crossref_primary_10_3390_cells10113059 crossref_primary_10_1016_j_canlet_2020_11_010 crossref_primary_10_1042_BST20200717 crossref_primary_10_1016_j_phrs_2020_105007 crossref_primary_10_3390_ijms21176400 crossref_primary_10_1016_j_phrs_2020_105094 crossref_primary_10_3390_molecules26092587 crossref_primary_10_1016_j_semcancer_2020_03_004 crossref_primary_10_1016_j_phrs_2020_105130 crossref_primary_10_3390_biology11111571 crossref_primary_10_3390_ijms25052797 crossref_primary_10_1016_j_intimp_2024_113387 crossref_primary_10_1016_j_phrs_2020_104919 crossref_primary_10_1038_s41568_024_00704_8 crossref_primary_10_3390_cancers12102935 crossref_primary_10_1016_j_molimm_2024_04_013 crossref_primary_10_1016_j_phrs_2021_105759 crossref_primary_10_1042_BCJ20210083 crossref_primary_10_3390_ijms21218119 crossref_primary_10_1016_j_tcb_2021_08_001 crossref_primary_10_1093_lifemeta_loac035 crossref_primary_10_3390_biom11050640 crossref_primary_10_3389_fonc_2021_813897 crossref_primary_10_1016_j_addr_2023_115027 crossref_primary_10_1016_j_phrs_2020_104880 crossref_primary_10_3390_biomedicines8090334 crossref_primary_10_1186_s12885_022_10364_2 |
| Cites_doi | 10.1016/bs.acc.2015.12.005 10.1038/ncomms15773 10.1186/bcr3034 10.1093/bioinformatics/btw313 10.1038/nature22341 10.1038/nature15756 10.1158/0008-5472.CAN-18-2636 10.1016/j.celrep.2014.12.032 10.1016/j.ejca.2012.11.036 10.1073/pnas.1017667108 10.3791/56482 10.1016/S0140-6736(13)60473-0 10.1083/jcb.148.5.1075 10.1007/978-1-4939-2550-6_15 10.1007/s10549-009-0674-9 10.1186/bcr3623 10.1158/1541-7786.MCR-18-0151 10.1016/j.bbamcr.2011.09.012 10.1158/0008-5472.CAN-09-2356 10.1007/s00726-011-1181-y 10.1038/onc.2010.215 10.18632/oncotarget.6883 10.1186/bcr2360 10.1093/nar/gks042 10.18632/oncotarget.13117 10.1158/1535-7163.MCT-16-0136 10.18632/oncotarget.9561 10.1158/0008-5472.CAN-16-3292 10.1074/jbc.M113.475277 10.1091/mbc.e11-04-0306 10.1016/j.bbamcr.2016.05.005 10.1165/rcmb.2016-0379OC 10.1126/scisignal.aau8544 10.1073/pnas.1618088114 10.1074/jbc.M115.686295 10.1093/bioinformatics/btp616 10.1016/j.celrep.2016.02.034 10.12688/f1000research.15064.2 10.1016/j.drudis.2018.01.037 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1038/s41389-020-0204-5 |
| DatabaseName | Springer Nature Link OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2157-9024 |
| ExternalDocumentID | PMC7018754 32054828 10_1038_s41389_020_0204_5 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA) grantid: R21AA026675 funderid: https://doi.org/10.13039/100000027 – fundername: American Cancer Society (American Cancer Society, Inc.) grantid: RSG-CSM130259 funderid: https://doi.org/10.13039/100000048 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R01CA207751; R01CA232589; R00CA198929 funderid: https://doi.org/10.13039/100000054 – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA) grantid: R21AA026675 – fundername: NCI NIH HHS grantid: R01 CA207751 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R00CA198929 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R01CA232589 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: R01CA207751 – fundername: NCI NIH HHS grantid: R01 CA232589 – fundername: NCI NIH HHS grantid: R00 CA198929 – fundername: NIAAA NIH HHS grantid: R21 AA026675 – fundername: American Cancer Society (American Cancer Society, Inc.) grantid: RSG-CSM130259 – fundername: NCI NIH HHS grantid: P30 CA023168 – fundername: ; – fundername: ; grantid: RSG-CSM130259 – fundername: ; grantid: R01CA207751; R01CA232589; R00CA198929 – fundername: ; grantid: R21AA026675 |
| GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION NPM 7XB 8FK K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c470t-31506edd04aa77c54556fbea7049ae940a801fab8bce74b900e64a0b9c80c6103 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514925500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2157-9024 |
| IngestDate | Tue Nov 04 01:59:50 EST 2025 Fri Sep 05 13:25:29 EDT 2025 Sat Nov 29 14:51:14 EST 2025 Mon Jul 21 06:06:38 EDT 2025 Tue Nov 18 22:19:42 EST 2025 Sat Nov 29 02:53:38 EST 2025 Fri Feb 21 02:40:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-31506edd04aa77c54556fbea7049ae940a801fab8bce74b900e64a0b9c80c6103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3665-7413 |
| OpenAccessLink | https://www.proquest.com/docview/2354708349?pq-origsite=%requestingapplication% |
| PMID | 32054828 |
| PQID | 2354708349 |
| PQPubID | 2041913 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7018754 proquest_miscellaneous_2355938741 proquest_journals_2354708349 pubmed_primary_32054828 crossref_primary_10_1038_s41389_020_0204_5 crossref_citationtrail_10_1038_s41389_020_0204_5 springer_journals_10_1038_s41389_020_0204_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-13 |
| PublicationDateYYYYMMDD | 2020-02-13 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United States – name: New York |
| PublicationTitle | Oncogenesis (New York, NY) |
| PublicationTitleAbbrev | Oncogenesis |
| PublicationTitleAlternate | Oncogenesis |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | PhilpCJExtracellular matrix cross-linking enhances fibroblast growth and protects against matrix proteolysis in lung fibrosisAm. J. Respir. Cell Mol. Biol.20185859460310.1165/rcmb.2016-0379OC1:CAS:528:DC%2BC1cXhslyks7fN ChenI-HPhosphoproteins in extracellular vesicles as candidate markers for breast cancerProc. Natl Acad. Sci. USA20171143175318010.1073/pnas.16180881141:CAS:528:DC%2BC2sXjvVyjsb8%3D MoonP-GFibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancerOncotarget201674018940199272500245130002 NeelakantanDEMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cellsNat. Commun.2017810.1038/ncomms15773 BalanisNEpithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathwayJ. Biol. Chem.2013288179541796710.1074/jbc.M113.4752771:CAS:528:DC%2BC3sXpvVGlu7k%3D BrownWSTanLSmithAGrayNSWendtMKCovalent targeting of fibroblast growth factor receptor inhibits metastatic breast cancerMol. Cancer Ther.2016152096210610.1158/1535-7163.MCT-16-01361:CAS:528:DC%2BC28XhsVCnsLvI ChittyJessica L.FilipeElysse C.LucasMorghan C.HerrmannDavidCoxThomas R.TimpsonPaulRecent advances in understanding the complexities of metastasisF1000Research20187116910.12688/f1000research.15064.21:CAS:528:DC%2BC1MXitVWitbbO Oh, K. et al. Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells. Breast Cancer Res.13, R96 (2011). ParkMKTransglutaminase-2 induces N-cadherin expression in TGF-β1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulationEur. J. Cancer2013491692170510.1016/j.ejca.2012.11.0361:CAS:528:DC%2BC3sXhsl2rug%3D%3D Jung, M. K. & Mun, J. Y. Sample preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. 