Discriminative Multimanifold Analysis for Face Recognition from a Single Training Sample per Person
Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identifi...
Uloženo v:
| Vydáno v: | IEEE transactions on pattern analysis and machine intelligence Ročník 35; číslo 1; s. 39 - 51 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Los Alamitos, CA
IEEE
01.01.2013
IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach. |
|---|---|
| AbstractList | Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach. Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach.Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach. |
| Author | Gang Wang Yap-Peng Tan Jiwen Lu |
| Author_xml | – sequence: 1 givenname: Jiwen surname: Lu fullname: Lu, Jiwen – sequence: 2 givenname: Yap-Peng surname: Tan fullname: Tan, Yap-Peng – sequence: 3 givenname: Gang surname: Wang fullname: Wang, Gang |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677732$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22431525$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c9LHDEUB_BQLHW1PfZUKAEp9DLb_JgkM8fFahWUSt2eQ8y8SGQm2SYzBf97M93VgiDmkgQ-Ce993wHaCzEAQh8pWVJK2m_rq9Xl-ZIRypaKvEELRiWpWtayPbQgVLKqaVizjw5yviOE1oLwd2ifsZpTwcQC2e8-2-QHH8zo_wK-nPrRDyZ4F_sOr4Lp77PP2MWET40F_AtsvA1-9DFgl-KADb724bYHvE7Gh3LE12bYlPsGEr6ClGN4j94602f4sNsP0e_Tk_XxWXXx88f58eqisrUiY8VY45ixZdW8ransOHDRmhpA1fLGKtKCqDsuW-cUIXxuxUpBuexcR4QCfoi-bv_dpPhngjzqoTQHfW8CxClrWnqmXMwPX6VMSkVLfDM9ekbv4pRKMLMitRSiobyozzs13QzQ6U3J1KR7_Zh0AV92wGRrepdMsD7_d0oqpTgrjm-dTTHnBE5bP5o577EE3GtK9Dx3_W_uep67VnOR1bNXjx-_5D9tvQeAJyupEqTU-gA2ObTN |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_3390_s150101071 crossref_primary_10_1016_j_patcog_2016_02_001 crossref_primary_10_1007_s11042_020_09855_w crossref_primary_10_1109_ACCESS_2016_2574366 crossref_primary_10_1016_j_imavis_2016_11_016 crossref_primary_10_1016_j_jvcir_2014_08_006 crossref_primary_10_1049_iet_cvi_2014_0084 crossref_primary_10_1016_j_compind_2018_03_037 crossref_primary_10_1016_j_engappai_2018_08_004 crossref_primary_10_1109_TIFS_2015_2408431 crossref_primary_10_1049_iet_ipr_2013_0663 crossref_primary_10_1109_TPAMI_2015_2408359 crossref_primary_10_1016_j_patcog_2015_12_006 crossref_primary_10_1016_j_patcog_2015_04_003 crossref_primary_10_1007_s11042_018_5679_0 crossref_primary_10_1109_ACCESS_2019_2909039 crossref_primary_10_1016_j_neucom_2014_11_012 crossref_primary_10_1007_s10489_022_04101_2 crossref_primary_10_1109_ACCESS_2020_2985128 crossref_primary_10_1109_TCYB_2022_3163707 crossref_primary_10_3233_JIFS_211106 crossref_primary_10_1016_j_neucom_2015_06_041 crossref_primary_10_1016_j_patcog_2016_11_029 crossref_primary_10_1016_j_patcog_2016_11_027 crossref_primary_10_1631_FITEE_1500085 crossref_primary_10_1016_j_knosys_2019_01_022 crossref_primary_10_1088_1742_6596_1544_1_012158 crossref_primary_10_1080_19361610_2019_1581877 crossref_primary_10_1007_s11042_020_09394_4 crossref_primary_10_1016_j_neucom_2015_04_116 crossref_primary_10_1155_2018_4707954 crossref_primary_10_1109_TMM_2020_3019701 crossref_primary_10_1016_j_patcog_2016_11_016 crossref_primary_10_3390_s140916692 crossref_primary_10_1016_j_patcog_2021_107894 crossref_primary_10_1007_s11042_016_4243_z crossref_primary_10_1007_s12161_019_01617_1 crossref_primary_10_1016_j_jvcir_2018_07_002 crossref_primary_10_1007_s00138_016_0820_4 crossref_primary_10_1109_TIFS_2014_2327757 crossref_primary_10_1109_TIFS_2019_2919950 crossref_primary_10_1109_TNNLS_2020_2985099 crossref_primary_10_1007_s12369_013_0199_6 crossref_primary_10_1109_ACCESS_2022_3185137 crossref_primary_10_1016_j_neucom_2014_06_012 crossref_primary_10_1109_JIOT_2020_3031390 crossref_primary_10_1145_2733383 crossref_primary_10_1109_TCYB_2014_2376934 crossref_primary_10_1016_j_ins_2018_08_005 crossref_primary_10_1016_j_foodchem_2021_129545 crossref_primary_10_1364_AO_54_006887 crossref_primary_10_1007_s11633_016_0974_6 crossref_primary_10_1109_TII_2020_3036676 crossref_primary_10_1016_j_patcog_2014_05_004 crossref_primary_10_1007_s00371_020_01802_y crossref_primary_10_1016_j_foodchem_2018_06_097 crossref_primary_10_1109_TIP_2014_2312643 crossref_primary_10_1007_s11042_018_7002_5 crossref_primary_10_1016_j_cmpb_2018_01_016 crossref_primary_10_3390_s25051574 crossref_primary_10_1016_j_neucom_2016_02_072 crossref_primary_10_1016_j_neucom_2016_12_013 crossref_primary_10_1007_s11063_017_9693_4 crossref_primary_10_1007_s11063_019_10083_z crossref_primary_10_1109_TCYB_2019_2910751 crossref_primary_10_3390_sym12030434 crossref_primary_10_1007_s11760_017_1222_4 crossref_primary_10_1109_TIP_2018_2875346 crossref_primary_10_1371_journal_pone_0138859 crossref_primary_10_1016_j_inffus_2015_08_006 crossref_primary_10_1109_TNNLS_2020_3041636 crossref_primary_10_1016_j_neucom_2016_02_063 crossref_primary_10_1016_j_cviu_2017_04_008 crossref_primary_10_1155_2013_516052 crossref_primary_10_1016_j_eswa_2018_04_039 crossref_primary_10_1016_j_knosys_2022_109563 crossref_primary_10_1109_TCSVT_2019_2903563 crossref_primary_10_1016_j_neucom_2015_01_099 crossref_primary_10_1109_TCSVT_2013_2241353 crossref_primary_10_1016_j_patcog_2016_08_007 crossref_primary_10_1007_s11042_022_12382_5 crossref_primary_10_1016_j_patcog_2017_05_009 crossref_primary_10_1109_TIP_2015_2475625 crossref_primary_10_1109_TIFS_2021_3050055 crossref_primary_10_1007_s11220_018_0188_9 crossref_primary_10_1016_j_knosys_2013_09_004 crossref_primary_10_1016_j_neucom_2018_06_077 crossref_primary_10_1111_exsy_13088 crossref_primary_10_1016_j_neucom_2015_08_134 crossref_primary_10_3390_s141223509 crossref_primary_10_1007_s40745_021_00323_2 crossref_primary_10_1016_j_imavis_2014_07_001 crossref_primary_10_1007_s11042_015_3005_7 crossref_primary_10_1109_TPAMI_2017_2710183 crossref_primary_10_1007_s11760_020_01642_2 crossref_primary_10_1016_j_neunet_2016_10_001 crossref_primary_10_1016_j_compeleceng_2015_01_014 crossref_primary_10_1016_j_patcog_2017_10_001 crossref_primary_10_1016_j_ins_2015_03_063 crossref_primary_10_1016_j_patcog_2017_02_009 crossref_primary_10_3103_S0146411619060099 crossref_primary_10_1007_s11771_017_3700_9 crossref_primary_10_1109_TNNLS_2021_3103194 crossref_primary_10_1007_s00521_017_2897_8 crossref_primary_10_1155_2016_8637260 crossref_primary_10_1186_s13640_018_0288_4 crossref_primary_10_1109_ACCESS_2019_2903333 crossref_primary_10_1007_s11042_020_10244_6 crossref_primary_10_1007_s10044_019_00818_y crossref_primary_10_1016_j_neucom_2015_11_112 crossref_primary_10_1016_j_neucom_2015_11_111 crossref_primary_10_1016_j_neucom_2015_11_114 crossref_primary_10_1016_j_neucom_2015_11_113 crossref_primary_10_1109_TCYB_2017_2739338 crossref_primary_10_1109_TCBB_2022_3149791 crossref_primary_10_1109_TIFS_2018_2866295 crossref_primary_10_1016_j_neucom_2024_127900 crossref_primary_10_1109_TIFS_2014_2363792 crossref_primary_10_1007_s11063_017_9630_6 crossref_primary_10_1016_j_neucom_2022_06_113 crossref_primary_10_1016_j_neucom_2016_02_039 crossref_primary_10_1016_j_neucom_2015_11_116 crossref_primary_10_1016_j_neucom_2015_11_115 crossref_primary_10_1016_j_neucom_2015_11_117 crossref_primary_10_1109_MCE_2013_2284939 crossref_primary_10_1016_j_jvcir_2018_02_004 crossref_primary_10_1111_exsy_12503 crossref_primary_10_1016_j_neucom_2020_06_136 crossref_primary_10_1016_j_sigpro_2015_09_026 crossref_primary_10_1016_j_ijleo_2015_08_181 crossref_primary_10_3390_s19010043 crossref_primary_10_1049_iet_ipr_2020_0394 crossref_primary_10_1109_THMS_2016_2598763 crossref_primary_10_1016_j_neucom_2015_07_127 crossref_primary_10_1155_2015_472473 crossref_primary_10_1007_s11063_018_9852_2 crossref_primary_10_1109_TIP_2016_2515987 crossref_primary_10_1016_j_patcog_2017_02_032 crossref_primary_10_1016_j_patcog_2017_02_031 crossref_primary_10_1109_TETCI_2021_3100646 crossref_primary_10_1109_TIFS_2020_2965301 crossref_primary_10_1109_TIP_2015_2409738 crossref_primary_10_1016_j_cogsys_2018_09_009 crossref_primary_10_1007_s11220_025_00612_7 crossref_primary_10_1109_TPAMI_2013_134 crossref_primary_10_1016_j_neunet_2019_01_001 crossref_primary_10_1007_s00371_017_1468_4 crossref_primary_10_1016_j_neucom_2016_01_102 crossref_primary_10_1109_MMUL_2016_27 crossref_primary_10_3233_JIFS_169646 crossref_primary_10_1007_s12652_015_0321_8 crossref_primary_10_1016_j_jksuci_2023_03_016 crossref_primary_10_1007_s00521_015_1913_0 crossref_primary_10_1016_j_patcog_2023_109742 crossref_primary_10_1109_ACCESS_2017_2784842 crossref_primary_10_1016_j_neucom_2015_12_125 crossref_primary_10_1016_j_neucom_2015_12_126 crossref_primary_10_1016_j_patcog_2017_03_001 crossref_primary_10_1016_j_patrec_2023_05_002 crossref_primary_10_1016_j_neucom_2015_12_121 crossref_primary_10_1007_s00500_014_1561_9 crossref_primary_10_1016_j_neucom_2015_12_122 crossref_primary_10_1145_2974024 crossref_primary_10_1016_j_neucom_2015_12_123 crossref_primary_10_1007_s10489_019_01411_w crossref_primary_10_1016_j_patrec_2019_10_015 crossref_primary_10_1007_s11042_016_4105_8 crossref_primary_10_1109_TCSVT_2020_3032964 crossref_primary_10_1109_ACCESS_2020_3017479 crossref_primary_10_1109_TPAMI_2020_3033994 crossref_primary_10_1007_s11063_019_10100_1 crossref_primary_10_1016_j_knosys_2019_05_033 crossref_primary_10_1016_j_image_2018_03_003 crossref_primary_10_1007_s12161_020_01827_y crossref_primary_10_1016_j_patcog_2019_01_005 crossref_primary_10_1016_j_sigpro_2017_05_012 crossref_primary_10_1007_s00779_016_0954_4 crossref_primary_10_1016_j_patcog_2015_11_020 crossref_primary_10_1007_s10462_017_9578_y crossref_primary_10_1007_s10044_020_00906_4 crossref_primary_10_1016_j_jvcir_2018_04_013 crossref_primary_10_1109_TNNLS_2016_2522431 crossref_primary_10_1007_s10462_023_10551_y crossref_primary_10_1016_j_cviu_2017_12_003 crossref_primary_10_1016_j_eswa_2024_123831 crossref_primary_10_1088_1361_6501_acb454 crossref_primary_10_1007_s12652_021_03255_0 crossref_primary_10_1007_s00371_015_1169_9 crossref_primary_10_1016_j_heliyon_2020_e03751 crossref_primary_10_1007_s11042_017_5062_6 crossref_primary_10_3390_app13169180 crossref_primary_10_1016_j_patcog_2016_12_028 crossref_primary_10_1016_j_patrec_2015_05_001 crossref_primary_10_1016_j_ins_2021_07_046 crossref_primary_10_1016_j_compeleceng_2022_108003 crossref_primary_10_1007_s11042_015_3207_z crossref_primary_10_1016_j_neucom_2018_07_043 crossref_primary_10_1007_s00371_020_01827_3 crossref_primary_10_1049_iet_spr_2016_0067 crossref_primary_10_1109_TIP_2017_2717505 crossref_primary_10_1109_ACCESS_2020_2999030 crossref_primary_10_1016_j_imavis_2016_08_007 crossref_primary_10_1016_j_compind_2023_103975 crossref_primary_10_1109_TCSVT_2014_2367357 crossref_primary_10_1016_j_imavis_2016_08_009 crossref_primary_10_1016_j_patcog_2017_03_010 crossref_primary_10_1016_j_eswa_2014_08_016 crossref_primary_10_1016_j_jvcir_2015_03_001 crossref_primary_10_1016_j_inffus_2018_07_011 crossref_primary_10_3390_info12080333 crossref_primary_10_3390_math10050752 crossref_primary_10_1016_j_ins_2016_02_001 crossref_primary_10_1049_iet_bmt_2014_0053 crossref_primary_10_3390_s21030728 |
| Cites_doi | 10.1109/TIP.2010.2060207 10.1109/TNN.2005.849817 10.1016/j.patrec.2004.03.012 10.1016/j.neucom.2005.06.004 10.1109/TNN.2007.901277 10.1109/IJCB.2011.6117538 10.1016/j.amc.2004.04.016 10.1162/jocn.1991.3.1.71 10.1109/TIP.2006.884929 10.1145/1553374.1553432 10.1016/j.patcog.2008.05.024 10.1109/ICCV.2007.4408855 10.1007/978-3-642-15567-3_35 10.1109/34.598228 10.1109/ICCV.2005.167 10.1016/j.patcog.2007.10.029 10.1109/TKDE.2009.126 10.1109/TIP.2006.884956 10.1109/CVPR.2005.216 10.1109/ICCV.2011.6126464 10.1016/j.imavis.2005.11.006 10.1016/j.imavis.2005.07.009 10.1109/TIFS.2009.2035976 10.1109/AFGR.2002.4527207 10.1007/978-3-540-24670-1_36 10.1109/TIP.2007.904421 10.1109/TPAMI.2007.250598 10.1016/S0262-8856(97)00070-X 10.1109/CVPR.2009.5206850 10.1109/34.879790 10.1016/S0167-8655(02)00134-4 10.1109/ICASSP.2007.366305 10.1016/j.patcog.2003.12.010 10.1109/AFGR.2008.4813349 10.1126/science.290.5500.2319 10.1109/TIFS.2007.916280 10.1007/3-540-44989-2_40 10.1016/j.patrec.2003.11.005 10.1007/978-3-642-15549-9_23 10.1109/CVPR.2008.4587719 10.1109/TPAMI.2002.1008382 10.1109/34.908974 10.1109/AFGR.2008.4813353 10.1109/TSMCB.2005.850151 10.1109/TPAMI.2005.55 10.1109/CVPR.2007.383054 10.1126/science.290.5500.2323 10.1109/TSMCB.2009.2032926 10.1007/s11263-006-8098-z 10.1016/s0169-7161(82)02042-2 10.1016/j.patcog.2006.03.013 10.1109/CVPR.2010.5539990 10.1016/j.patcog.2009.12.004 10.1109/TPAMI.2004.57 10.1109/TIP.2009.2035882 10.1109/TPAMI.2005.58 10.1109/ICCV.2005.147 10.1109/TIFS.2006.890313 10.1016/j.amc.2008.05.019 10.1109/TPAMI.2004.1261097 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| DOI | 10.1109/TPAMI.2012.70 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database Technology Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 51 |
| ExternalDocumentID | 2825187991 22431525 27677732 10_1109_TPAMI_2012_70 6175025 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK IQODW RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7X8 |
| ID | FETCH-LOGICAL-c470t-228f2acccc439416d3e359a4ee746bc709e54d369ff70034503c65136dfd057e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 286 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000311127700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sat Sep 27 19:47:23 EDT 2025 Sun Nov 09 11:11:45 EST 2025 Sun Jun 29 16:21:22 EDT 2025 Mon Jul 21 05:52:38 EDT 2025 Wed Apr 02 07:18:35 EDT 2025 Tue Nov 18 22:37:42 EST 2025 Sat Nov 29 08:05:25 EST 2025 Tue Aug 26 16:41:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | single training sample per person Computer vision Discriminant analysis Image processing Face recognition Image databank Subspace method manifold learning subspace learning Dimension reduction Image analysis Experimental result Multidimensional analysis Official document Facies Selection criterion Feature extraction Reduced order model Pattern extraction Electronic government |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-228f2acccc439416d3e359a4ee746bc709e54d369ff70034503c65136dfd057e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PMID | 22431525 |
| PQID | 1204655813 |
| PQPubID | 85458 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TPAMI_2012_70 crossref_citationtrail_10_1109_TPAMI_2012_70 pubmed_primary_22431525 pascalfrancis_primary_27677732 ieee_primary_6175025 proquest_miscellaneous_1315135450 proquest_journals_1204655813 proquest_miscellaneous_1266711620 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Jan. 2013-01-00 2013 2013-Jan 20130101 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2013 |
| Publisher | IEEE IEEE Computer Society The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 Martinez (ref30) 1998 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref22 doi: 10.1109/TIP.2010.2060207 – ident: ref38 doi: 10.1109/TNN.2005.849817 – ident: ref7 doi: 10.1016/j.patrec.2004.03.012 – ident: ref59 doi: 10.1016/j.neucom.2005.06.004 – ident: ref23 doi: 10.1109/TNN.2007.901277 – ident: ref43 doi: 10.1109/IJCB.2011.6117538 – ident: ref58 doi: 10.1016/j.amc.2004.04.016 – ident: ref41 doi: 10.1162/jocn.1991.3.1.71 – ident: ref50 doi: 10.1109/TIP.2006.884929 – ident: ref18 doi: 10.1145/1553374.1553432 – ident: ref19 doi: 10.1016/j.patcog.2008.05.024 – ident: ref3 doi: 10.1109/ICCV.2007.4408855 – ident: ref35 doi: 10.1007/978-3-642-15567-3_35 – ident: ref2 doi: 10.1109/34.598228 – ident: ref14 doi: 10.1109/ICCV.2005.167 – ident: ref16 doi: 10.1016/j.patcog.2007.10.029 – ident: ref36 doi: 10.1109/TKDE.2009.126 – ident: ref57 doi: 10.1109/TIP.2006.884956 – ident: ref5 doi: 10.1109/CVPR.2005.216 – ident: ref26 doi: 10.1109/ICCV.2011.6126464 – ident: ref55 doi: 10.1016/j.imavis.2005.11.006 – ident: ref13 doi: 10.1016/j.imavis.2005.07.009 – ident: ref24 doi: 10.1109/TIFS.2009.2035976 – ident: ref53 doi: 10.1109/AFGR.2002.4527207 – ident: ref1 doi: 10.1007/978-3-540-24670-1_36 – year: 1998 ident: ref30 article-title: The AR Face Database – ident: ref61 doi: 10.1109/TIP.2007.904421 – ident: ref51 doi: 10.1109/TPAMI.2007.250598 – ident: ref32 doi: 10.1016/S0262-8856(97)00070-X – ident: ref44 doi: 10.1109/CVPR.2009.5206850 – ident: ref31 doi: 10.1109/34.879790 – ident: ref48 doi: 10.1016/S0167-8655(02)00134-4 – ident: ref27 doi: 10.1109/ICASSP.2007.366305 – ident: ref6 doi: 10.1016/j.patcog.2003.12.010 – ident: ref21 doi: 10.1109/AFGR.2008.4813349 – ident: ref40 doi: 10.1126/science.290.5500.2319 – ident: ref9 doi: 10.1109/TIFS.2007.916280 – ident: ref33 doi: 10.1007/3-540-44989-2_40 – ident: ref12 doi: 10.1016/j.patrec.2003.11.005 – ident: ref42 doi: 10.1007/978-3-642-15549-9_23 – ident: ref45 doi: 10.1109/CVPR.2008.4587719 – ident: ref28 doi: 10.1109/TPAMI.2002.1008382 – ident: ref29 doi: 10.1109/34.908974 – ident: ref54 doi: 10.1109/AFGR.2008.4813353 – ident: ref11 doi: 10.1109/TSMCB.2005.850151 – ident: ref15 doi: 10.1109/TPAMI.2005.55 – ident: ref4 doi: 10.1109/CVPR.2007.383054 – ident: ref34 doi: 10.1126/science.290.5500.2323 – ident: ref25 doi: 10.1109/TSMCB.2009.2032926 – ident: ref47 doi: 10.1007/s11263-006-8098-z – ident: ref17 doi: 10.1016/s0169-7161(82)02042-2 – ident: ref39 doi: 10.1016/j.patcog.2006.03.013 – ident: ref37 doi: 10.1109/CVPR.2010.5539990 – ident: ref8 doi: 10.1016/j.patcog.2009.12.004 – ident: ref46 doi: 10.1109/TPAMI.2004.57 – ident: ref56 doi: 10.1109/TIP.2009.2035882 – ident: ref20 doi: 10.1109/TPAMI.2005.58 – ident: ref60 doi: 10.1109/ICCV.2005.147 – ident: ref49 doi: 10.1109/TIFS.2006.890313 – ident: ref10 doi: 10.1016/j.amc.2008.05.019 – ident: ref52 doi: 10.1109/TPAMI.2004.1261097 |
| SSID | ssj0014503 |
| Score | 2.5540404 |
| Snippet | Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 39 |
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Biometrics Biometry - methods Computer science; control theory; systems Data processing. List processing. Character string processing Discriminant Analysis Educational institutions Effectiveness Exact sciences and technology Face Face - anatomy & histology Face recognition Feature extraction Humans Image Interpretation, Computer-Assisted - methods Intelligence Learning Learning and adaptive systems manifold learning Manifolds Memory organisation. Data processing Pattern analysis Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Sample Size Semantics Signal Processing, Computer-Assisted single training sample per person Software subspace learning Subtraction Technique Training |
| Title | Discriminative Multimanifold Analysis for Face Recognition from a Single Training Sample per Person |
| URI | https://ieeexplore.ieee.org/document/6175025 https://www.ncbi.nlm.nih.gov/pubmed/22431525 https://www.proquest.com/docview/1204655813 https://www.proquest.com/docview/1266711620 https://www.proquest.com/docview/1315135450 |
| Volume | 35 |
| WOSCitedRecordID | wos000311127700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5U-tA-VKutTavHFkqfjCbZzU7yKLaHhVaOeoV7C5vNBoQjEe_Ov9-ZzQ8r1ELzFMiQLPlmdmZ3Z-YD-KxKrSgKKEOrnA1VWmdhVic2RKVKKQ3NmaVnLfmBV1fZYpHPtuBkrIVxzvnkM3fKt_4sv2rthrfKzsjbpuSjt2EbEbtarfHEQKWeBZkiGLJwWkY89tM8m8_Of37nLK7kFJn5jbyWZNqfJ67Ic6twZqRZ0c-pO1aL58NO736mu_838D143YeZ4rzTizew5Zp92B0oHERv0fvw6o9-hAdgv97wLMLZMTwLCl-dyw0y6nZZiaF_iaA4V0yNdeLXkH3UNoLrVIQR1_SipRPznnlCXBtuPyxu6aMzH9y_hd_Tb_OLy7BnYSD4MFqHSULgGUsXF9HGupJOprlRzqHSpcUod6mqpObNX-52QzhYncZSV3VFwaCT72CnaRv3HgQtllJbYpyT-qrcxqZGzLHSqKsoj1QZwMkASGH7FuXMlLEs_FIlygsPZcFQFhgF8GUUv-16czwneMCYjEI9HAFMnqA9Pk9Qk4LJJICjAf6iN-1VEScR95zLYhnAp_ExGSWftJjGtRuW0RpjUsXoHzKkg7GkAJZkDjvVehxAr6Ef_j7wj_Ay8awcvBN0BDvru407hhf2fn2zupuQdSyyibeOBwZbCXY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFbQPrbZqU2tdQXxq2uxHdi-PRT1avB6HPaFvYbPZQOFISu_Ov9-ZzUctWME8BTIkS34zO7O7M_MD-KQKrTAKKGKnvItVWo3iUSVcbJQqpLQ4ZxaBtWRiptPR9XU224DjoRbGex-Sz_wJ3Yaz_LJxa9oqO0Vvm6KPfgJPU6UEb6u1hjMDlQYeZIxh0MZxIXHfUfN0Pju7vKA8LnFiiPsN_ZYk4p8Hziiwq1BupF3i76laXovHA8_ggMY7_zf0l7DdBZrsrNWMV7Dh613Y6UkcWGfTu7D1R0fCPXBfb2geofwYmgdZqM-lFhlVsyhZ38GEYaTLxtZ59qPPP2pqRpUqzLIrfNHCs3nHPcGuLDUgZrf40VkI71_Dz_G3-ZfzuONhQABNsoqFQPisw4vKaLkupZdpZpX3RunCmSTzqSqlpu1f6neDODidcqnLqsRw0Ms3sFk3td8Hhsul1BWGZ6jAKnPcVsZkptRGl0mWqCKC4x6Q3HVNyokrY5GHxUqS5QHKnKDMTRLB50H8tu3O8ZjgHmEyCHVwRHD0AO3huTDaGCNFBIc9_Hln3Muci4S6zo24jODj8BjNks5abO2bNclobTiqYvIPGdRBLjGERZm3rWrdD6DT0IO_D_wDPD-fX07yycX0-zt4IQJHB-0LHcLm6m7t38Mz92t1s7w7CjbyG7HVC9U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+Multimanifold+Analysis+for+Face+Recognition+from+a+Single+Training+Sample+per+Person&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=JIWEN+LU&rft.au=TAN%2C+Yap-Peng&rft.au=GANG+WANG&rft.date=2013&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=35&rft.issue=1&rft.spage=39&rft.epage=51&rft_id=info:doi/10.1109%2FTPAMI.2012.70&rft.externalDBID=n%2Fa&rft.externalDocID=27677732 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |