Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification

Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technolo...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 13; no. 1; pp. 744 - 13
Main Authors: Nejedly, Petr, Kremen, Vaclav, Lepkova, Kamila, Mivalt, Filip, Sladky, Vladimir, Pridalova, Tereza, Plesinger, Filip, Jurak, Pavel, Pail, Martin, Brazdil, Milan, Klimes, Petr, Worrell, Gregory
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 13.01.2023
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.
AbstractList Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.
Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.
Abstract Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.
ArticleNumber 744
Author Klimes, Petr
Worrell, Gregory
Jurak, Pavel
Pail, Martin
Lepkova, Kamila
Plesinger, Filip
Kremen, Vaclav
Mivalt, Filip
Pridalova, Tereza
Brazdil, Milan
Sladky, Vladimir
Nejedly, Petr
Author_xml – sequence: 1
  givenname: Petr
  surname: Nejedly
  fullname: Nejedly, Petr
  email: nejedly@isibrno.cz
  organization: 1St Department of Neurology, Faculty of Medicine, Masaryk University, Institute of Scientific Instruments, The Czech Academy of Sciences, Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory
– sequence: 2
  givenname: Vaclav
  surname: Kremen
  fullname: Kremen, Vaclav
  email: Kremen.Vaclav@mayo.edu
  organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague
– sequence: 3
  givenname: Kamila
  surname: Lepkova
  fullname: Lepkova, Kamila
  organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Faculty of Biomedical Engineering, Czech Technical University in Prague
– sequence: 4
  givenname: Filip
  surname: Mivalt
  fullname: Mivalt, Filip
  organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Faculty of Electrical Engineering and Communication, Brno University of Technology
– sequence: 5
  givenname: Vladimir
  surname: Sladky
  fullname: Sladky, Vladimir
  organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory
– sequence: 6
  givenname: Tereza
  surname: Pridalova
  fullname: Pridalova, Tereza
  organization: Institute of Scientific Instruments, The Czech Academy of Sciences, Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory
– sequence: 7
  givenname: Filip
  surname: Plesinger
  fullname: Plesinger, Filip
  organization: Institute of Scientific Instruments, The Czech Academy of Sciences
– sequence: 8
  givenname: Pavel
  surname: Jurak
  fullname: Jurak, Pavel
  organization: Institute of Scientific Instruments, The Czech Academy of Sciences
– sequence: 9
  givenname: Martin
  surname: Pail
  fullname: Pail, Martin
  organization: 1St Department of Neurology, Faculty of Medicine, Masaryk University, Institute of Scientific Instruments, The Czech Academy of Sciences, International Clinical Research Center, St. Anne’s University Hospital
– sequence: 10
  givenname: Milan
  surname: Brazdil
  fullname: Brazdil, Milan
  organization: 1St Department of Neurology, Faculty of Medicine, Masaryk University, International Clinical Research Center, St. Anne’s University Hospital, CEITEC – Central European Institute of Technology, Masaryk University
– sequence: 11
  givenname: Petr
  surname: Klimes
  fullname: Klimes, Petr
  organization: Institute of Scientific Instruments, The Czech Academy of Sciences, International Clinical Research Center, St. Anne’s University Hospital
– sequence: 12
  givenname: Gregory
  surname: Worrell
  fullname: Worrell, Gregory
  email: Worrell.Gregory@mayo.edu
  organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36639549$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_0D7BAkdiwCTi248cGCVXTUqkSG7q2HPt68Cixg51Ugl-PJ9NC20W98eucT8e-97Q6CjFAVb1r0acWEfE507aTokGYNJhLLhr2qjrBiHYNJhgfPVofV-c571AZHZa0lW-qY8IYkR2VJ5W7nf3g_-jZx1BHV88wTjHpodbLHCGYaCHVLqY6w-ibvEyQ7nwGW_swJ22SDr6IN5ur2gxLniH5sK11sGWrc_bOmxX9tnrt9JDh_H4-q24vNz8uvjU336-uL77eNIZyNDe4ZxpxjnTPqXTaCGGIAeZa5oR2PSBsreNSsh51rkPckk5oDK7jRErHDDmrrg9cG_VOTcmPOv1WUXu1HsS0VTrN3gygBNaspZhajgWl0mpgDDlrTEsRlcgV1pcDa1r6EayB_YuHJ9CnN8H_VNt4p6QgkiNRAB_vASn-WiDPavTZwDDoAHHJCnPWcY4pJkX64Zl0F5cUyletKkzLm3FRvX-c6F-Uh3IWgTgITIo5J3DK-HktQAnoB9UitW8edWgeVZpHrc2jWLHiZ9YH-osmcjDlaV94SP9jv-D6C3l82Jk
CitedBy_id crossref_primary_10_1088_1741_2552_ad8031
crossref_primary_10_1016_j_bspc_2024_107464
crossref_primary_10_1016_j_bspc_2025_108507
crossref_primary_10_1088_1741_2552_ad8962
crossref_primary_10_1007_s13534_025_00469_5
crossref_primary_10_1109_TNSRE_2024_3360194
crossref_primary_10_4236_jilsa_2025_172007
crossref_primary_10_1038_s41582_024_00965_9
crossref_primary_10_1097_WCO_0000000000001351
crossref_primary_10_1109_JSEN_2023_3319449
crossref_primary_10_1016_j_artmed_2025_103095
crossref_primary_10_1080_10255842_2025_2523310
crossref_primary_10_1109_JIOT_2024_3395496
Cites_doi 10.1016/j.wneu.2016.12.074
10.1016/j.yebeh.2014.01.011
10.1088/1741-2552/ab172d
10.1109/TBCAS.2019.2929053
10.1002/ana.25006
10.1038/s41467-018-07229-3
10.1016/j.compbiomed.2022.105703
10.1111/epi.13829
10.1212/WNL.0b013e3182302056
10.3390/cancers13174311
10.1109/iwqos.2018.8624183
10.1038/nm.4084
10.1007/s10548-014-0379-1
10.1038/nature14539
10.1038/s41597-020-0532-5
10.1038/nrneurol.2014.59
10.1097/WNP.0b013e318182ed67
10.1212/01.con.0000431398.69594.97
10.1097/WNP.0000000000000257
10.1016/j.clinph.2019.07.024
10.48550/ARXIV.1412.6980
10.1111/epi.14596
10.1016/j.ebiom.2017.11.032
10.1007/s12021-018-9397-6
10.1088/0967-3334/37/7/N38
10.3389/fnhum.2021.702605
10.1016/j.smrv.2011.06.003
10.1016/S1474-4422(18)30454-X
10.1093/brain/awh149
10.1088/1361-6579/aad9ee
10.1111/epi.13830
10.1016/j.yebeh.2019.106591
10.1101/2021.03.08.434476
10.1038/s41598-019-47854-6
10.1109/JTEHM.2018.2869398
10.1016/j.clinph.2006.12.019
10.3389/fneur.2021.704170
10.1088/1741-2552/ac4bfd
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-27978-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_82a61424d728449dae660fdcc140490f
PMC9839708
36639549
10_1038_s41598_023_27978_6
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Brno University of Technology
  grantid: FEKT-K-22- 7649
– fundername: European Regional Development Fund-Project ENOCH
  grantid: No.CZ.02.1.01/0.0/0.0/16_019/0000868
– fundername: National Institutes of Health
  grantid: UH2/UH3-NS95495
– fundername: Czech Technical University in Prague
  grantid: SGS21/176/OHK4/3T/17
– fundername: Ministry of Health of the Czech Republic
  grantid: NU22-08-00278
– fundername: Akademie Věd České Republiky
  grantid: RVO:68081731
  funderid: http://dx.doi.org/10.13039/501100004240
– fundername: The International Clinical Research Centre at St. Anne’s University Hospital (FNUSA-ICRC)
– fundername: ;
– fundername: ;
  grantid: UH2/UH3-NS95495
– fundername: ;
  grantid: RVO:68081731
– fundername: ;
  grantid: No.CZ.02.1.01/0.0/0.0/16_019/0000868
– fundername: ;
  grantid: SGS21/176/OHK4/3T/17
– fundername: ;
  grantid: NU22-08-00278
– fundername: ;
  grantid: FEKT-K-22- 7649
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c470t-2b6a0770ab749fac88c3ce6f16f8afbe02ddf7996b05f507d358a2ef57399f6c3
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968670400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:42:11 EDT 2025
Tue Nov 04 02:06:31 EST 2025
Sun Nov 09 11:17:42 EST 2025
Mon Oct 06 17:30:54 EDT 2025
Thu Apr 03 07:02:41 EDT 2025
Sat Nov 29 02:07:50 EST 2025
Tue Nov 18 21:24:01 EST 2025
Fri Feb 21 02:40:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-2b6a0770ab749fac88c3ce6f16f8afbe02ddf7996b05f507d358a2ef57399f6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/82a61424d728449dae660fdcc140490f
PMID 36639549
PQID 2765249962
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_82a61424d728449dae660fdcc140490f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839708
proquest_miscellaneous_2765772423
proquest_journals_2765249962
pubmed_primary_36639549
crossref_citationtrail_10_1038_s41598_023_27978_6
crossref_primary_10_1038_s41598_023_27978_6
springer_journals_10_1038_s41598_023_27978_6
PublicationCentury 2000
PublicationDate 2023-01-13
PublicationDateYYYYMMDD 2023-01-13
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. (2014). https://doi.org/10.48550/ARXIV.1412.6980.
Sladky, V. et al. Distributed brain co-processor for tracking electrophysiology and behavior during electrical brain stimulation. Preprint at https://doi.org/10.1101/2021.03.08.434476.
NejedlyPExploiting graphoelements and convolutional neural networks with long short term memory for classification of the human electroencephalogramSci. Rep.20199113832019NatSR...911383N1:STN:280:DC%2BB3MvlsFentw%3D%3D10.1038/s41598-019-47854-6
KremenVIntegrating brain implants with local and distributed computing devices: A next generation epilepsy management systemIEEE J. Transl. Eng. Health Med.20186250011210.1109/JTEHM.2018.2869398
Zhang, Z. Improved Adam optimizer for deep neural networks. in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (IEEE, 2018). https://doi.org/10.1109/iwqos.2018.8624183.
Mivalt, F. et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J. Neural Eng.19, (2022).
SEEG-Net. An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Comput. Biol. Med.148, 105703 (2022).
GerberPAInterobserver agreement in the interpretation of EEG patterns in critically ill adultsJ. Clin. Neurophysiol.20082524124910.1097/WNP.0b013e318182ed67
GelinasJNKhodagholyDThesenTDevinskyOBuzsákiGInterictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsyNat. Med.2016226416481:CAS:528:DC%2BC28Xms1Onsbk%3D10.1038/nm.4084
WorrellGAHigh-frequency oscillations and seizure generation in neocortical epilepsyBrain20041271496150610.1093/brain/awh149
LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
BrázdilMVery high-frequency oscillations: Novel biomarkers of the epileptogenic zoneAnn. Neurol.20178229931010.1002/ana.25006
JiruskaPUpdate on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disordersEpilepsia2017581330133910.1111/epi.13830
StephansenJBNeural network analysis of sleep stages enables efficient diagnosis of narcolepsyNat. Commun.2018952292018NatCo...9.5229S1:CAS:528:DC%2BC1cXisVKisLfP10.1038/s41467-018-07229-3
BalzekasIInvasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologiesFront. Hum. Neurosci.2021151:CAS:528:DC%2BB38Xitl2rs70%3D10.3389/fnhum.2021.702605
ChvojkaJThe role of interictal discharges in ictogenesis—A dynamical perspectiveEpilepsy Behav.202112110.1016/j.yebeh.2019.106591
Lazic, D. et al. Landscape of bone marrow metastasis in human neuroblastoma unraveled by transcriptomics and deep multiplex imaging. Cancers13, (2021).
RonzhinaMSleep scoring using artificial neural networksSleep Med. Rev.20121625126310.1016/j.smrv.2011.06.003
JancaRDetection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordingsBrain Topogr.20152817218310.1007/s10548-014-0379-1
KalilaniLSunXPelgrimsBNoack-RinkMVillanuevaVThe epidemiology of drug-resistant epilepsy: A systematic review and meta-analysisEpilepsia2018592179219310.1111/epi.14596
Kiral-KornekIEpileptic seizure prediction using big data and deep learning: Toward a mobile systemEBioMedicine20182710311110.1016/j.ebiom.2017.11.032
GrantACEEG interpretation reliability and interpreter confidence: a large single-center studyEpilepsy Behav.20143210210710.1016/j.yebeh.2014.01.011
CimbalnikJMulti-feature localization of epileptic foci from interictal, intracranial EEGClin. Neurophysiol.20191301945195310.1016/j.clinph.2019.07.024
FrauscherBHigh-frequency oscillations: The state of clinical researchEpilepsia2017581316132910.1111/epi.13829
DaoudHBayoumiMAEfficient epileptic seizure prediction based on deep learningIEEE Trans. Biomed. Circuits Syst.20191380481310.1109/TBCAS.2019.2929053
GardnerABWorrellGAMarshEDlugosDLittBHuman and automated detection of high-frequency oscillations in clinical intracranial EEG recordingsClin. Neurophysiol.20071181134114310.1016/j.clinph.2006.12.019
PlesingerFNejedlyPViscorIHalamekJJurakPParallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECGPhysiol. Meas.20183910.1088/1361-6579/aad9ee
Miller, J. W. & Hakimian, S. Surgical treatment of epilepsy. CONTINUUM: Lifelong Learning in Neurology vol. 19 730–742 Preprint at https://doi.org/10.1212/01.con.0000431398.69594.97 (2013).
NejedlyPDeep-learning for seizure forecasting in canines with epilepsyJ. Neural Eng.2019162019JNEng..16c6031N10.1088/1741-2552/ab172d
GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol.18, 357–375 (2019).
Asadi-PooyaAAStewartGRAbramsDJSharanAPrevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United StatesWorld Neurosurg.20179966266610.1016/j.wneu.2016.12.074
Morrell, M. J. & RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology77, 1295–1304 (2011).
NejedlyPMulticenter intracranial EEG dataset for classification of graphoelements and artifactual signalsSci. Data2020717910.1038/s41597-020-0532-5
NejedlyPIntracerebral EEG artifact identification using convolutional neural networksNeuroinformatics20191722523410.1007/s12021-018-9397-6
Pal AttiaTEpilepsy personal assistant device—A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulationFront. Neurol.20211210.3389/fneur.2021.704170
PlesingerFJurcoJHalamekJJurakPSignalPlant: An open signal processing software platformPhysiol. Meas.201637N38481:STN:280:DC%2BC2s%2FkvFWruw%3D%3D10.1088/0967-3334/37/7/N38
FisherRSVelascoALElectrical brain stimulation for epilepsyNat. Rev. Neurol.20141026127010.1038/nrneurol.2014.59
SteadMHalfordJJProposal for a standard format for neurophysiology data recording and exchangeJ. Clin. Neurophysiol.20163340341310.1097/WNP.0000000000000257
AB Gardner (27978_CR14) 2007; 118
27978_CR7
H Daoud (27978_CR27) 2019; 13
R Janca (27978_CR30) 2015; 28
GA Worrell (27978_CR33) 2004; 127
27978_CR1
F Plesinger (27978_CR18) 2018; 39
27978_CR4
AC Grant (27978_CR16) 2014; 32
JN Gelinas (27978_CR29) 2016; 22
I Kiral-Kornek (27978_CR26) 2018; 27
I Balzekas (27978_CR13) 2021; 15
JB Stephansen (27978_CR24) 2018; 9
P Jiruska (27978_CR35) 2017; 58
27978_CR38
V Kremen (27978_CR10) 2018; 6
J Chvojka (27978_CR31) 2021; 121
27978_CR37
RS Fisher (27978_CR8) 2014; 10
27978_CR11
T Pal Attia (27978_CR12) 2021; 12
M Ronzhina (27978_CR23) 2012; 16
J Cimbalnik (27978_CR25) 2019; 130
P Nejedly (27978_CR28) 2019; 16
F Plesinger (27978_CR6) 2016; 37
PA Gerber (27978_CR15) 2008; 25
AA Asadi-Pooya (27978_CR2) 2017; 99
L Kalilani (27978_CR3) 2018; 59
P Nejedly (27978_CR20) 2019; 9
P Nejedly (27978_CR21) 2019; 17
27978_CR19
M Stead (27978_CR5) 2016; 33
M Brázdil (27978_CR32) 2017; 82
B Frauscher (27978_CR34) 2017; 58
Y LeCun (27978_CR17) 2015; 521
27978_CR22
P Nejedly (27978_CR36) 2020; 7
27978_CR9
References_xml – reference: Morrell, M. J. & RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology77, 1295–1304 (2011).
– reference: LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
– reference: PlesingerFNejedlyPViscorIHalamekJJurakPParallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECGPhysiol. Meas.20183910.1088/1361-6579/aad9ee
– reference: GelinasJNKhodagholyDThesenTDevinskyOBuzsákiGInterictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsyNat. Med.2016226416481:CAS:528:DC%2BC28Xms1Onsbk%3D10.1038/nm.4084
– reference: NejedlyPExploiting graphoelements and convolutional neural networks with long short term memory for classification of the human electroencephalogramSci. Rep.20199113832019NatSR...911383N1:STN:280:DC%2BB3MvlsFentw%3D%3D10.1038/s41598-019-47854-6
– reference: CimbalnikJMulti-feature localization of epileptic foci from interictal, intracranial EEGClin. Neurophysiol.20191301945195310.1016/j.clinph.2019.07.024
– reference: BalzekasIInvasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologiesFront. Hum. Neurosci.2021151:CAS:528:DC%2BB38Xitl2rs70%3D10.3389/fnhum.2021.702605
– reference: Pal AttiaTEpilepsy personal assistant device—A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulationFront. Neurol.20211210.3389/fneur.2021.704170
– reference: RonzhinaMSleep scoring using artificial neural networksSleep Med. Rev.20121625126310.1016/j.smrv.2011.06.003
– reference: KremenVIntegrating brain implants with local and distributed computing devices: A next generation epilepsy management systemIEEE J. Transl. Eng. Health Med.20186250011210.1109/JTEHM.2018.2869398
– reference: DaoudHBayoumiMAEfficient epileptic seizure prediction based on deep learningIEEE Trans. Biomed. Circuits Syst.20191380481310.1109/TBCAS.2019.2929053
– reference: BrázdilMVery high-frequency oscillations: Novel biomarkers of the epileptogenic zoneAnn. Neurol.20178229931010.1002/ana.25006
– reference: PlesingerFJurcoJHalamekJJurakPSignalPlant: An open signal processing software platformPhysiol. Meas.201637N38481:STN:280:DC%2BC2s%2FkvFWruw%3D%3D10.1088/0967-3334/37/7/N38
– reference: Zhang, Z. Improved Adam optimizer for deep neural networks. in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (IEEE, 2018). https://doi.org/10.1109/iwqos.2018.8624183.
– reference: WorrellGAHigh-frequency oscillations and seizure generation in neocortical epilepsyBrain20041271496150610.1093/brain/awh149
– reference: FrauscherBHigh-frequency oscillations: The state of clinical researchEpilepsia2017581316132910.1111/epi.13829
– reference: Lazic, D. et al. Landscape of bone marrow metastasis in human neuroblastoma unraveled by transcriptomics and deep multiplex imaging. Cancers13, (2021).
– reference: SEEG-Net. An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Comput. Biol. Med.148, 105703 (2022).
– reference: JancaRDetection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordingsBrain Topogr.20152817218310.1007/s10548-014-0379-1
– reference: Sladky, V. et al. Distributed brain co-processor for tracking electrophysiology and behavior during electrical brain stimulation. Preprint at https://doi.org/10.1101/2021.03.08.434476.
– reference: GardnerABWorrellGAMarshEDlugosDLittBHuman and automated detection of high-frequency oscillations in clinical intracranial EEG recordingsClin. Neurophysiol.20071181134114310.1016/j.clinph.2006.12.019
– reference: NejedlyPMulticenter intracranial EEG dataset for classification of graphoelements and artifactual signalsSci. Data2020717910.1038/s41597-020-0532-5
– reference: SteadMHalfordJJProposal for a standard format for neurophysiology data recording and exchangeJ. Clin. Neurophysiol.20163340341310.1097/WNP.0000000000000257
– reference: NejedlyPDeep-learning for seizure forecasting in canines with epilepsyJ. Neural Eng.2019162019JNEng..16c6031N10.1088/1741-2552/ab172d
– reference: JiruskaPUpdate on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disordersEpilepsia2017581330133910.1111/epi.13830
– reference: Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. (2014). https://doi.org/10.48550/ARXIV.1412.6980.
– reference: KalilaniLSunXPelgrimsBNoack-RinkMVillanuevaVThe epidemiology of drug-resistant epilepsy: A systematic review and meta-analysisEpilepsia2018592179219310.1111/epi.14596
– reference: Mivalt, F. et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J. Neural Eng.19, (2022).
– reference: StephansenJBNeural network analysis of sleep stages enables efficient diagnosis of narcolepsyNat. Commun.2018952292018NatCo...9.5229S1:CAS:528:DC%2BC1cXisVKisLfP10.1038/s41467-018-07229-3
– reference: Miller, J. W. & Hakimian, S. Surgical treatment of epilepsy. CONTINUUM: Lifelong Learning in Neurology vol. 19 730–742 Preprint at https://doi.org/10.1212/01.con.0000431398.69594.97 (2013).
– reference: GerberPAInterobserver agreement in the interpretation of EEG patterns in critically ill adultsJ. Clin. Neurophysiol.20082524124910.1097/WNP.0b013e318182ed67
– reference: GrantACEEG interpretation reliability and interpreter confidence: a large single-center studyEpilepsy Behav.20143210210710.1016/j.yebeh.2014.01.011
– reference: GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol.18, 357–375 (2019).
– reference: FisherRSVelascoALElectrical brain stimulation for epilepsyNat. Rev. Neurol.20141026127010.1038/nrneurol.2014.59
– reference: ChvojkaJThe role of interictal discharges in ictogenesis—A dynamical perspectiveEpilepsy Behav.202112110.1016/j.yebeh.2019.106591
– reference: Asadi-PooyaAAStewartGRAbramsDJSharanAPrevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United StatesWorld Neurosurg.20179966266610.1016/j.wneu.2016.12.074
– reference: Kiral-KornekIEpileptic seizure prediction using big data and deep learning: Toward a mobile systemEBioMedicine20182710311110.1016/j.ebiom.2017.11.032
– reference: NejedlyPIntracerebral EEG artifact identification using convolutional neural networksNeuroinformatics20191722523410.1007/s12021-018-9397-6
– volume: 99
  start-page: 662
  year: 2017
  ident: 27978_CR2
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2016.12.074
– volume: 32
  start-page: 102
  year: 2014
  ident: 27978_CR16
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2014.01.011
– volume: 16
  year: 2019
  ident: 27978_CR28
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab172d
– volume: 13
  start-page: 804
  year: 2019
  ident: 27978_CR27
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2929053
– volume: 82
  start-page: 299
  year: 2017
  ident: 27978_CR32
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25006
– volume: 9
  start-page: 5229
  year: 2018
  ident: 27978_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07229-3
– ident: 27978_CR22
  doi: 10.1016/j.compbiomed.2022.105703
– volume: 58
  start-page: 1316
  year: 2017
  ident: 27978_CR34
  publication-title: Epilepsia
  doi: 10.1111/epi.13829
– ident: 27978_CR7
  doi: 10.1212/WNL.0b013e3182302056
– ident: 27978_CR19
  doi: 10.3390/cancers13174311
– ident: 27978_CR38
  doi: 10.1109/iwqos.2018.8624183
– volume: 22
  start-page: 641
  year: 2016
  ident: 27978_CR29
  publication-title: Nat. Med.
  doi: 10.1038/nm.4084
– volume: 28
  start-page: 172
  year: 2015
  ident: 27978_CR30
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0379-1
– volume: 521
  start-page: 436
  year: 2015
  ident: 27978_CR17
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 7
  start-page: 179
  year: 2020
  ident: 27978_CR36
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0532-5
– volume: 10
  start-page: 261
  year: 2014
  ident: 27978_CR8
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2014.59
– volume: 25
  start-page: 241
  year: 2008
  ident: 27978_CR15
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0b013e318182ed67
– ident: 27978_CR4
  doi: 10.1212/01.con.0000431398.69594.97
– volume: 33
  start-page: 403
  year: 2016
  ident: 27978_CR5
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0000000000000257
– volume: 130
  start-page: 1945
  year: 2019
  ident: 27978_CR25
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2019.07.024
– ident: 27978_CR37
  doi: 10.48550/ARXIV.1412.6980
– volume: 59
  start-page: 2179
  year: 2018
  ident: 27978_CR3
  publication-title: Epilepsia
  doi: 10.1111/epi.14596
– volume: 27
  start-page: 103
  year: 2018
  ident: 27978_CR26
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.11.032
– volume: 17
  start-page: 225
  year: 2019
  ident: 27978_CR21
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9397-6
– volume: 37
  start-page: N38
  year: 2016
  ident: 27978_CR6
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/7/N38
– volume: 15
  year: 2021
  ident: 27978_CR13
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2021.702605
– volume: 16
  start-page: 251
  year: 2012
  ident: 27978_CR23
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2011.06.003
– ident: 27978_CR1
  doi: 10.1016/S1474-4422(18)30454-X
– volume: 127
  start-page: 1496
  year: 2004
  ident: 27978_CR33
  publication-title: Brain
  doi: 10.1093/brain/awh149
– volume: 39
  year: 2018
  ident: 27978_CR18
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aad9ee
– volume: 58
  start-page: 1330
  year: 2017
  ident: 27978_CR35
  publication-title: Epilepsia
  doi: 10.1111/epi.13830
– volume: 121
  year: 2021
  ident: 27978_CR31
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2019.106591
– ident: 27978_CR11
  doi: 10.1101/2021.03.08.434476
– volume: 9
  start-page: 11383
  year: 2019
  ident: 27978_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47854-6
– volume: 6
  start-page: 2500112
  year: 2018
  ident: 27978_CR10
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2018.2869398
– volume: 118
  start-page: 1134
  year: 2007
  ident: 27978_CR14
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.12.019
– volume: 12
  year: 2021
  ident: 27978_CR12
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.704170
– ident: 27978_CR9
  doi: 10.1088/1741-2552/ac4bfd
SSID ssj0000529419
Score 2.4534197
Snippet Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and...
Abstract Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 744
SubjectTerms 631/114/116
631/114/1305
692/617/375/178
Brain - physiology
Classification
Deep learning
EEG
Electrocorticography
Electroencephalography
Electroencephalography - methods
Electrophysiology
Epilepsy
Firing pattern
Gold
Humanities and Social Sciences
Humans
Machine learning
multidisciplinary
Patients
Prospective Studies
ROC Curve
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxA6uO47WdEwK0hQtVD1TqLXL8gJWWZNkkSPx7PIk31fLohWNiOxpnZuzPHvsbgJeiEKXTpqa1VYaKWkhqbF1Sw5FdLnAh5ZRsQp2c6PPz8jRtuHXpWOVuTBwHatda3CM_4kou4lKhlPzN5jvFrFEYXU0pNK7CtYhscjzS9YmfznssGMUSeZnuyrBCH3VxvsI7ZbygXOECSu7NRyNt_9-w5p9HJn-Lm47T0fHt_-3IHbiVgCh5O1nOXbjim3twY0pN-fM-hLN-tU53NEkbSKKwWhMz9C2SXzq_JRHwks5_W9Fu2OCY03lHVii5jTNgNGyyXH4gdj0gGUPsBTGNi48RruP5pPHTD-DsePn5_UeacjJQKxTrKa-lYUoxUytRBmO1toX1MuQyaBNqz7hzQcXe1WwRItZ0xUIb7sNCRSQUpC0ewkHTNv4xkDxgA6e44Va4MteB5d4ggT-vWQgqg3ynmcomwnLMm7GuxsB5oatJm1XUZjVqs5IZvJrbbCa6jktrv0OFzzWRant80W6_VMlzK82NxOuAUVAtomEbLyULzlokJipZyOBwp-cq-X9XXSg5gxdzcfRcDMeYxrfDVCeubSKezeDRZF2zJEUEghiAzUDt2d2eqPslzerryA5eRsirmM7g9c5CL8T69694cnkvnsJNjk7DcpoXh3DQbwf_DK7bH_2q2z4fve4XtSY2eQ
  priority: 102
  providerName: ProQuest
Title Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
URI https://link.springer.com/article/10.1038/s41598-023-27978-6
https://www.ncbi.nlm.nih.gov/pubmed/36639549
https://www.proquest.com/docview/2765249962
https://www.proquest.com/docview/2765772423
https://pubmed.ncbi.nlm.nih.gov/PMC9839708
https://doaj.org/article/82a61424d728449dae660fdcc140490f
Volume 13
WOSCitedRecordID wos000968670400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BLkhcEG8CS2UkbhCt46R-HFnUBQ5bVYiVyilyHFtEKumqSZD23-9MkpYtzwsXS4lfI8_Y_ka2vwF4laWZKbUt4sIpG2dFJmPrChNbQexyQWRSDsEm1Hyul0uzuBbqi-6EDfTAw8Ada2ElvcYqFS6k2K71UvJQOke8MIYHWn25MtecqYHVW5gsMeMrGZ7q4wZ3KnpNJtJYKHKd5N5O1BP2_w5l_npZ8qcT034jOr0Hd0cEyd4Okt-HG75-ALeHmJKXDyGct9VqfFzJ1oGN3FMrZrt2TayVpd8wRKqs8d-quOkuaLFofMkq6tjh1oUWyWaz98ytOmJRQCGYrUv8RJxNF4v6ph_B-ens87sP8RhMIXaZ4m0sCmm5UtwWKjPBOq1d6rwMiQzahsJzUZZBofdT8GlAkFimU22FD1OFECZIlz6Gg3pd-6fAkkAVUCFWuKw0iQ488ZaY90XBQ1ARJNuBzd3INE4BL1Z5f-Kd6nxQRo7KyHtl5DKC17s6FwPPxl9Ln5C-diWJI7v_gZaTj5aT_8tyIjjaajsfJ26DHcgpeqRGighe7rJxytE5iq39uhvKoFOCQDSCJ4Nx7CRJEcHRyWkEas9s9kTdz6mrrz2tt0GsqriO4M3WwH6I9eehePY_huI53BE0M3gSJ-kRHLSbzr-AW-57WzWbCdxUS9WnegKHJ7P54tOkn26YnokFpQrTw8XHs8WXK650LqQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgBFYdx2s7B4R4bGnVsuqhlXoLjmPTlZZk2eyC-qf4jXjy2Gp59NYDx2ycxPF-84pnvgF4LhKRFtrkNLfKUJELSY3NU2o4sst5LqRsm02o0UgfH6cHa_Czr4XBtMpeJzaKuqgsfiPf4koOQqiQSv5m-o1i1yjcXe1baLSw2HOnP0LIVr_e_RD-3xecbw8P3-_QrqsAtUKxOeW5NEwpZnIlUm-s1jaxTvpYem187hgvCq_Cg3I28MFbKpKBNtz5gQq23EubhPtegssCmcUwVZAfLL_p4K6ZiNOuNocleqsO9hFr2HhCucKATa7Yv6ZNwN982z9TNH_bp23M3_bN_23hbsGNztEmb1vJuA1rrrwDV9vWm6d3wR_Nx5OuBpVUnnQUXRNiFvMKyT0LNyPBoSe1-zqm9WKKOrV2BRnjStlg4YPgkuHwI7GTBZJNhFUjpizCYQhHMP-qufU9OLqQl7wP62VVugdAYo8XFIobbkWRxtqz2BlsUMBz5r2KIO6RkNmOkB37gkyyJjEg0VmLniygJ2vQk8kIXi6vmbZ0JOeOfocAW45EKvHmh2r2Jes0U6a5kVjuGCaqRRBc46RkvrAWiZdS5iPY7HGVdfqtzs5AFcGz5emgmXC7yZSuWrRjQuwW_PUINlo0L2eSBEcXN5gjUCs4X5nq6plyfNKwn6fBpVdMR_Cql4izaf17KR6e_xZP4drO4af9bH93tPcIrnMUWBbTONmE9fls4R7DFft9Pq5nTxqJJ_D5oiXlF8s_lRQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4aOoC4sC-BAYwEJ7DqOKntHBACpoVqoOqBkYZTcBwbKpWkNC1o_hq_jucsHZVlbnPgmMRJHOd7m98G8DiO4iRXOqOZkZrGWSyoNllCNffV5RyPhWiaTcjJRB0dJdMd-Nnlwviwyo4n1ow6L43fI-9zKQZoKiSC910bFjHdH71YfKO-g5T3tHbtNBqIHNjjH2i-Vc_H-_ivn3A-Gn54_Za2HQaoiSVbUZ4JzaRkOpNx4rRRykTGChcKp7TLLON57iS-NGMDh5pTHg2U5tYNJMp1J0yEzz0Hu6iSx7wHu9Px--nHzQ6P96HFYdJm6rBI9SuUlj6jjUeUS2--iS1pWDcN-Jum-2fA5m9e21oYjq78z8t4FS63Kjh52dDMNdixxXW40DTlPL4B7nA1m7fZqaR0pC3eNSd6vSp92c_cLgmq-qSyX2e0Wi88t61sTmZ-1QzKfiRpMhy-IWa-9mUocAWJLnI8REPFR2bVj74Jh2fykbegV5SFvQMkdP6GXHLNTZwnoXIstNq3LuAZc04GEHaoSE1bqt13DJmndchApNIGSSkiKa2RlIoAnm7uWTSFSk4d_cqDbTPSFxmvT5TLz2nLs1LFtfCJkDhRFSNJaysEc7kxviRTwlwAex3G0pbzVekJwAJ4tLmMPMs7onRhy3UzBq061OQDuN0gezOTCFVg73oOQG5hfmuq21eK2Ze6LnqCyr5kKoBnHXWcTOvfS3H39K94CBeRQNJ348nBPbjEPe2ykIbRHvRWy7W9D-fN99WsWj5oyZ_Ap7MmlV-qhp9d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilization+of+temporal+autoencoder+for+semi-supervised+intracranial+EEG+clustering+and+classification&rft.jtitle=Scientific+reports&rft.au=Nejedly%2C+Petr&rft.au=Kremen%2C+Vaclav&rft.au=Lepkova%2C+Kamila&rft.au=Mivalt%2C+Filip&rft.date=2023-01-13&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-27978-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_27978_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon