Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technolo...
Saved in:
| Published in: | Scientific reports Vol. 13; no. 1; pp. 744 - 13 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
13.01.2023
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154. |
|---|---|
| AbstractList | Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154. Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154. Abstract Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154. |
| ArticleNumber | 744 |
| Author | Klimes, Petr Worrell, Gregory Jurak, Pavel Pail, Martin Lepkova, Kamila Plesinger, Filip Kremen, Vaclav Mivalt, Filip Pridalova, Tereza Brazdil, Milan Sladky, Vladimir Nejedly, Petr |
| Author_xml | – sequence: 1 givenname: Petr surname: Nejedly fullname: Nejedly, Petr email: nejedly@isibrno.cz organization: 1St Department of Neurology, Faculty of Medicine, Masaryk University, Institute of Scientific Instruments, The Czech Academy of Sciences, Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory – sequence: 2 givenname: Vaclav surname: Kremen fullname: Kremen, Vaclav email: Kremen.Vaclav@mayo.edu organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague – sequence: 3 givenname: Kamila surname: Lepkova fullname: Lepkova, Kamila organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Faculty of Biomedical Engineering, Czech Technical University in Prague – sequence: 4 givenname: Filip surname: Mivalt fullname: Mivalt, Filip organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory, Faculty of Electrical Engineering and Communication, Brno University of Technology – sequence: 5 givenname: Vladimir surname: Sladky fullname: Sladky, Vladimir organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory – sequence: 6 givenname: Tereza surname: Pridalova fullname: Pridalova, Tereza organization: Institute of Scientific Instruments, The Czech Academy of Sciences, Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory – sequence: 7 givenname: Filip surname: Plesinger fullname: Plesinger, Filip organization: Institute of Scientific Instruments, The Czech Academy of Sciences – sequence: 8 givenname: Pavel surname: Jurak fullname: Jurak, Pavel organization: Institute of Scientific Instruments, The Czech Academy of Sciences – sequence: 9 givenname: Martin surname: Pail fullname: Pail, Martin organization: 1St Department of Neurology, Faculty of Medicine, Masaryk University, Institute of Scientific Instruments, The Czech Academy of Sciences, International Clinical Research Center, St. Anne’s University Hospital – sequence: 10 givenname: Milan surname: Brazdil fullname: Brazdil, Milan organization: 1St Department of Neurology, Faculty of Medicine, Masaryk University, International Clinical Research Center, St. Anne’s University Hospital, CEITEC – Central European Institute of Technology, Masaryk University – sequence: 11 givenname: Petr surname: Klimes fullname: Klimes, Petr organization: Institute of Scientific Instruments, The Czech Academy of Sciences, International Clinical Research Center, St. Anne’s University Hospital – sequence: 12 givenname: Gregory surname: Worrell fullname: Worrell, Gregory email: Worrell.Gregory@mayo.edu organization: Department of Neurology, Mayo Clinic, Mayo Systems Electrophysiology Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36639549$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB_0D7BAkdiwCTi248cGCVXTUqkSG7q2HPt68Cixg51Ugl-PJ9NC20W98eucT8e-97Q6CjFAVb1r0acWEfE507aTokGYNJhLLhr2qjrBiHYNJhgfPVofV-c571AZHZa0lW-qY8IYkR2VJ5W7nf3g_-jZx1BHV88wTjHpodbLHCGYaCHVLqY6w-ibvEyQ7nwGW_swJ22SDr6IN5ur2gxLniH5sK11sGWrc_bOmxX9tnrt9JDh_H4-q24vNz8uvjU336-uL77eNIZyNDe4ZxpxjnTPqXTaCGGIAeZa5oR2PSBsreNSsh51rkPckk5oDK7jRErHDDmrrg9cG_VOTcmPOv1WUXu1HsS0VTrN3gygBNaspZhajgWl0mpgDDlrTEsRlcgV1pcDa1r6EayB_YuHJ9CnN8H_VNt4p6QgkiNRAB_vASn-WiDPavTZwDDoAHHJCnPWcY4pJkX64Zl0F5cUyletKkzLm3FRvX-c6F-Uh3IWgTgITIo5J3DK-HktQAnoB9UitW8edWgeVZpHrc2jWLHiZ9YH-osmcjDlaV94SP9jv-D6C3l82Jk |
| CitedBy_id | crossref_primary_10_1088_1741_2552_ad8031 crossref_primary_10_1016_j_bspc_2024_107464 crossref_primary_10_1016_j_bspc_2025_108507 crossref_primary_10_1088_1741_2552_ad8962 crossref_primary_10_1007_s13534_025_00469_5 crossref_primary_10_1109_TNSRE_2024_3360194 crossref_primary_10_4236_jilsa_2025_172007 crossref_primary_10_1038_s41582_024_00965_9 crossref_primary_10_1097_WCO_0000000000001351 crossref_primary_10_1109_JSEN_2023_3319449 crossref_primary_10_1016_j_artmed_2025_103095 crossref_primary_10_1080_10255842_2025_2523310 crossref_primary_10_1109_JIOT_2024_3395496 |
| Cites_doi | 10.1016/j.wneu.2016.12.074 10.1016/j.yebeh.2014.01.011 10.1088/1741-2552/ab172d 10.1109/TBCAS.2019.2929053 10.1002/ana.25006 10.1038/s41467-018-07229-3 10.1016/j.compbiomed.2022.105703 10.1111/epi.13829 10.1212/WNL.0b013e3182302056 10.3390/cancers13174311 10.1109/iwqos.2018.8624183 10.1038/nm.4084 10.1007/s10548-014-0379-1 10.1038/nature14539 10.1038/s41597-020-0532-5 10.1038/nrneurol.2014.59 10.1097/WNP.0b013e318182ed67 10.1212/01.con.0000431398.69594.97 10.1097/WNP.0000000000000257 10.1016/j.clinph.2019.07.024 10.48550/ARXIV.1412.6980 10.1111/epi.14596 10.1016/j.ebiom.2017.11.032 10.1007/s12021-018-9397-6 10.1088/0967-3334/37/7/N38 10.3389/fnhum.2021.702605 10.1016/j.smrv.2011.06.003 10.1016/S1474-4422(18)30454-X 10.1093/brain/awh149 10.1088/1361-6579/aad9ee 10.1111/epi.13830 10.1016/j.yebeh.2019.106591 10.1101/2021.03.08.434476 10.1038/s41598-019-47854-6 10.1109/JTEHM.2018.2869398 10.1016/j.clinph.2006.12.019 10.3389/fneur.2021.704170 10.1088/1741-2552/ac4bfd |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-27978-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_82a61424d728449dae660fdcc140490f PMC9839708 36639549 10_1038_s41598_023_27978_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Brno University of Technology grantid: FEKT-K-22- 7649 – fundername: European Regional Development Fund-Project ENOCH grantid: No.CZ.02.1.01/0.0/0.0/16_019/0000868 – fundername: National Institutes of Health grantid: UH2/UH3-NS95495 – fundername: Czech Technical University in Prague grantid: SGS21/176/OHK4/3T/17 – fundername: Ministry of Health of the Czech Republic grantid: NU22-08-00278 – fundername: Akademie Věd České Republiky grantid: RVO:68081731 funderid: http://dx.doi.org/10.13039/501100004240 – fundername: The International Clinical Research Centre at St. Anne’s University Hospital (FNUSA-ICRC) – fundername: ; – fundername: ; grantid: UH2/UH3-NS95495 – fundername: ; grantid: RVO:68081731 – fundername: ; grantid: No.CZ.02.1.01/0.0/0.0/16_019/0000868 – fundername: ; grantid: SGS21/176/OHK4/3T/17 – fundername: ; grantid: NU22-08-00278 – fundername: ; grantid: FEKT-K-22- 7649 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c470t-2b6a0770ab749fac88c3ce6f16f8afbe02ddf7996b05f507d358a2ef57399f6c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968670400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 18:42:11 EDT 2025 Tue Nov 04 02:06:31 EST 2025 Sun Nov 09 11:17:42 EST 2025 Mon Oct 06 17:30:54 EDT 2025 Thu Apr 03 07:02:41 EDT 2025 Sat Nov 29 02:07:50 EST 2025 Tue Nov 18 21:24:01 EST 2025 Fri Feb 21 02:40:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-2b6a0770ab749fac88c3ce6f16f8afbe02ddf7996b05f507d358a2ef57399f6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/82a61424d728449dae660fdcc140490f |
| PMID | 36639549 |
| PQID | 2765249962 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_82a61424d728449dae660fdcc140490f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839708 proquest_miscellaneous_2765772423 proquest_journals_2765249962 pubmed_primary_36639549 crossref_citationtrail_10_1038_s41598_023_27978_6 crossref_primary_10_1038_s41598_023_27978_6 springer_journals_10_1038_s41598_023_27978_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-13 |
| PublicationDateYYYYMMDD | 2023-01-13 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. (2014). https://doi.org/10.48550/ARXIV.1412.6980. Sladky, V. et al. Distributed brain co-processor for tracking electrophysiology and behavior during electrical brain stimulation. Preprint at https://doi.org/10.1101/2021.03.08.434476. NejedlyPExploiting graphoelements and convolutional neural networks with long short term memory for classification of the human electroencephalogramSci. Rep.20199113832019NatSR...911383N1:STN:280:DC%2BB3MvlsFentw%3D%3D10.1038/s41598-019-47854-6 KremenVIntegrating brain implants with local and distributed computing devices: A next generation epilepsy management systemIEEE J. Transl. Eng. Health Med.20186250011210.1109/JTEHM.2018.2869398 Zhang, Z. Improved Adam optimizer for deep neural networks. in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (IEEE, 2018). https://doi.org/10.1109/iwqos.2018.8624183. Mivalt, F. et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J. Neural Eng.19, (2022). SEEG-Net. An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Comput. Biol. Med.148, 105703 (2022). GerberPAInterobserver agreement in the interpretation of EEG patterns in critically ill adultsJ. Clin. Neurophysiol.20082524124910.1097/WNP.0b013e318182ed67 GelinasJNKhodagholyDThesenTDevinskyOBuzsákiGInterictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsyNat. Med.2016226416481:CAS:528:DC%2BC28Xms1Onsbk%3D10.1038/nm.4084 WorrellGAHigh-frequency oscillations and seizure generation in neocortical epilepsyBrain20041271496150610.1093/brain/awh149 LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 BrázdilMVery high-frequency oscillations: Novel biomarkers of the epileptogenic zoneAnn. Neurol.20178229931010.1002/ana.25006 JiruskaPUpdate on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disordersEpilepsia2017581330133910.1111/epi.13830 StephansenJBNeural network analysis of sleep stages enables efficient diagnosis of narcolepsyNat. Commun.2018952292018NatCo...9.5229S1:CAS:528:DC%2BC1cXisVKisLfP10.1038/s41467-018-07229-3 BalzekasIInvasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologiesFront. Hum. Neurosci.2021151:CAS:528:DC%2BB38Xitl2rs70%3D10.3389/fnhum.2021.702605 ChvojkaJThe role of interictal discharges in ictogenesis—A dynamical perspectiveEpilepsy Behav.202112110.1016/j.yebeh.2019.106591 Lazic, D. et al. Landscape of bone marrow metastasis in human neuroblastoma unraveled by transcriptomics and deep multiplex imaging. Cancers13, (2021). RonzhinaMSleep scoring using artificial neural networksSleep Med. Rev.20121625126310.1016/j.smrv.2011.06.003 JancaRDetection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordingsBrain Topogr.20152817218310.1007/s10548-014-0379-1 KalilaniLSunXPelgrimsBNoack-RinkMVillanuevaVThe epidemiology of drug-resistant epilepsy: A systematic review and meta-analysisEpilepsia2018592179219310.1111/epi.14596 Kiral-KornekIEpileptic seizure prediction using big data and deep learning: Toward a mobile systemEBioMedicine20182710311110.1016/j.ebiom.2017.11.032 GrantACEEG interpretation reliability