56482 (2018). KamerkarSExosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancerNature201754649850310.1038/nature223411:CAS:528:DC%2BC2sXpt1OqtLg%3D American Cancer Society. American Cancer Society, Cancer Treatment and Survivorship Facts and Figures. http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf (2016). KattWPAntonyakMACerioneRAThe diamond anniversary of tissue transglutaminase: a protein of many talentsDrug Discov. Today20182357559110.1016/j.drudis.2018.01.0371:CAS:528:DC%2BC1cXhslSgs7s%3D PankovRIntegrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesisJ. Cell Biol.20001481075109010.1083/jcb.148.5.10751:CAS:528:DC%2BD3cXhslansL8%3D WendtMKSchiemannWPTherapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasisBreast Cancer Res.200911R6810.1186/bcr23601:CAS:528:DC%2BD1MXhtFyisr3N WendtMKTaylorMASchiemannBJSchiemannWPDown-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancerMol. Biol. Cell2011222423243510.1091/mbc.e11-04-03061:CAS:528:DC%2BC3MXpslKktrY%3D BeerlingEPlasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacityCell Rep.2016142281228810.1016/j.celrep.2016.02.0341:CAS:528:DC%2BC28Xjs1yht7c%3D RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics20102613914010.1093/bioinformatics/btp6161:CAS:528:DC%2BD1MXhs1WlurvO ShindeAAutocrine fibronectin inhibits breast cancer metastasisMol. Cancer Res.2018161579158910.1158/1541-7786.MCR-18-01511:CAS:528:DC%2BC1cXit1yntrzE McCarthyDJChenYSmythGKDifferential expression analysis of multifactor RNA-Seq experiments with respect to biological variationNucleic Acids Res.2012404288429710.1093/nar/gks0421:CAS:528:DC%2BC38XnsF2ks74%3D Wendt, M. K., Taylor, M. A., Schiemann, B. J., Sossey-Alaoui, K. & Schiemann, W. P. Fibroblast growth factor receptor splice variants are stable markers of oncogenic transforming growth factor β1 signaling in metastatic breast cancers. Breast Cancer Res.16, R24 (2014). BrownWSAkhandSSWendtMKBrownWSWendtMKFGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transitionOncotarget201678342483436278251375347779 HoshinoATumour exosome integrins determine organotropic metastasisNature201552732933510.1038/nature157561:CAS:528:DC%2BC2MXhslOrtb7P GundemirSColakGTucholskiJJohnsonGVWTransglutaminase 2: a molecular Swiss army knifeBiochim Biophys. Acta2012182340641910.1016/j.bbamcr.2011.09.0121:CAS:528:DC%2BC38Xhs1Cqs74%3D WangXTissue transglutaminase-2 promotes gastric cancer progression via the ERK1/2 pathwayOncotarget2016770667079.267712354872769 GyörffyBAn online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patientsBreast Cancer Res. Treat.201012372573110.1007/s10549-009-0674-91:CAS:528:DC%2BC3cXhtFOqtL%2FJ LodgeMdaSNahasMEJohnsonTSUrinary transglutaminase 2 as a potential biomarker of chronic kidney disease detection and progressionLancet2013381S3310.1016/S0140-6736(13)60473-0 KatsunoYChronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibitionSci. Signal.20191210.1126/scisignal.aau85441:CAS:528:DC%2BC1MXhtlant77I DongreAEpithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomasCancer Res.2017773982398910.1158/0008-5472.CAN-16-32921:CAS:528:DC%2BC2sXht1GhurjJ BarkanDMetastatic growth from dormant cells induced by a col-I-enriched fibrotic environmentCancer Res.2010705706571610.1158/0008-5472.CAN-09-23561:CAS:528:DC%2BC3cXovVantbo%3D AntonyakMACancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cellsProc. Natl Acad. Sci. USA20111084852485710.1073/pnas.1017667108 ShindeASpleen tyrosine kinase-mediated autophagy is required for epithelial-mesenchymal plasticity and metastasis in breast cancerCancer Res.2019791831184310.1158/0008-5472.CAN-18-26361:CAS:528:DC%2BC1MXht1Ojur3E Diaz-HidalgoLTransglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditionsBiochim. Biophys. Acta201618632084209210.1016/j.bbamcr.2016.05.0051:CAS:528:DC%2BC28XnslGmu7o%3D SchmidtJMStem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activationCell Rep.20151013113910.1016/j.celrep.2014.12.0321:CAS:528:DC%2BC2MXntVaitg%3D%3D WhitesideTLTumor-derived exosomes and their role in cancer progressionAdv. Clin. Chem.20167410314110.1016/bs.acc.2015.12.0051:CAS:528:DC%2BC1MXnvFCntLk%3D GreeningDWXuRJiHTauroBJSimpsonRJA protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methodsMethods Mol. Biol.2015129517920910.1007/978-1-4939-2550-6_151:CAS:528:DC%2BC28Xls12lt74%3D TarantinoUFerlosioAArcuriGSpagnoliLGOrlandiATransglutaminase 2 as a biomarker of osteoarthritis: an updateAmino Acids20134419920710.1007/s00726-011-1181-y1:CAS:528:DC%2BC3sXhsFSltQ%3D%3D SinghASettlemanJEMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancerOncogene2010294741475110.1038/onc.2010.2151:CAS:528:DC%2BC3cXntVSrur0%3D PurushothamanAFibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactionsJ. Biol. Chem.20162911652166310.1074/jbc.M115.6862951:CAS:528:DC%2BC28Xht1Oiurw%3D GuZEilsRSchlesnerMComplex heatmaps reveal patterns and correlations in multidimensional genomic dataBioinformatics2016322847284910.1093/bioinformatics/btw3131:CAS:528:DC%2BC2sXhtFGlurjF MK Park (204_CR27) 2013; 49 E Beerling (204_CR26) 2016; 14 Z Gu (204_CR37) 2016; 32 DJ McCarthy (204_CR35) 2012; 40 R Pankov (204_CR25) 2000; 148 A Purushothaman (204_CR16) 2016; 291 MA Antonyak (204_CR31) 2011; 108 CJ Philp (204_CR13) 2018; 58 A Hoshino (204_CR17) 2015; 527 S Gundemir (204_CR29) 2012; 1823 U Tarantino (204_CR33) 2013; 44 I-H Chen (204_CR24) 2017; 114 WS Brown (204_CR20) 2016; 15 A Shinde (204_CR3) 2019; 79 A Dongre (204_CR6) 2017; 77 Jessica L. Chitty (204_CR2) 2018; 7 D Barkan (204_CR11) 2010; 70 L Diaz-Hidalgo (204_CR15) 2016; 1863 Y Katsuno (204_CR4) 2019; 12 TL Whiteside (204_CR30) 2016; 74 M Lodge (204_CR32) 2013; 381 N Balanis (204_CR19) 2013; 288 204_CR22 P-G Moon (204_CR23) 2016; 7 204_CR40 MD Robinson (204_CR36) 2010; 26 204_CR21 S Kamerkar (204_CR38) 2017; 546 MK Wendt (204_CR7) 2011; 22 D Neelakantan (204_CR8) 2017; 8 204_CR1 JM Schmidt (204_CR10) 2015; 10 MK Wendt (204_CR34) 2009; 11 A Singh (204_CR5) 2010; 29 A Shinde (204_CR9) 2018; 16 X Wang (204_CR14) 2016; 7 WP Katt (204_CR12) 2018; 23 WS Brown (204_CR28) 2016; 7 B Györffy (204_CR18) 2010; 123 DW Greening (204_CR39) 2015; 1295 |
| References_xml | – reference: WhitesideTLTumor-derived exosomes and their role in cancer progressionAdv. Clin. Chem.20167410314110.1016/bs.acc.2015.12.0051:CAS:528:DC%2BC1MXnvFCntLk%3D – reference: SinghASettlemanJEMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancerOncogene2010294741475110.1038/onc.2010.2151:CAS:528:DC%2BC3cXntVSrur0%3D – reference: Oh, K. et al. Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells. Breast Cancer Res.13, R96 (2011). – reference: ParkMKTransglutaminase-2 induces N-cadherin expression in TGF-β1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulationEur. J. Cancer2013491692170510.1016/j.ejca.2012.11.0361:CAS:528:DC%2BC3sXhsl2rug%3D%3D – reference: ChittyJessica L.FilipeElysse C.LucasMorghan C.HerrmannDavidCoxThomas R.TimpsonPaulRecent advances in understanding the complexities of metastasisF1000Research20187116910.12688/f1000research.15064.21:CAS:528:DC%2BC1MXitVWitbbO – reference: HoshinoATumour exosome integrins determine organotropic metastasisNature201552732933510.1038/nature157561:CAS:528:DC%2BC2MXhslOrtb7P – reference: LodgeMdaSNahasMEJohnsonTSUrinary transglutaminase 2 as a potential biomarker of chronic kidney disease detection and progressionLancet2013381S3310.1016/S0140-6736(13)60473-0 – reference: SchmidtJMStem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activationCell Rep.20151013113910.1016/j.celrep.2014.12.0321:CAS:528:DC%2BC2MXntVaitg%3D%3D – reference: GyörffyBAn online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patientsBreast Cancer Res. Treat.201012372573110.1007/s10549-009-0674-91:CAS:528:DC%2BC3cXhtFOqtL%2FJ – reference: BrownWSTanLSmithAGrayNSWendtMKCovalent targeting of fibroblast growth factor receptor inhibits metastatic breast cancerMol. Cancer Ther.2016152096210610.1158/1535-7163.MCT-16-01361:CAS:528:DC%2BC28XhsVCnsLvI – reference: TarantinoUFerlosioAArcuriGSpagnoliLGOrlandiATransglutaminase 2 as a biomarker of osteoarthritis: an updateAmino Acids20134419920710.1007/s00726-011-1181-y1:CAS:528:DC%2BC3sXhsFSltQ%3D%3D – reference: McCarthyDJChenYSmythGKDifferential expression analysis of multifactor RNA-Seq experiments with respect to biological variationNucleic Acids Res.2012404288429710.1093/nar/gks0421:CAS:528:DC%2BC38XnsF2ks74%3D – reference: WendtMKTaylorMASchiemannBJSchiemannWPDown-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancerMol. Biol. Cell2011222423243510.1091/mbc.e11-04-03061:CAS:528:DC%2BC3MXpslKktrY%3D – reference: American Cancer Society. American Cancer Society, Cancer Treatment and Survivorship Facts and Figures. http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf (2016). – reference: BeerlingEPlasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacityCell Rep.2016142281228810.1016/j.celrep.2016.02.0341:CAS:528:DC%2BC28Xjs1yht7c%3D – reference: ShindeAAutocrine fibronectin inhibits breast cancer metastasisMol. Cancer Res.2018161579158910.1158/1541-7786.MCR-18-01511:CAS:528:DC%2BC1cXit1yntrzE – reference: BrownWSAkhandSSWendtMKBrownWSWendtMKFGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transitionOncotarget201678342483436278251375347779 – reference: AntonyakMACancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cellsProc. Natl Acad. Sci. USA20111084852485710.1073/pnas.1017667108 – reference: KattWPAntonyakMACerioneRAThe diamond anniversary of tissue transglutaminase: a protein of many talentsDrug Discov. Today20182357559110.1016/j.drudis.2018.01.0371:CAS:528:DC%2BC1cXhslSgs7s%3D – reference: BarkanDMetastatic growth from dormant cells induced by a col-I-enriched fibrotic environmentCancer Res.2010705706571610.1158/0008-5472.CAN-09-23561:CAS:528:DC%2BC3cXovVantbo%3D – reference: GreeningDWXuRJiHTauroBJSimpsonRJA protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methodsMethods Mol. Biol.2015129517920910.1007/978-1-4939-2550-6_151:CAS:528:DC%2BC28Xls12lt74%3D – reference: WangXTissue transglutaminase-2 promotes gastric cancer progression via the ERK1/2 pathwayOncotarget2016770667079.267712354872769 – reference: Wendt, M. K., Taylor, M. A., Schiemann, B. J., Sossey-Alaoui, K. & Schiemann, W. P. Fibroblast growth factor receptor splice variants are stable markers of oncogenic transforming growth factor β1 signaling in metastatic breast cancers. Breast Cancer Res.16, R24 (2014). – reference: PurushothamanAFibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactionsJ. Biol. Chem.20162911652166310.1074/jbc.M115.6862951:CAS:528:DC%2BC28Xht1Oiurw%3D – reference: ChenI-HPhosphoproteins in extracellular vesicles as candidate markers for breast cancerProc. Natl Acad. Sci. USA20171143175318010.1073/pnas.16180881141:CAS:528:DC%2BC2sXjvVyjsb8%3D – reference: ShindeASpleen tyrosine kinase-mediated autophagy is required for epithelial-mesenchymal plasticity and metastasis in breast cancerCancer Res.2019791831184310.1158/0008-5472.CAN-18-26361:CAS:528:DC%2BC1MXht1Ojur3E – reference: RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics20102613914010.1093/bioinformatics/btp6161:CAS:528:DC%2BD1MXhs1WlurvO – reference: WendtMKSchiemannWPTherapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasisBreast Cancer Res.200911R6810.1186/bcr23601:CAS:528:DC%2BD1MXhtFyisr3N – reference: Jung, M. K. & Mun, J. Y. Sample preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. 56482 (2018). – reference: DongreAEpithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomasCancer Res.2017773982398910.1158/0008-5472.CAN-16-32921:CAS:528:DC%2BC2sXht1GhurjJ – reference: KamerkarSExosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancerNature201754649850310.1038/nature223411:CAS:528:DC%2BC2sXpt1OqtLg%3D – reference: GundemirSColakGTucholskiJJohnsonGVWTransglutaminase 2: a molecular Swiss army knifeBiochim Biophys. Acta2012182340641910.1016/j.bbamcr.2011.09.0121:CAS:528:DC%2BC38Xhs1Cqs74%3D – reference: PhilpCJExtracellular matrix cross-linking enhances fibroblast growth and protects against matrix proteolysis in lung fibrosisAm. J. Respir. Cell Mol. Biol.20185859460310.1165/rcmb.2016-0379OC1:CAS:528:DC%2BC1cXhslyks7fN – reference: NeelakantanDEMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cellsNat. Commun.2017810.1038/ncomms15773 – reference: Diaz-HidalgoLTransglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditionsBiochim. Biophys. Acta201618632084209210.1016/j.bbamcr.2016.05.0051:CAS:528:DC%2BC28XnslGmu7o%3D – reference: BalanisNEpithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathwayJ. Biol. Chem.2013288179541796710.1074/jbc.M113.4752771:CAS:528:DC%2BC3sXpvVGlu7k%3D – reference: PankovRIntegrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesisJ. Cell Biol.20001481075109010.1083/jcb.148.5.10751:CAS:528:DC%2BD3cXhslansL8%3D – reference: KatsunoYChronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibitionSci. Signal.20191210.1126/scisignal.aau85441:CAS:528:DC%2BC1MXhtlant77I – reference: MoonP-GFibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancerOncotarget201674018940199272500245130002 – reference: GuZEilsRSchlesnerMComplex heatmaps reveal patterns and correlations in multidimensional genomic dataBioinformatics2016322847284910.1093/bioinformatics/btw3131:CAS:528:DC%2BC2sXhtFGlurjF – volume: 74 start-page: 103 year: 2016 ident: 204_CR30 publication-title: Adv. Clin. Chem. doi: 10.1016/bs.acc.2015.12.005 – volume: 8 year: 2017 ident: 204_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms15773 – ident: 204_CR22 doi: 10.1186/bcr3034 – volume: 32 start-page: 2847 year: 2016 ident: 204_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw313 – volume: 546 start-page: 498 year: 2017 ident: 204_CR38 publication-title: Nature doi: 10.1038/nature22341 – volume: 527 start-page: 329 year: 2015 ident: 204_CR17 publication-title: Nature doi: 10.1038/nature15756 – volume: 79 start-page: 1831 year: 2019 ident: 204_CR3 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-2636 – volume: 10 start-page: 131 year: 2015 ident: 204_CR10 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.032 – volume: 49 start-page: 1692 year: 2013 ident: 204_CR27 publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2012.11.036 – volume: 108 start-page: 4852 year: 2011 ident: 204_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1017667108 – ident: 204_CR40 doi: 10.3791/56482 – volume: 381 start-page: S33 year: 2013 ident: 204_CR32 publication-title: Lancet doi: 10.1016/S0140-6736(13)60473-0 – ident: 204_CR1 – volume: 148 start-page: 1075 year: 2000 ident: 204_CR25 publication-title: J. Cell Biol. doi: 10.1083/jcb.148.5.1075 – volume: 1295 start-page: 179 year: 2015 ident: 204_CR39 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2550-6_15 – volume: 123 start-page: 725 year: 2010 ident: 204_CR18 publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-009-0674-9 – ident: 204_CR21 doi: 10.1186/bcr3623 – volume: 16 start-page: 1579 year: 2018 ident: 204_CR9 publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-18-0151 – volume: 1823 start-page: 406 year: 2012 ident: 204_CR29 publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbamcr.2011.09.012 – volume: 70 start-page: 5706 year: 2010 ident: 204_CR11 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-2356 – volume: 44 start-page: 199 year: 2013 ident: 204_CR33 publication-title: Amino Acids doi: 10.1007/s00726-011-1181-y – volume: 29 start-page: 4741 year: 2010 ident: 204_CR5 publication-title: Oncogene doi: 10.1038/onc.2010.215 – volume: 7 start-page: 7066 year: 2016 ident: 204_CR14 publication-title: Oncotarget doi: 10.18632/oncotarget.6883 – volume: 11 start-page: R68 year: 2009 ident: 204_CR34 publication-title: Breast Cancer Res. doi: 10.1186/bcr2360 – volume: 40 start-page: 4288 year: 2012 ident: 204_CR35 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks042 – volume: 7 start-page: 83424 year: 2016 ident: 204_CR28 publication-title: Oncotarget doi: 10.18632/oncotarget.13117 – volume: 15 start-page: 2096 year: 2016 ident: 204_CR20 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-16-0136 – volume: 7 start-page: 40189 year: 2016 ident: 204_CR23 publication-title: Oncotarget doi: 10.18632/oncotarget.9561 – volume: 77 start-page: 3982 year: 2017 ident: 204_CR6 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-3292 – volume: 288 start-page: 17954 year: 2013 ident: 204_CR19 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.475277 – volume: 22 start-page: 2423 year: 2011 ident: 204_CR7 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-04-0306 – volume: 1863 start-page: 2084 year: 2016 ident: 204_CR15 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2016.05.005 – volume: 58 start-page: 594 year: 2018 ident: 204_CR13 publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2016-0379OC – volume: 12 year: 2019 ident: 204_CR4 publication-title: Sci. Signal. doi: 10.1126/scisignal.aau8544 – volume: 114 start-page: 3175 year: 2017 ident: 204_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1618088114 – volume: 291 start-page: 1652 year: 2016 ident: 204_CR16 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.686295 – volume: 26 start-page: 139 year: 2010 ident: 204_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 14 start-page: 2281 year: 2016 ident: 204_CR26 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.02.034 – volume: 7 start-page: 1169 year: 2018 ident: 204_CR2 publication-title: F1000Research doi: 10.12688/f1000research.15064.2 – volume: 23 start-page: 575 year: 2018 ident: 204_CR12 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.01.037 |
| SSID | ssj0000561655 |
| Score | 2.4883423 |
| Snippet | The ability of breast cancer cells to interconvert between epithelial and mesenchymal states contributes to their metastatic potential. As opposed to cell... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 16 |
| SubjectTerms | 13/1 13/95 14 14/19 14/28 38 38/91 59/5 631/67/1347 631/80/313 96 96/44 Apoptosis Breast cancer Cell Biology Confocal microscopy Extracellular matrix Fibrillogenesis Fibroblasts Fibronectin Gene expression Human Genetics Internal Medicine Lung cancer Medicine Medicine & Public Health Mesenchyme Metastases Metastasis Microenvironments Oncology Reversion Transglutaminase 2 Tumors |
| Title | Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche |
| URI | https://link.springer.com/article/10.1038/s41389-020-0204-5 https://www.ncbi.nlm.nih.gov/pubmed/32054828 https://www.proquest.com/docview/2354708349 https://www.proquest.com/docview/2355938741 https://pubmed.ncbi.nlm.nih.gov/PMC7018754 |
| Volume | 9 |
| WOSCitedRecordID | wos000514925500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2157-9024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000561655 issn: 2157-9024 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2157-9024 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000561655 issn: 2157-9024 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDaG98P0RGFWQeAJZc2O7jp8QoE4g0SpCIJWnyHFsqATp1nR75G_nzkk6lYm98FC_2Ent3Pnu57vzHcDLgCrYh6xitXGSSZWPma1qwbiUppZKirqrWvJJz-f5YmGK3uDW9mGVg0yMgrpeObKRH2dCSY14QZo3p2eMqkaRd7UvobEHB5QlQcTQvWJrYyF0PFFqcGaK_LiV5JhjdGaiW6FM7aqjKxjzaqjkX_7SqIZO7vzvAu7C7R6Apm87jrkHN3xzH27Nehf7A3BRe31HhrQUJdN6lqXBui6Zt29TFOZrS-Z-il9NL3xLr2HxAgqC1xTnY6Nhi6yO6SqkCDDTX35j6ebS0qUNhZ4-hK8n0y_vP7C-EgNzOOcNCmrFJ76uubRWa4eoS01C5a3G84X1RnKLii7YKq-c17IynPuJtLwyLucOAZp4BPvNqvFPIPXaGtSHAZGDkcEEw4UNzlXjXGc2KJcAHwhSuj5NOVXL-FlGd7nIy46GJdKPfrJUCbzaPnLa5ei4bvDRQJ6y365teUmbBF5su3Gj0ee0jV-dxzHKiBwRWAKPO6bY_pvIEPni2TUBvcMu2wGUxHu3p1n-iMm8NVVFVDKB1wNjXU7rn4t4ev0insFh1rE4G4sj2N-sz_1zuOkuNst2PYI9vdCxzUdw8G46Lz6PoikC21lWjOIeovb3FPuLj7Pi2x_WZSMe |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgArLqje1NfEAIAVWrblc9FKm34Dg2rATZstkW8af4jcw4j2qp6K0HDjnFcTLO55nPnvEMwIuAJtiHtOSVcYornY-4LSvJhVKmUlrJqq1aMsmm0_zw0Oyvwe_-LAyFVfY6MSrqau5oj3wzlVplyBeUeXv0g1PVKPKu9iU0Wljs-l8_ccnWvNn5gP_3ZZpufTx4v827qgLcYQdLVDpajH1VCWVtljlkEHocSm8z5MrWGyUsKu1gy7x0PlOlEcKPlRWlcblwSDYk9nsJLiONSPMYKrg_7OkQGx9r3TtPZb7ZKHIEclqj0SlUrlfN3xlOezY08y__bDR7Wzf_twG7BTc6gs3etTPiNqz5-g5c3etCCO6Ci9b5C044S1FAjecpC9a1ycp9w9BYLSy5Myg-l534hrrh8YANknOG8tu4cUe7qmweGBJo9t0vLZ3MmjlWU2jtPfh0ISLeh_V6XvuHwHxmDdr7gMzIqGCCEdIG58pRnqU2aJeA6AFQuC4NO1UD-VbEcACZFy1mCsQLXarQCbwaHjlqc5Cc13ijh0PRqaOmOMVCAs-H26hIaDht7efHsY02MkeGmcCDFoTD22SKzB7X5glkK_AcGlCS8tU79exrTFaeUdVHrRJ43QP59LP-KcSj84V4Bte2D_YmxWRnuvsYrqft9OIjuQHry8WxfwJX3Mly1iyexvnJ4PNF4_sPQ6N3zw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgqpeeD8CBYwEF5C13thexweEEGVF1bLaA0i9BcexYaWSLZttEX-NX8dMHlstFb31wCGnOE7sfB5_9nyeAXgecQoOMS14ab3iSmdD7opScqGULZVWsmyzlhyYySQ7PLTTDfjdn4UhWWVvExtDXc497ZEPUqmVQb6g7CB2sojp7vjN8Q9OGaTI09qn02ghsh9-_cTlW_16bxf_9Ys0Hb__9O4D7zIMcI-VLdEAaTEKZSmUc8Z4ZBN6FIvgDPJmF6wSDg14dEVW-GBUYYUII-VEYX0mPBIPifVegauGgpY3ssHpan-HmPlI696RKrNBrcgpyGm9RidSuV6fCs_x2_Myzb98tc0UOL7xP3feTbjeEW_2th0pt2AjVLdh62MnLbgDvpm1v-JAdKQOqgNPWXS-DWIeaoaNWThyc5Bul52GmqrhzcEbJO0M-8I1G3q028rmkSGxZt_D0tGJrZlnFUlu78LnS2niPdis5lV4ACwYZ5EHRGRMVkUbrZAuel8MM5O6qH0CogdD7rvw7JQl5ChvZAIyy1v85IgdulSuE3i5euS4jU1yUeGdHhp5Z6bq_AwXCTxb3UYDQ93pqjA_acpoKzNkngncbwG5eptMkfHjmj0BswbVVQEKXr5-p5p9a4KYG8oGqVUCr3pQn33WPxvx8OJGPIUthHV-sDfZfwTbaTvS-FDuwOZycRIewzV_upzViyfNUGXw5bLh_Qf3VoCM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transglutaminase-2+facilitates+extracellular+vesicle-mediated+establishment+of+the+metastatic+niche&rft.jtitle=Oncogenesis+%28New+York%2C+NY%29&rft.au=Shinde%2C+Aparna&rft.au=Paez%2C+Juan+Sebastian&rft.au=Libring%2C+Sarah&rft.au=Hopkins%2C+Kelsey&rft.date=2020-02-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2157-9024&rft.volume=9&rft.issue=2&rft_id=info:doi/10.1038%2Fs41389-020-0204-5&rft.externalDocID=10_1038_s41389_020_0204_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-9024&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-9024&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-9024&client=summon |