The multiplicative complexity of 6-variable Boolean functions
The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions wi...
Uložené v:
| Vydané v: | Cryptography and communications Ročník 11; číslo 1; s. 93 - 107 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.01.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1936-2447, 1936-2455 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [
1
] showed that
n
-variable Boolean functions can be implemented with at most
n
−
1
AND gates for
n
≤
5
. A counting argument can be used to show that, for
n
≥ 7, there exist
n
-variable Boolean functions with multiplicative complexity of at least
n
. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150 357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6. |
|---|---|
| AbstractList | The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n−1 AND gates for n≤5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150 357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6. The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n−1 AND gates for n ≤ 5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6. The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that -variable Boolean functions can be implemented with at most -1 AND gates for ≤ 5. A counting argument can be used to show that, for ≥ 7, there exist -variable Boolean functions with multiplicative complexity of at least . In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6. The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [ 1 ] showed that n -variable Boolean functions can be implemented with at most n − 1 AND gates for n ≤ 5 . A counting argument can be used to show that, for n ≥ 7, there exist n -variable Boolean functions with multiplicative complexity of at least n . In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150 357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6. The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n-1 AND gates for n ≤ 5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n-1 AND gates for n ≤ 5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6. |
| Author | Çalık, Çağdaş Peralta, René Sönmez Turan, Meltem |
| Author_xml | – sequence: 1 givenname: Çağdaş orcidid: 0000-0003-1895-7719 surname: Çalık fullname: Çalık, Çağdaş email: cagdas.calik@nist.gov organization: National Institute of Standards and Technology – sequence: 2 givenname: Meltem surname: Sönmez Turan fullname: Sönmez Turan, Meltem organization: National Institute of Standards and Technology, Dakota Consulting Inc – sequence: 3 givenname: René surname: Peralta fullname: Peralta, René organization: National Institute of Standards and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33442441$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1PHSEYhYmxqV_9Ad00k7hxM5ZvhkVN1LS1iYkbXROG-45iGLiFmRv99-Xmqq0mdQWB5xwO79lD2zFFQOgzwccEY_W1EIq1aDHpWky1aukW2iWayZZyIbZf9lztoL1S7jGWgnL2Ee0wxnk9J7vo2_UdNOMcJr8M3tnJr6BxaVwGePDTY5OGRrYrm73tAzRnKQWwsRnm6CafYjlAHwYbCnx6WvfRzY_v1-cX7eXVz1_np5et4wpPLR0ICGd1N0jJGDiuHWeD08MCu0Une6d6jTshBAZKtdUL4NYKR3rQFHecs310svFdzv0ICwdxyjaYZfajzY8mWW9e30R_Z27TyqgOU0FwNTh6Msjp9wxlMqMvDkKwEdJcDOWVZErK9VuHb9D7NOdYv2cokYx0nVSkUl_-TfQS5XmyFVAbwOVUSobBOD_Z9dRqQB8MwWbdodl0aGqHZt2hoVVJ3iifzd_T0I2mVDbeQv4b-v-iP04vrew |
| CitedBy_id | crossref_primary_10_1109_TC_2022_3141249 crossref_primary_10_3390_cryptography7040061 crossref_primary_10_1109_TCAD_2024_3397052 crossref_primary_10_1007_s12095_020_00445_z crossref_primary_10_1007_s12095_019_00377_3 |
| Cites_doi | 10.1016/j.tcs.2008.01.030 10.1007/978-3-319-06686-8_13 10.1002/sapm1970493239 10.1016/S0304-3975(99)00182-6 10.1007/s001450010011 10.1017/CBO9780511780448.011 10.1007/978-3-642-34047-5_21 10.1006/jabr.1995.1043 10.1109/TIT.1972.1054732 10.1016/0097-3165(71)90022-7 |
| ContentType | Journal Article |
| Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 2018© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 |
| Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 – notice: 2018© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 |
| DBID | AAYXX CITATION NPM JQ2 7X8 5PM |
| DOI | 10.1007/s12095-018-0297-2 |
| DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | ProQuest Computer Science Collection PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1936-2455 |
| EndPage | 107 |
| ExternalDocumentID | PMC7802510 33442441 10_1007_s12095_018_0297_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Intramural NIST DOC grantid: 9999-NIST |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29F 2JY 2KG 2VQ 2~H 30V 4.4 406 408 40D 5GY 5VS 6NX 875 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HG6 HMJXF HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD J-C J0Z J9A JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9O PT4 QOS R89 RLLFE ROL RSV S1Z S27 S3B SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABJCF ABRTQ ADKFA AFDZB AFFHD AFKRA AFOHR AHPBZ ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS NPM JQ2 7X8 5PM |
| ID | FETCH-LOGICAL-c470t-2f1e5ca98f6633ec49c43fc9fd0cd86bc7b9085550e229a9de4aa5c1be9208443 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455500300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-2447 |
| IngestDate | Tue Nov 04 01:34:22 EST 2025 Fri Jul 11 09:06:12 EDT 2025 Thu Sep 25 20:07:35 EDT 2025 Mon Jul 21 05:35:20 EDT 2025 Tue Nov 18 21:32:34 EST 2025 Sat Nov 29 03:51:31 EST 2025 Fri Feb 21 02:34:23 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 06E30 Boolean functions Multiplicative complexity 94A60 Affine equivalence Cryptography Circuit complexity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-2f1e5ca98f6633ec49c43fc9fd0cd86bc7b9085550e229a9de4aa5c1be9208443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1895-7719 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7802510 |
| PMID | 33442441 |
| PQID | 2163188671 |
| PQPubID | 2043935 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7802510 proquest_miscellaneous_2478037664 proquest_journals_2163188671 pubmed_primary_33442441 crossref_citationtrail_10_1007_s12095_018_0297_2 crossref_primary_10_1007_s12095_018_0297_2 springer_journals_10_1007_s12095_018_0297_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | Discrete Structures, Boolean Functions and Sequences |
| PublicationTitle | Cryptography and communications |
| PublicationTitleAbbrev | Cryptogr. Commun |
| PublicationTitleAlternate | Cryptogr Commun |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gausdal Find, M.: On the complexity of computing two nonlinearity measures. In: Computer Science—Theory and Applications—9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Proceedings, pp. 167–175 (2014) BoyarJDamgårdIPeraltaRShort non-interactive cryptographic proofsJ Cryptol2000134449472178851510.1007/s001450010011 GoldmanJRotaG-COn the foundations of combinatorial theory iv finite vector spaces and eulerian generating functionsStud. Appl. Math.197049323925826518110.1002/sapm1970493239 Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: When six gates are not enough. CoRR arXiv:1508.05737 (2015) BraekenABorissovYNikovaSPreneelBClassification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties2005HeidelbergBerlin3243341082.94011 Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science and Engineering, chapter 8. Cambridge University Press, Cambridge (2010) SönmezMTPeraltaRThe Multiplicative Complexity of Boolean Functions on Four and Five Variables2015ChamSpringer International Publishing21331382.94167 MaioranaJAA classification of the cosets of the Reed-Muller code $\mathcal {R}$R(1,6)Math. Comput.19915719540341410790270724.94016 CarletClaudeGoubinLouisProuffEmmanuelQuisquaterMichaelRivainMatthieuHigher-Order Masking Schemes for S-BoxesFast Software Encryption2012Berlin, HeidelbergSpringer Berlin Heidelberg36638410.1007/978-3-642-34047-5_21 BerlekampERWelchLRWeight distributions of the cosets of the (32, 6) Reed-Muller codeIEEE Trans. Inf. Theory197218120320739605410.1109/TIT.1972.1054732 Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S (ed.) Innovations in Theoretical Computer Science 2012, January 8–10, 2012, pp. 309–325. ACM, Cambridge (2012) NIST Computer Security Division. SLP’s for 6-variable predicates, https://github.com/usnistgov/Circuits/tree/master/slp BoyarJPeraltaRTight bounds for the multiplicative complexity of symmetric functionsTheor. Comput. Sci.20083961–3223246241225710.1016/j.tcs.2008.01.030 KnuthDESubspaces, subsets, and partitionsJ. Comb. Theory, Ser. A197110217818027093310.1016/0097-3165(71)90022-7 Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewic, I. (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pp 486–498. Springer (2008) BoyarJPeraltaRPochuevDOn the multiplicative complexity of Boolean functions over the basis (∧, $\oplus $⊕, 1)Theor. Comput. Sci.200023514357176596410.1016/S0304-3975(99)00182-6 Fuller, J.E.: Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland University of Technology (2003) HouX-DAGL (m, 2) acting on R (r, m)/R (s, m)J. Algebra19951713927938131592810.1006/jabr.1995.1043 Claude Carlet (297_CR5) 2012 MT Sönmez (297_CR1) 2015 ER Berlekamp (297_CR11) 1972; 18 X-D Hou (297_CR14) 1995; 171 DE Knuth (297_CR16) 1971; 10 JA Maiorana (297_CR12) 1991; 57 297_CR10 297_CR15 J Boyar (297_CR8) 2008; 396 J Boyar (297_CR9) 2000; 235 J Boyar (297_CR4) 2000; 13 297_CR7 297_CR6 A Braeken (297_CR13) 2005 297_CR18 297_CR3 297_CR2 J Goldman (297_CR17) 1970; 49 |
| References_xml | – reference: BoyarJDamgårdIPeraltaRShort non-interactive cryptographic proofsJ Cryptol2000134449472178851510.1007/s001450010011 – reference: GoldmanJRotaG-COn the foundations of combinatorial theory iv finite vector spaces and eulerian generating functionsStud. Appl. Math.197049323925826518110.1002/sapm1970493239 – reference: Fuller, J.E.: Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland University of Technology (2003) – reference: Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: When six gates are not enough. CoRR arXiv:1508.05737 (2015) – reference: Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science and Engineering, chapter 8. Cambridge University Press, Cambridge (2010) – reference: BraekenABorissovYNikovaSPreneelBClassification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties2005HeidelbergBerlin3243341082.94011 – reference: MaioranaJAA classification of the cosets of the Reed-Muller code $\mathcal {R}$R(1,6)Math. Comput.19915719540341410790270724.94016 – reference: Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S (ed.) Innovations in Theoretical Computer Science 2012, January 8–10, 2012, pp. 309–325. ACM, Cambridge (2012) – reference: Gausdal Find, M.: On the complexity of computing two nonlinearity measures. In: Computer Science—Theory and Applications—9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Proceedings, pp. 167–175 (2014) – reference: Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewic, I. (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pp 486–498. Springer (2008) – reference: NIST Computer Security Division. SLP’s for 6-variable predicates, https://github.com/usnistgov/Circuits/tree/master/slp – reference: CarletClaudeGoubinLouisProuffEmmanuelQuisquaterMichaelRivainMatthieuHigher-Order Masking Schemes for S-BoxesFast Software Encryption2012Berlin, HeidelbergSpringer Berlin Heidelberg36638410.1007/978-3-642-34047-5_21 – reference: KnuthDESubspaces, subsets, and partitionsJ. Comb. Theory, Ser. A197110217818027093310.1016/0097-3165(71)90022-7 – reference: SönmezMTPeraltaRThe Multiplicative Complexity of Boolean Functions on Four and Five Variables2015ChamSpringer International Publishing21331382.94167 – reference: BoyarJPeraltaRTight bounds for the multiplicative complexity of symmetric functionsTheor. Comput. Sci.20083961–3223246241225710.1016/j.tcs.2008.01.030 – reference: HouX-DAGL (m, 2) acting on R (r, m)/R (s, m)J. Algebra19951713927938131592810.1006/jabr.1995.1043 – reference: BerlekampERWelchLRWeight distributions of the cosets of the (32, 6) Reed-Muller codeIEEE Trans. Inf. Theory197218120320739605410.1109/TIT.1972.1054732 – reference: BoyarJPeraltaRPochuevDOn the multiplicative complexity of Boolean functions over the basis (∧, $\oplus $⊕, 1)Theor. Comput. Sci.200023514357176596410.1016/S0304-3975(99)00182-6 – ident: 297_CR7 – volume: 396 start-page: 223 issue: 1–3 year: 2008 ident: 297_CR8 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2008.01.030 – start-page: 324 volume-title: Classification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties year: 2005 ident: 297_CR13 – ident: 297_CR6 doi: 10.1007/978-3-319-06686-8_13 – ident: 297_CR18 – volume: 49 start-page: 239 issue: 3 year: 1970 ident: 297_CR17 publication-title: Stud. Appl. Math. doi: 10.1002/sapm1970493239 – volume: 235 start-page: 43 issue: 1 year: 2000 ident: 297_CR9 publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(99)00182-6 – volume: 13 start-page: 449 issue: 4 year: 2000 ident: 297_CR4 publication-title: J Cryptol doi: 10.1007/s001450010011 – ident: 297_CR15 doi: 10.1017/CBO9780511780448.011 – start-page: 21 volume-title: The Multiplicative Complexity of Boolean Functions on Four and Five Variables year: 2015 ident: 297_CR1 – start-page: 366 volume-title: Fast Software Encryption year: 2012 ident: 297_CR5 doi: 10.1007/978-3-642-34047-5_21 – volume: 171 start-page: 927 issue: 3 year: 1995 ident: 297_CR14 publication-title: J. Algebra doi: 10.1006/jabr.1995.1043 – ident: 297_CR3 – ident: 297_CR10 – ident: 297_CR2 – volume: 18 start-page: 203 issue: 1 year: 1972 ident: 297_CR11 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1972.1054732 – volume: 57 start-page: 403 issue: 195 year: 1991 ident: 297_CR12 publication-title: Math. Comput. – volume: 10 start-page: 178 issue: 2 year: 1971 ident: 297_CR16 publication-title: J. Comb. Theory, Ser. A doi: 10.1016/0097-3165(71)90022-7 |
| SSID | ssj0065243 |
| Score | 2.2301822 |
| Snippet | The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 93 |
| SubjectTerms | Affine transformations Boolean algebra Boolean functions Boolean Functions and their Applications II Circuits Codes Coding and Information Theory Communications Engineering Complexity Computer Science Data Structures and Information Theory Equivalence Gates Information and Communication Mathematical analysis Mathematics of Computing Networks |
| Title | The multiplicative complexity of 6-variable Boolean functions |
| URI | https://link.springer.com/article/10.1007/s12095-018-0297-2 https://www.ncbi.nlm.nih.gov/pubmed/33442441 https://www.proquest.com/docview/2163188671 https://www.proquest.com/docview/2478037664 https://pubmed.ncbi.nlm.nih.gov/PMC7802510 |
| Volume | 11 |
| WOSCitedRecordID | wos000455500300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1936-2455 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065243 issn: 1936-2447 databaseCode: RSV dateStart: 20090401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOvRSWkohvGQkTkWWEseJ7WOLijhUqCoP7S1ynIlAQglil1V_PmMn2dUCRSrn2I7jsWe-eGa-AThSMquFrpHXZGu5LPOMW4kZxwpzi5lLchtIXH-p83M9GpnffR73eIh2H1ySQVPPk91E7LOJE819wSVOeneVrJ329Rr-XFwP6jfPRBdVb9Kck-1SgyvztSEWjdELhPkyUPKZtzQYodP1d03_E3zsMSf73m2Sz7CEzQasD_UcWH-8v4SS86yPMAxXeVNkIeQc_xJWZ23Ncj6lf2ufbcV-tO0d2oZ5wxj27iZcnf68PDnjfXkF7qSKJ1zUCQnDGl0T6kjRSeNkWjtTV7GrdF46VRofxZbFKISxpkJpLUmvRCNiLWX6FVaatsFtYEmFCklfIQEeaUtpKmuETTzZYGkJEUQQD-tcuJ573JfAuCvmrMl-eQpansIvTyEi-Dbrct8Rb7zVeG8QXtGfwXEhCGom2vP3RXA4e0ynx7tEbIPtI7WRSsekY3MZwVYn69nb0lT6LEDqrRZ2wayBZ-ZefNLc3gSGbhqUcGMcwfGwF-bT-udH7PxX6134QNjNdLdBe7AyeXjEfVhz08nt-OEAltVIH4SD8QSN0QcF |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB4hQCovLG2hhKN1pT6BLCWOc_gREAjU7apqAfEWOc5ErISSij3Ez2fsJLvackjwHNtx7Dm-2DPfAPxIZFSKtERekq_lMo8jriVGHAuMNUYmiLUjce0ng0F6c6N-t3ncoy7avbuSdJZ6nuwmfJtNHKTcFlziZHdXJDksS5j_5-91Z37jSDRR9SqMOfmupLvKfG6IRWf0BGE-DZT877bUOaGz3rumvwHrLeZkR42QfIQlrD5Br6vnwFr1_uxKzrM2wtAd5U2RuZBzfCCszuqSxXxK_9Y224od1_Ud6opZx-hkdxOuzk4vT855W16BG5n4Yy7KgDZDq7Qk1BGikcrIsDSqLHxTpHFuklzZKLbIRyGUVgVKrWn3clTCT6UMt2C5qivcBhYUmCDZKyTAI3UuVaGV0IElG8w1IQIP_G6dM9Nyj9sSGHfZnDXZLk9Gy5PZ5cmEBwezLv8a4o3XGu91m5e1OjjKBEHNILX8fR58nz0m7bFXIrrCekJtZJL6ZGNj6cGXZq9nbwtDabMAqXeyIAWzBpaZe_FJNbx1DN00KOFG34PDThbm03rxI3be1PobfDi__NXP-heDn7uwRjhONSdDe7A8vp_gPqya6Xg4uv_q1OMRtsUJAQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSyQxEC5ERXzRdb3adTXCPinB7nT6yONeg7IyCK7iW5NOV3BAusUZB3--lT5mGC8Qn3N0J6lKfUmqvgL4kcjIitQit2RruczjiGuJEccCY42RCWJdk7ieJf1-en2tzts8p8PO2717kmxiGhxLUzk6vivs8TTwTfgusjhIuUu-xGkPXpDOj94d1y-uuq04jkTjYa_CmJMdS7pnzde6mDVML9DmS6fJZy-ntUHqrX56KF9gpcWi7GcjPGswh-VXWO3yPLBW7dfrVPSs9Tysr_jGyGpXdHwkDM8qy2I-pjO3i8Jiv6rqFnXJnMGsZXoDLnt___8-4W3aBW5k4o-4sAEtklapJTQSopHKyNAaZQvfFGmcmyRXzrst8lEIpVWBUmta1RyV8FMpw02YL6sSt4EFBSZI-xgSEJI6l6rQSujAkRDmmpCCB34355lpOcldaozbbMqm7KYno-nJ3PRkwoPDSZO7hpDjvcq73UJmrW4OM0EQNEgdr58HB5Ni0ir3VKJLrB6ojkxSn_beWHqw1az75GthKF10ILVOZiRiUsExds-WlIObmrmbOiU86Xtw1MnF9LfeHMTOh2rvw9L5n152dtr_9w2WCd6p5sJoF-ZH9w_4HRbNeDQY3u_VmvIEQIgR5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multiplicative+complexity+of+6-variable+Boolean+functions&rft.jtitle=Cryptography+and+communications&rft.au=%C3%87al%C4%B1k%2C+%C3%87a%C4%9Fda%C5%9F&rft.au=S%C3%B6nmez+Turan%2C+Meltem&rft.au=Peralta%2C+Ren%C3%A9&rft.date=2019-01-01&rft.pub=Springer+US&rft.issn=1936-2447&rft.eissn=1936-2455&rft.volume=11&rft.issue=1&rft.spage=93&rft.epage=107&rft_id=info:doi/10.1007%2Fs12095-018-0297-2&rft.externalDocID=10_1007_s12095_018_0297_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-2447&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-2447&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-2447&client=summon |