and interpreter confidence: a large single-center studyEpilepsy Behav.20143210210710.1016/j.yebeh.2014.01.011 CimbalnikJMulti-feature localization of epileptic foci from interictal, intracranial EEGClin. Neurophysiol.20191301945195310.1016/j.clinph.2019.07.024 FrauscherBHigh-frequency oscillations: The state of clinical researchEpilepsia2017581316132910.1111/epi.13829 DaoudHBayoumiMAEfficient epileptic seizure prediction based on deep learningIEEE Trans. Biomed. Circuits Syst.20191380481310.1109/TBCAS.2019.2929053 GardnerABWorrellGAMarshEDlugosDLittBHuman and automated detection of high-frequency oscillations in clinical intracranial EEG recordingsClin. Neurophysiol.20071181134114310.1016/j.clinph.2006.12.019 PlesingerFNejedlyPViscorIHalamekJJurakPParallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECGPhysiol. Meas.20183910.1088/1361-6579/aad9ee Miller, J. W. & Hakimian, S. Surgical treatment of epilepsy. CONTINUUM: Lifelong Learning in Neurology vol. 19 730–742 Preprint at https://doi.org/10.1212/01.con.0000431398.69594.97 (2013). NejedlyPDeep-learning for seizure forecasting in canines with epilepsyJ. Neural Eng.2019162019JNEng..16c6031N10.1088/1741-2552/ab172d GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol.18, 357–375 (2019). Asadi-PooyaAAStewartGRAbramsDJSharanAPrevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United StatesWorld Neurosurg.20179966266610.1016/j.wneu.2016.12.074 Morrell, M. J. & RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology77, 1295–1304 (2011). NejedlyPMulticenter intracranial EEG dataset for classification of graphoelements and artifactual signalsSci. Data2020717910.1038/s41597-020-0532-5 NejedlyPIntracerebral EEG artifact identification using convolutional neural networksNeuroinformatics20191722523410.1007/s12021-018-9397-6 Pal AttiaTEpilepsy personal assistant device—A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulationFront. Neurol.20211210.3389/fneur.2021.704170 PlesingerFJurcoJHalamekJJurakPSignalPlant: An open signal processing software platformPhysiol. Meas.201637N38481:STN:280:DC%2BC2s%2FkvFWruw%3D%3D10.1088/0967-3334/37/7/N38 FisherRSVelascoALElectrical brain stimulation for epilepsyNat. Rev. Neurol.20141026127010.1038/nrneurol.2014.59 SteadMHalfordJJProposal for a standard format for neurophysiology data recording and exchangeJ. Clin. Neurophysiol.20163340341310.1097/WNP.0000000000000257 AB Gardner (27978_CR14) 2007; 118 27978_CR7 H Daoud (27978_CR27) 2019; 13 R Janca (27978_CR30) 2015; 28 GA Worrell (27978_CR33) 2004; 127 27978_CR1 F Plesinger (27978_CR18) 2018; 39 27978_CR4 AC Grant (27978_CR16) 2014; 32 JN Gelinas (27978_CR29) 2016; 22 I Kiral-Kornek (27978_CR26) 2018; 27 I Balzekas (27978_CR13) 2021; 15 JB Stephansen (27978_CR24) 2018; 9 P Jiruska (27978_CR35) 2017; 58 27978_CR38 V Kremen (27978_CR10) 2018; 6 J Chvojka (27978_CR31) 2021; 121 27978_CR37 RS Fisher (27978_CR8) 2014; 10 27978_CR11 T Pal Attia (27978_CR12) 2021; 12 M Ronzhina (27978_CR23) 2012; 16 J Cimbalnik (27978_CR25) 2019; 130 P Nejedly (27978_CR28) 2019; 16 F Plesinger (27978_CR6) 2016; 37 PA Gerber (27978_CR15) 2008; 25 AA Asadi-Pooya (27978_CR2) 2017; 99 L Kalilani (27978_CR3) 2018; 59 P Nejedly (27978_CR20) 2019; 9 P Nejedly (27978_CR21) 2019; 17 27978_CR19 M Stead (27978_CR5) 2016; 33 M Brázdil (27978_CR32) 2017; 82 B Frauscher (27978_CR34) 2017; 58 Y LeCun (27978_CR17) 2015; 521 27978_CR22 P Nejedly (27978_CR36) 2020; 7 27978_CR9 |
| References_xml | – reference: Morrell, M. J. & RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology77, 1295–1304 (2011). – reference: LeCunYBengioYHintonGDeep learningNature20155214364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 – reference: PlesingerFNejedlyPViscorIHalamekJJurakPParallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECGPhysiol. Meas.20183910.1088/1361-6579/aad9ee – reference: GelinasJNKhodagholyDThesenTDevinskyOBuzsákiGInterictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsyNat. Med.2016226416481:CAS:528:DC%2BC28Xms1Onsbk%3D10.1038/nm.4084 – reference: NejedlyPExploiting graphoelements and convolutional neural networks with long short term memory for classification of the human electroencephalogramSci. Rep.20199113832019NatSR...911383N1:STN:280:DC%2BB3MvlsFentw%3D%3D10.1038/s41598-019-47854-6 – reference: CimbalnikJMulti-feature localization of epileptic foci from interictal, intracranial EEGClin. Neurophysiol.20191301945195310.1016/j.clinph.2019.07.024 – reference: BalzekasIInvasive electrophysiology for circuit discovery and study of comorbid psychiatric disorders in patients with epilepsy: Challenges, opportunities, and novel technologiesFront. Hum. Neurosci.2021151:CAS:528:DC%2BB38Xitl2rs70%3D10.3389/fnhum.2021.702605 – reference: Pal AttiaTEpilepsy personal assistant device—A mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulationFront. Neurol.20211210.3389/fneur.2021.704170 – reference: RonzhinaMSleep scoring using artificial neural networksSleep Med. Rev.20121625126310.1016/j.smrv.2011.06.003 – reference: KremenVIntegrating brain implants with local and distributed computing devices: A next generation epilepsy management systemIEEE J. Transl. Eng. Health Med.20186250011210.1109/JTEHM.2018.2869398 – reference: DaoudHBayoumiMAEfficient epileptic seizure prediction based on deep learningIEEE Trans. Biomed. Circuits Syst.20191380481310.1109/TBCAS.2019.2929053 – reference: BrázdilMVery high-frequency oscillations: Novel biomarkers of the epileptogenic zoneAnn. Neurol.20178229931010.1002/ana.25006 – reference: PlesingerFJurcoJHalamekJJurakPSignalPlant: An open signal processing software platformPhysiol. Meas.201637N38481:STN:280:DC%2BC2s%2FkvFWruw%3D%3D10.1088/0967-3334/37/7/N38 – reference: Zhang, Z. Improved Adam optimizer for deep neural networks. in 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (IEEE, 2018). https://doi.org/10.1109/iwqos.2018.8624183. – reference: WorrellGAHigh-frequency oscillations and seizure generation in neocortical epilepsyBrain20041271496150610.1093/brain/awh149 – reference: FrauscherBHigh-frequency oscillations: The state of clinical researchEpilepsia2017581316132910.1111/epi.13829 – reference: Lazic, D. et al. Landscape of bone marrow metastasis in human neuroblastoma unraveled by transcriptomics and deep multiplex imaging. Cancers13, (2021). – reference: SEEG-Net. An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Comput. Biol. Med.148, 105703 (2022). – reference: JancaRDetection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordingsBrain Topogr.20152817218310.1007/s10548-014-0379-1 – reference: Sladky, V. et al. Distributed brain co-processor for tracking electrophysiology and behavior during electrical brain stimulation. Preprint at https://doi.org/10.1101/2021.03.08.434476. – reference: GardnerABWorrellGAMarshEDlugosDLittBHuman and automated detection of high-frequency oscillations in clinical intracranial EEG recordingsClin. Neurophysiol.20071181134114310.1016/j.clinph.2006.12.019 – reference: NejedlyPMulticenter intracranial EEG dataset for classification of graphoelements and artifactual signalsSci. Data2020717910.1038/s41597-020-0532-5 – reference: SteadMHalfordJJProposal for a standard format for neurophysiology data recording and exchangeJ. Clin. Neurophysiol.20163340341310.1097/WNP.0000000000000257 – reference: NejedlyPDeep-learning for seizure forecasting in canines with epilepsyJ. Neural Eng.2019162019JNEng..16c6031N10.1088/1741-2552/ab172d – reference: JiruskaPUpdate on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disordersEpilepsia2017581330133910.1111/epi.13830 – reference: Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. (2014). https://doi.org/10.48550/ARXIV.1412.6980. – reference: KalilaniLSunXPelgrimsBNoack-RinkMVillanuevaVThe epidemiology of drug-resistant epilepsy: A systematic review and meta-analysisEpilepsia2018592179219310.1111/epi.14596 – reference: Mivalt, F. et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. J. Neural Eng.19, (2022). – reference: StephansenJBNeural network analysis of sleep stages enables efficient diagnosis of narcolepsyNat. Commun.2018952292018NatCo...9.5229S1:CAS:528:DC%2BC1cXisVKisLfP10.1038/s41467-018-07229-3 – reference: Miller, J. W. & Hakimian, S. Surgical treatment of epilepsy. CONTINUUM: Lifelong Learning in Neurology vol. 19 730–742 Preprint at https://doi.org/10.1212/01.con.0000431398.69594.97 (2013). – reference: GerberPAInterobserver agreement in the interpretation of EEG patterns in critically ill adultsJ. Clin. Neurophysiol.20082524124910.1097/WNP.0b013e318182ed67 – reference: GrantACEEG interpretation reliability and interpreter confidence: a large single-center studyEpilepsy Behav.20143210210710.1016/j.yebeh.2014.01.011 – reference: GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol.18, 357–375 (2019). – reference: FisherRSVelascoALElectrical brain stimulation for epilepsyNat. Rev. Neurol.20141026127010.1038/nrneurol.2014.59 – reference: ChvojkaJThe role of interictal discharges in ictogenesis—A dynamical perspectiveEpilepsy Behav.202112110.1016/j.yebeh.2019.106591 – reference: Asadi-PooyaAAStewartGRAbramsDJSharanAPrevalence and incidence of drug-resistant mesial temporal lobe epilepsy in the United StatesWorld Neurosurg.20179966266610.1016/j.wneu.2016.12.074 – reference: Kiral-KornekIEpileptic seizure prediction using big data and deep learning: Toward a mobile systemEBioMedicine20182710311110.1016/j.ebiom.2017.11.032 – reference: NejedlyPIntracerebral EEG artifact identification using convolutional neural networksNeuroinformatics20191722523410.1007/s12021-018-9397-6 – volume: 99 start-page: 662 year: 2017 ident: 27978_CR2 publication-title: World Neurosurg. doi: 10.1016/j.wneu.2016.12.074 – volume: 32 start-page: 102 year: 2014 ident: 27978_CR16 publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2014.01.011 – volume: 16 year: 2019 ident: 27978_CR28 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab172d – volume: 13 start-page: 804 year: 2019 ident: 27978_CR27 publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2929053 – volume: 82 start-page: 299 year: 2017 ident: 27978_CR32 publication-title: Ann. Neurol. doi: 10.1002/ana.25006 – volume: 9 start-page: 5229 year: 2018 ident: 27978_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07229-3 – ident: 27978_CR22 doi: 10.1016/j.compbiomed.2022.105703 – volume: 58 start-page: 1316 year: 2017 ident: 27978_CR34 publication-title: Epilepsia doi: 10.1111/epi.13829 – ident: 27978_CR7 doi: 10.1212/WNL.0b013e3182302056 – ident: 27978_CR19 doi: 10.3390/cancers13174311 – ident: 27978_CR38 doi: 10.1109/iwqos.2018.8624183 – volume: 22 start-page: 641 year: 2016 ident: 27978_CR29 publication-title: Nat. Med. doi: 10.1038/nm.4084 – volume: 28 start-page: 172 year: 2015 ident: 27978_CR30 publication-title: Brain Topogr. doi: 10.1007/s10548-014-0379-1 – volume: 521 start-page: 436 year: 2015 ident: 27978_CR17 publication-title: Nature doi: 10.1038/nature14539 – volume: 7 start-page: 179 year: 2020 ident: 27978_CR36 publication-title: Sci. Data doi: 10.1038/s41597-020-0532-5 – volume: 10 start-page: 261 year: 2014 ident: 27978_CR8 publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2014.59 – volume: 25 start-page: 241 year: 2008 ident: 27978_CR15 publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0b013e318182ed67 – ident: 27978_CR4 doi: 10.1212/01.con.0000431398.69594.97 – volume: 33 start-page: 403 year: 2016 ident: 27978_CR5 publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0000000000000257 – volume: 130 start-page: 1945 year: 2019 ident: 27978_CR25 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2019.07.024 – ident: 27978_CR37 doi: 10.48550/ARXIV.1412.6980 – volume: 59 start-page: 2179 year: 2018 ident: 27978_CR3 publication-title: Epilepsia doi: 10.1111/epi.14596 – volume: 27 start-page: 103 year: 2018 ident: 27978_CR26 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.11.032 – volume: 17 start-page: 225 year: 2019 ident: 27978_CR21 publication-title: Neuroinformatics doi: 10.1007/s12021-018-9397-6 – volume: 37 start-page: N38 year: 2016 ident: 27978_CR6 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/7/N38 – volume: 15 year: 2021 ident: 27978_CR13 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2021.702605 – volume: 16 start-page: 251 year: 2012 ident: 27978_CR23 publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2011.06.003 – ident: 27978_CR1 doi: 10.1016/S1474-4422(18)30454-X – volume: 127 start-page: 1496 year: 2004 ident: 27978_CR33 publication-title: Brain doi: 10.1093/brain/awh149 – volume: 39 year: 2018 ident: 27978_CR18 publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aad9ee – volume: 58 start-page: 1330 year: 2017 ident: 27978_CR35 publication-title: Epilepsia doi: 10.1111/epi.13830 – volume: 121 year: 2021 ident: 27978_CR31 publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2019.106591 – ident: 27978_CR11 doi: 10.1101/2021.03.08.434476 – volume: 9 start-page: 11383 year: 2019 ident: 27978_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-019-47854-6 – volume: 6 start-page: 2500112 year: 2018 ident: 27978_CR10 publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2018.2869398 – volume: 118 start-page: 1134 year: 2007 ident: 27978_CR14 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.12.019 – volume: 12 year: 2021 ident: 27978_CR12 publication-title: Front. Neurol. doi: 10.3389/fneur.2021.704170 – ident: 27978_CR9 doi: 10.1088/1741-2552/ac4bfd |
| SSID | ssj0000529419 |
| Score | 2.4534197 |
| Snippet | Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and... Abstract Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 744 |
| SubjectTerms | 631/114/116 631/114/1305 692/617/375/178 Brain - physiology Classification Deep learning EEG Electrocorticography Electroencephalography Electroencephalography - methods Electrophysiology Epilepsy Firing pattern Gold Humanities and Social Sciences Humans Machine learning multidisciplinary Patients Prospective Studies ROC Curve Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxA6uO47WdEwK0hQtVD1TqLXL8gJWWZNkkSPx7PIk31fLohWNiOxpnZuzPHvsbgJeiEKXTpqa1VYaKWkhqbF1Sw5FdLnAh5ZRsQp2c6PPz8jRtuHXpWOVuTBwHatda3CM_4kou4lKhlPzN5jvFrFEYXU0pNK7CtYhscjzS9YmfznssGMUSeZnuyrBCH3VxvsI7ZbygXOECSu7NRyNt_9-w5p9HJn-Lm47T0fHt_-3IHbiVgCh5O1nOXbjim3twY0pN-fM-hLN-tU53NEkbSKKwWhMz9C2SXzq_JRHwks5_W9Fu2OCY03lHVii5jTNgNGyyXH4gdj0gGUPsBTGNi48RruP5pPHTD-DsePn5_UeacjJQKxTrKa-lYUoxUytRBmO1toX1MuQyaBNqz7hzQcXe1WwRItZ0xUIb7sNCRSQUpC0ewkHTNv4xkDxgA6e44Va4MteB5d4ggT-vWQgqg3ynmcomwnLMm7GuxsB5oatJm1XUZjVqs5IZvJrbbCa6jktrv0OFzzWRant80W6_VMlzK82NxOuAUVAtomEbLyULzlokJipZyOBwp-cq-X9XXSg5gxdzcfRcDMeYxrfDVCeubSKezeDRZF2zJEUEghiAzUDt2d2eqPslzerryA5eRsirmM7g9c5CL8T69694cnkvnsJNjk7DcpoXh3DQbwf_DK7bH_2q2z4fve4XtSY2eQ priority: 102 providerName: ProQuest |
| Title | Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification |
| URI | https://link.springer.com/article/10.1038/s41598-023-27978-6 https://www.ncbi.nlm.nih.gov/pubmed/36639549 https://www.proquest.com/docview/2765249962 https://www.proquest.com/docview/2765772423 https://pubmed.ncbi.nlm.nih.gov/PMC9839708 https://doaj.org/article/82a61424d728449dae660fdcc140490f |
| Volume | 13 |
| WOSCitedRecordID | wos000968670400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BLkhcEG8CS2UkbhCt46R-HFnUBQ5bVYiVyilyHFtEKumqSZD23-9MkpYtzwsXS4lfI8_Y_ka2vwF4laWZKbUt4sIpG2dFJmPrChNbQexyQWRSDsEm1Hyul0uzuBbqi-6EDfTAw8Ada2ElvcYqFS6k2K71UvJQOke8MIYHWn25MtecqYHVW5gsMeMrGZ7q4wZ3KnpNJtJYKHKd5N5O1BP2_w5l_npZ8qcT034jOr0Hd0cEyd4Okt-HG75-ALeHmJKXDyGct9VqfFzJ1oGN3FMrZrt2TayVpd8wRKqs8d-quOkuaLFofMkq6tjh1oUWyWaz98ytOmJRQCGYrUv8RJxNF4v6ph_B-ens87sP8RhMIXaZ4m0sCmm5UtwWKjPBOq1d6rwMiQzahsJzUZZBofdT8GlAkFimU22FD1OFECZIlz6Gg3pd-6fAkkAVUCFWuKw0iQ488ZaY90XBQ1ARJNuBzd3INE4BL1Z5f-Kd6nxQRo7KyHtl5DKC17s6FwPPxl9Ln5C-diWJI7v_gZaTj5aT_8tyIjjaajsfJ26DHcgpeqRGighe7rJxytE5iq39uhvKoFOCQDSCJ4Nx7CRJEcHRyWkEas9s9kTdz6mrrz2tt0GsqriO4M3WwH6I9eehePY_huI53BE0M3gSJ-kRHLSbzr-AW-57WzWbCdxUS9WnegKHJ7P54tOkn26YnokFpQrTw8XHs8WXK650LqQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0qggJHgBFYdx2s7B4R4bGnVsuqhlXoLjmPTlZZk2eyC-qf4jXjy2Gp59NYDx2ycxPF-84pnvgF4LhKRFtrkNLfKUJELSY3NU2o4sst5LqRsm02o0UgfH6cHa_Czr4XBtMpeJzaKuqgsfiPf4koOQqiQSv5m-o1i1yjcXe1baLSw2HOnP0LIVr_e_RD-3xecbw8P3-_QrqsAtUKxOeW5NEwpZnIlUm-s1jaxTvpYem187hgvCq_Cg3I28MFbKpKBNtz5gQq23EubhPtegssCmcUwVZAfLL_p4K6ZiNOuNocleqsO9hFr2HhCucKATa7Yv6ZNwN982z9TNH_bp23M3_bN_23hbsGNztEmb1vJuA1rrrwDV9vWm6d3wR_Nx5OuBpVUnnQUXRNiFvMKyT0LNyPBoSe1-zqm9WKKOrV2BRnjStlg4YPgkuHwI7GTBZJNhFUjpizCYQhHMP-qufU9OLqQl7wP62VVugdAYo8XFIobbkWRxtqz2BlsUMBz5r2KIO6RkNmOkB37gkyyJjEg0VmLniygJ2vQk8kIXi6vmbZ0JOeOfocAW45EKvHmh2r2Jes0U6a5kVjuGCaqRRBc46RkvrAWiZdS5iPY7HGVdfqtzs5AFcGz5emgmXC7yZSuWrRjQuwW_PUINlo0L2eSBEcXN5gjUCs4X5nq6plyfNKwn6fBpVdMR_Cql4izaf17KR6e_xZP4drO4af9bH93tPcIrnMUWBbTONmE9fls4R7DFft9Pq5nTxqJJ_D5oiXlF8s_lRQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFH4aOoC4sC-BAYwEJ7DqOKntHBACpoVqoOqBkYZTcBwbKpWkNC1o_hq_jucsHZVlbnPgmMRJHOd7m98G8DiO4iRXOqOZkZrGWSyoNllCNffV5RyPhWiaTcjJRB0dJdMd-Nnlwviwyo4n1ow6L43fI-9zKQZoKiSC910bFjHdH71YfKO-g5T3tHbtNBqIHNjjH2i-Vc_H-_ivn3A-Gn54_Za2HQaoiSVbUZ4JzaRkOpNx4rRRykTGChcKp7TLLON57iS-NGMDh5pTHg2U5tYNJMp1J0yEzz0Hu6iSx7wHu9Px--nHzQ6P96HFYdJm6rBI9SuUlj6jjUeUS2--iS1pWDcN-Jum-2fA5m9e21oYjq78z8t4FS63Kjh52dDMNdixxXW40DTlPL4B7nA1m7fZqaR0pC3eNSd6vSp92c_cLgmq-qSyX2e0Wi88t61sTmZ-1QzKfiRpMhy-IWa-9mUocAWJLnI8REPFR2bVj74Jh2fykbegV5SFvQMkdP6GXHLNTZwnoXIstNq3LuAZc04GEHaoSE1bqt13DJmndchApNIGSSkiKa2RlIoAnm7uWTSFSk4d_cqDbTPSFxmvT5TLz2nLs1LFtfCJkDhRFSNJaysEc7kxviRTwlwAex3G0pbzVekJwAJ4tLmMPMs7onRhy3UzBq061OQDuN0gezOTCFVg73oOQG5hfmuq21eK2Ze6LnqCyr5kKoBnHXWcTOvfS3H39K94CBeRQNJ348nBPbjEPe2ykIbRHvRWy7W9D-fN99WsWj5oyZ_Ap7MmlV-qhp9d |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilization+of+temporal+autoencoder+for+semi-supervised+intracranial+EEG+clustering+and+classification&rft.jtitle=Scientific+reports&rft.au=Nejedly%2C+Petr&rft.au=Kremen%2C+Vaclav&rft.au=Lepkova%2C+Kamila&rft.au=Mivalt%2C+Filip&rft.date=2023-01-13&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-27978-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_27978_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |