The multiplicative complexity of 6-variable Boolean functions

The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions wi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Cryptography and communications Ročník 11; číslo 1; s. 93 - 107
Hlavní autori: Çalık, Çağdaş, Sönmez Turan, Meltem, Peralta, René
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2019
Springer Nature B.V
Predmet:
ISSN:1936-2447, 1936-2455
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [ 1 ] showed that n -variable Boolean functions can be implemented with at most n − 1 AND gates for n ≤ 5 . A counting argument can be used to show that, for n ≥ 7, there exist n -variable Boolean functions with multiplicative complexity of at least n . In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150 357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.
AbstractList The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n−1 AND gates for n≤5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150 357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.
The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n−1 AND gates for n ≤ 5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.
The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that -variable Boolean functions can be implemented with at most -1 AND gates for ≤ 5. A counting argument can be used to show that, for ≥ 7, there exist -variable Boolean functions with multiplicative complexity of at least . In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.
The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [ 1 ] showed that n -variable Boolean functions can be implemented with at most n − 1 AND gates for n ≤ 5 . A counting argument can be used to show that, for n ≥ 7, there exist n -variable Boolean functions with multiplicative complexity of at least n . In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150 357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.
The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n-1 AND gates for n ≤ 5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n-1 AND gates for n ≤ 5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.
Author Çalık, Çağdaş
Peralta, René
Sönmez Turan, Meltem
Author_xml – sequence: 1
  givenname: Çağdaş
  orcidid: 0000-0003-1895-7719
  surname: Çalık
  fullname: Çalık, Çağdaş
  email: cagdas.calik@nist.gov
  organization: National Institute of Standards and Technology
– sequence: 2
  givenname: Meltem
  surname: Sönmez Turan
  fullname: Sönmez Turan, Meltem
  organization: National Institute of Standards and Technology, Dakota Consulting Inc
– sequence: 3
  givenname: René
  surname: Peralta
  fullname: Peralta, René
  organization: National Institute of Standards and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33442441$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PHSEYhYmxqV_9Ad00k7hxM5ZvhkVN1LS1iYkbXROG-45iGLiFmRv99-Xmqq0mdQWB5xwO79lD2zFFQOgzwccEY_W1EIq1aDHpWky1aukW2iWayZZyIbZf9lztoL1S7jGWgnL2Ee0wxnk9J7vo2_UdNOMcJr8M3tnJr6BxaVwGePDTY5OGRrYrm73tAzRnKQWwsRnm6CafYjlAHwYbCnx6WvfRzY_v1-cX7eXVz1_np5et4wpPLR0ICGd1N0jJGDiuHWeD08MCu0Une6d6jTshBAZKtdUL4NYKR3rQFHecs310svFdzv0ICwdxyjaYZfajzY8mWW9e30R_Z27TyqgOU0FwNTh6Msjp9wxlMqMvDkKwEdJcDOWVZErK9VuHb9D7NOdYv2cokYx0nVSkUl_-TfQS5XmyFVAbwOVUSobBOD_Z9dRqQB8MwWbdodl0aGqHZt2hoVVJ3iifzd_T0I2mVDbeQv4b-v-iP04vrew
CitedBy_id crossref_primary_10_1109_TC_2022_3141249
crossref_primary_10_3390_cryptography7040061
crossref_primary_10_1109_TCAD_2024_3397052
crossref_primary_10_1007_s12095_020_00445_z
crossref_primary_10_1007_s12095_019_00377_3
Cites_doi 10.1016/j.tcs.2008.01.030
10.1007/978-3-319-06686-8_13
10.1002/sapm1970493239
10.1016/S0304-3975(99)00182-6
10.1007/s001450010011
10.1017/CBO9780511780448.011
10.1007/978-3-642-34047-5_21
10.1006/jabr.1995.1043
10.1109/TIT.1972.1054732
10.1016/0097-3165(71)90022-7
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018
2018© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018
– notice: 2018© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1007/s12095-018-0297-2
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Computer Science Collection

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1936-2455
EndPage 107
ExternalDocumentID PMC7802510
33442441
10_1007_s12095_018_0297_2
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29F
2JY
2KG
2VQ
2~H
30V
4.4
406
408
40D
5GY
5VS
6NX
875
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HG6
HMJXF
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
J9A
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PT4
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3B
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABJCF
ABRTQ
ADKFA
AFDZB
AFFHD
AFKRA
AFOHR
AHPBZ
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
NPM
JQ2
7X8
5PM
ID FETCH-LOGICAL-c470t-2f1e5ca98f6633ec49c43fc9fd0cd86bc7b9085550e229a9de4aa5c1be9208443
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455500300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-2447
IngestDate Tue Nov 04 01:34:22 EST 2025
Fri Jul 11 09:06:12 EDT 2025
Thu Sep 25 20:07:35 EDT 2025
Mon Jul 21 05:35:20 EDT 2025
Tue Nov 18 21:32:34 EST 2025
Sat Nov 29 03:51:31 EST 2025
Fri Feb 21 02:34:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 06E30
Boolean functions
Multiplicative complexity
94A60
Affine equivalence
Cryptography
Circuit complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-2f1e5ca98f6633ec49c43fc9fd0cd86bc7b9085550e229a9de4aa5c1be9208443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1895-7719
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7802510
PMID 33442441
PQID 2163188671
PQPubID 2043935
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7802510
proquest_miscellaneous_2478037664
proquest_journals_2163188671
pubmed_primary_33442441
crossref_citationtrail_10_1007_s12095_018_0297_2
crossref_primary_10_1007_s12095_018_0297_2
springer_journals_10_1007_s12095_018_0297_2
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Discrete Structures, Boolean Functions and Sequences
PublicationTitle Cryptography and communications
PublicationTitleAbbrev Cryptogr. Commun
PublicationTitleAlternate Cryptogr Commun
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gausdal Find, M.: On the complexity of computing two nonlinearity measures. In: Computer Science—Theory and Applications—9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Proceedings, pp. 167–175 (2014)
BoyarJDamgårdIPeraltaRShort non-interactive cryptographic proofsJ Cryptol2000134449472178851510.1007/s001450010011
GoldmanJRotaG-COn the foundations of combinatorial theory iv finite vector spaces and eulerian generating functionsStud. Appl. Math.197049323925826518110.1002/sapm1970493239
Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: When six gates are not enough. CoRR arXiv:1508.05737 (2015)
BraekenABorissovYNikovaSPreneelBClassification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties2005HeidelbergBerlin3243341082.94011
Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science and Engineering, chapter 8. Cambridge University Press, Cambridge (2010)
SönmezMTPeraltaRThe Multiplicative Complexity of Boolean Functions on Four and Five Variables2015ChamSpringer International Publishing21331382.94167
MaioranaJAA classification of the cosets of the Reed-Muller code $\mathcal {R}$R(1,6)Math. Comput.19915719540341410790270724.94016
CarletClaudeGoubinLouisProuffEmmanuelQuisquaterMichaelRivainMatthieuHigher-Order Masking Schemes for S-BoxesFast Software Encryption2012Berlin, HeidelbergSpringer Berlin Heidelberg36638410.1007/978-3-642-34047-5_21
BerlekampERWelchLRWeight distributions of the cosets of the (32, 6) Reed-Muller codeIEEE Trans. Inf. Theory197218120320739605410.1109/TIT.1972.1054732
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S (ed.) Innovations in Theoretical Computer Science 2012, January 8–10, 2012, pp. 309–325. ACM, Cambridge (2012)
NIST Computer Security Division. SLP’s for 6-variable predicates, https://github.com/usnistgov/Circuits/tree/master/slp
BoyarJPeraltaRTight bounds for the multiplicative complexity of symmetric functionsTheor. Comput. Sci.20083961–3223246241225710.1016/j.tcs.2008.01.030
KnuthDESubspaces, subsets, and partitionsJ. Comb. Theory, Ser. A197110217818027093310.1016/0097-3165(71)90022-7
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewic, I. (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pp 486–498. Springer (2008)
BoyarJPeraltaRPochuevDOn the multiplicative complexity of Boolean functions over the basis (∧, $\oplus $⊕, 1)Theor. Comput. Sci.200023514357176596410.1016/S0304-3975(99)00182-6
Fuller, J.E.: Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland University of Technology (2003)
HouX-DAGL (m, 2) acting on R (r, m)/R (s, m)J. Algebra19951713927938131592810.1006/jabr.1995.1043
Claude Carlet (297_CR5) 2012
MT Sönmez (297_CR1) 2015
ER Berlekamp (297_CR11) 1972; 18
X-D Hou (297_CR14) 1995; 171
DE Knuth (297_CR16) 1971; 10
JA Maiorana (297_CR12) 1991; 57
297_CR10
297_CR15
J Boyar (297_CR8) 2008; 396
J Boyar (297_CR9) 2000; 235
J Boyar (297_CR4) 2000; 13
297_CR7
297_CR6
A Braeken (297_CR13) 2005
297_CR18
297_CR3
297_CR2
J Goldman (297_CR17) 1970; 49
References_xml – reference: BoyarJDamgårdIPeraltaRShort non-interactive cryptographic proofsJ Cryptol2000134449472178851510.1007/s001450010011
– reference: GoldmanJRotaG-COn the foundations of combinatorial theory iv finite vector spaces and eulerian generating functionsStud. Appl. Math.197049323925826518110.1002/sapm1970493239
– reference: Fuller, J.E.: Analysis of affine equivalent boolean functions for cryptography. PhD thesis, Queensland University of Technology (2003)
– reference: Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: When six gates are not enough. CoRR arXiv:1508.05737 (2015)
– reference: Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science and Engineering, chapter 8. Cambridge University Press, Cambridge (2010)
– reference: BraekenABorissovYNikovaSPreneelBClassification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties2005HeidelbergBerlin3243341082.94011
– reference: MaioranaJAA classification of the cosets of the Reed-Muller code $\mathcal {R}$R(1,6)Math. Comput.19915719540341410790270724.94016
– reference: Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S (ed.) Innovations in Theoretical Computer Science 2012, January 8–10, 2012, pp. 309–325. ACM, Cambridge (2012)
– reference: Gausdal Find, M.: On the complexity of computing two nonlinearity measures. In: Computer Science—Theory and Applications—9th International Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Proceedings, pp. 167–175 (2014)
– reference: Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewic, I. (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pp 486–498. Springer (2008)
– reference: NIST Computer Security Division. SLP’s for 6-variable predicates, https://github.com/usnistgov/Circuits/tree/master/slp
– reference: CarletClaudeGoubinLouisProuffEmmanuelQuisquaterMichaelRivainMatthieuHigher-Order Masking Schemes for S-BoxesFast Software Encryption2012Berlin, HeidelbergSpringer Berlin Heidelberg36638410.1007/978-3-642-34047-5_21
– reference: KnuthDESubspaces, subsets, and partitionsJ. Comb. Theory, Ser. A197110217818027093310.1016/0097-3165(71)90022-7
– reference: SönmezMTPeraltaRThe Multiplicative Complexity of Boolean Functions on Four and Five Variables2015ChamSpringer International Publishing21331382.94167
– reference: BoyarJPeraltaRTight bounds for the multiplicative complexity of symmetric functionsTheor. Comput. Sci.20083961–3223246241225710.1016/j.tcs.2008.01.030
– reference: HouX-DAGL (m, 2) acting on R (r, m)/R (s, m)J. Algebra19951713927938131592810.1006/jabr.1995.1043
– reference: BerlekampERWelchLRWeight distributions of the cosets of the (32, 6) Reed-Muller codeIEEE Trans. Inf. Theory197218120320739605410.1109/TIT.1972.1054732
– reference: BoyarJPeraltaRPochuevDOn the multiplicative complexity of Boolean functions over the basis (∧, $\oplus $⊕, 1)Theor. Comput. Sci.200023514357176596410.1016/S0304-3975(99)00182-6
– ident: 297_CR7
– volume: 396
  start-page: 223
  issue: 1–3
  year: 2008
  ident: 297_CR8
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.01.030
– start-page: 324
  volume-title: Classification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties
  year: 2005
  ident: 297_CR13
– ident: 297_CR6
  doi: 10.1007/978-3-319-06686-8_13
– ident: 297_CR18
– volume: 49
  start-page: 239
  issue: 3
  year: 1970
  ident: 297_CR17
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm1970493239
– volume: 235
  start-page: 43
  issue: 1
  year: 2000
  ident: 297_CR9
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(99)00182-6
– volume: 13
  start-page: 449
  issue: 4
  year: 2000
  ident: 297_CR4
  publication-title: J Cryptol
  doi: 10.1007/s001450010011
– ident: 297_CR15
  doi: 10.1017/CBO9780511780448.011
– start-page: 21
  volume-title: The Multiplicative Complexity of Boolean Functions on Four and Five Variables
  year: 2015
  ident: 297_CR1
– start-page: 366
  volume-title: Fast Software Encryption
  year: 2012
  ident: 297_CR5
  doi: 10.1007/978-3-642-34047-5_21
– volume: 171
  start-page: 927
  issue: 3
  year: 1995
  ident: 297_CR14
  publication-title: J. Algebra
  doi: 10.1006/jabr.1995.1043
– ident: 297_CR3
– ident: 297_CR10
– ident: 297_CR2
– volume: 18
  start-page: 203
  issue: 1
  year: 1972
  ident: 297_CR11
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1972.1054732
– volume: 57
  start-page: 403
  issue: 195
  year: 1991
  ident: 297_CR12
  publication-title: Math. Comput.
– volume: 10
  start-page: 178
  issue: 2
  year: 1971
  ident: 297_CR16
  publication-title: J. Comb. Theory, Ser. A
  doi: 10.1016/0097-3165(71)90022-7
SSID ssj0065243
Score 2.2301822
Snippet The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 93
SubjectTerms Affine transformations
Boolean algebra
Boolean functions
Boolean Functions and their Applications II
Circuits
Codes
Coding and Information Theory
Communications Engineering
Complexity
Computer Science
Data Structures and Information Theory
Equivalence
Gates
Information and Communication
Mathematical analysis
Mathematics of Computing
Networks
Title The multiplicative complexity of 6-variable Boolean functions
URI https://link.springer.com/article/10.1007/s12095-018-0297-2
https://www.ncbi.nlm.nih.gov/pubmed/33442441
https://www.proquest.com/docview/2163188671
https://www.proquest.com/docview/2478037664
https://pubmed.ncbi.nlm.nih.gov/PMC7802510
Volume 11
WOSCitedRecordID wos000455500300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1936-2455
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065243
  issn: 1936-2447
  databaseCode: RSV
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOvRSWkohvGQkTkWWEseJ7WOLijhUqCoP7S1ynIlAQglil1V_PmMn2dUCRSrn2I7jsWe-eGa-AThSMquFrpHXZGu5LPOMW4kZxwpzi5lLchtIXH-p83M9GpnffR73eIh2H1ySQVPPk91E7LOJE819wSVOeneVrJ329Rr-XFwP6jfPRBdVb9Kck-1SgyvztSEWjdELhPkyUPKZtzQYodP1d03_E3zsMSf73m2Sz7CEzQasD_UcWH-8v4SS86yPMAxXeVNkIeQc_xJWZ23Ncj6lf2ufbcV-tO0d2oZ5wxj27iZcnf68PDnjfXkF7qSKJ1zUCQnDGl0T6kjRSeNkWjtTV7GrdF46VRofxZbFKISxpkJpLUmvRCNiLWX6FVaatsFtYEmFCklfIQEeaUtpKmuETTzZYGkJEUQQD-tcuJ573JfAuCvmrMl-eQpansIvTyEi-Dbrct8Rb7zVeG8QXtGfwXEhCGom2vP3RXA4e0ynx7tEbIPtI7WRSsekY3MZwVYn69nb0lT6LEDqrRZ2wayBZ-ZefNLc3gSGbhqUcGMcwfGwF-bT-udH7PxX6134QNjNdLdBe7AyeXjEfVhz08nt-OEAltVIH4SD8QSN0QcF
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB4hQCovLG2hhKN1pT6BLCWOc_gREAjU7apqAfEWOc5ErISSij3Ez2fsJLvackjwHNtx7Dm-2DPfAPxIZFSKtERekq_lMo8jriVGHAuMNUYmiLUjce0ng0F6c6N-t3ncoy7avbuSdJZ6nuwmfJtNHKTcFlziZHdXJDksS5j_5-91Z37jSDRR9SqMOfmupLvKfG6IRWf0BGE-DZT877bUOaGz3rumvwHrLeZkR42QfIQlrD5Br6vnwFr1_uxKzrM2wtAd5U2RuZBzfCCszuqSxXxK_9Y224od1_Ud6opZx-hkdxOuzk4vT855W16BG5n4Yy7KgDZDq7Qk1BGikcrIsDSqLHxTpHFuklzZKLbIRyGUVgVKrWn3clTCT6UMt2C5qivcBhYUmCDZKyTAI3UuVaGV0IElG8w1IQIP_G6dM9Nyj9sSGHfZnDXZLk9Gy5PZ5cmEBwezLv8a4o3XGu91m5e1OjjKBEHNILX8fR58nz0m7bFXIrrCekJtZJL6ZGNj6cGXZq9nbwtDabMAqXeyIAWzBpaZe_FJNbx1DN00KOFG34PDThbm03rxI3be1PobfDi__NXP-heDn7uwRjhONSdDe7A8vp_gPqya6Xg4uv_q1OMRtsUJAQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSyQxEC5ERXzRdb3adTXCPinB7nT6yONeg7IyCK7iW5NOV3BAusUZB3--lT5mGC8Qn3N0J6lKfUmqvgL4kcjIitQit2RruczjiGuJEccCY42RCWJdk7ieJf1-en2tzts8p8PO2717kmxiGhxLUzk6vivs8TTwTfgusjhIuUu-xGkPXpDOj94d1y-uuq04jkTjYa_CmJMdS7pnzde6mDVML9DmS6fJZy-ntUHqrX56KF9gpcWi7GcjPGswh-VXWO3yPLBW7dfrVPSs9Tysr_jGyGpXdHwkDM8qy2I-pjO3i8Jiv6rqFnXJnMGsZXoDLnt___8-4W3aBW5k4o-4sAEtklapJTQSopHKyNAaZQvfFGmcmyRXzrst8lEIpVWBUmta1RyV8FMpw02YL6sSt4EFBSZI-xgSEJI6l6rQSujAkRDmmpCCB34355lpOcldaozbbMqm7KYno-nJ3PRkwoPDSZO7hpDjvcq73UJmrW4OM0EQNEgdr58HB5Ni0ir3VKJLrB6ojkxSn_beWHqw1az75GthKF10ILVOZiRiUsExds-WlIObmrmbOiU86Xtw1MnF9LfeHMTOh2rvw9L5n152dtr_9w2WCd6p5sJoF-ZH9w_4HRbNeDQY3u_VmvIEQIgR5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multiplicative+complexity+of+6-variable+Boolean+functions&rft.jtitle=Cryptography+and+communications&rft.au=%C3%87al%C4%B1k%2C+%C3%87a%C4%9Fda%C5%9F&rft.au=S%C3%B6nmez+Turan%2C+Meltem&rft.au=Peralta%2C+Ren%C3%A9&rft.date=2019-01-01&rft.pub=Springer+US&rft.issn=1936-2447&rft.eissn=1936-2455&rft.volume=11&rft.issue=1&rft.spage=93&rft.epage=107&rft_id=info:doi/10.1007%2Fs12095-018-0297-2&rft.externalDocID=10_1007_s12095_018_0297_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-2447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-2447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-2447&client=summon