Discriminative Multimanifold Analysis for Face Recognition from a Single Training Sample per Person

Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 35; H. 1; S. 39 - 51
Hauptverfasser: Lu, Jiwen, Tan, Yap-Peng, Wang, Gang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.01.2013
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach.
AbstractList Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach.Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach.
Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach.
Author Gang Wang
Yap-Peng Tan
Jiwen Lu
Author_xml – sequence: 1
  givenname: Jiwen
  surname: Lu
  fullname: Lu, Jiwen
– sequence: 2
  givenname: Yap-Peng
  surname: Tan
  fullname: Tan, Yap-Peng
– sequence: 3
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677732$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22431525$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9LHDEUB_BQLHW1PfZUKAEp9DLb_JgkM8fFahWUSt2eQ8y8SGQm2SYzBf97M93VgiDmkgQ-Ce993wHaCzEAQh8pWVJK2m_rq9Xl-ZIRypaKvEELRiWpWtayPbQgVLKqaVizjw5yviOE1oLwd2ifsZpTwcQC2e8-2-QHH8zo_wK-nPrRDyZ4F_sOr4Lp77PP2MWET40F_AtsvA1-9DFgl-KADb724bYHvE7Gh3LE12bYlPsGEr6ClGN4j94602f4sNsP0e_Tk_XxWXXx88f58eqisrUiY8VY45ixZdW8ransOHDRmhpA1fLGKtKCqDsuW-cUIXxuxUpBuexcR4QCfoi-bv_dpPhngjzqoTQHfW8CxClrWnqmXMwPX6VMSkVLfDM9ekbv4pRKMLMitRSiobyozzs13QzQ6U3J1KR7_Zh0AV92wGRrepdMsD7_d0oqpTgrjm-dTTHnBE5bP5o577EE3GtK9Dx3_W_uep67VnOR1bNXjx-_5D9tvQeAJyupEqTU-gA2ObTN
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_s150101071
crossref_primary_10_1016_j_patcog_2016_02_001
crossref_primary_10_1007_s11042_020_09855_w
crossref_primary_10_1109_ACCESS_2016_2574366
crossref_primary_10_1016_j_imavis_2016_11_016
crossref_primary_10_1016_j_jvcir_2014_08_006
crossref_primary_10_1049_iet_cvi_2014_0084
crossref_primary_10_1016_j_compind_2018_03_037
crossref_primary_10_1016_j_engappai_2018_08_004
crossref_primary_10_1109_TIFS_2015_2408431
crossref_primary_10_1049_iet_ipr_2013_0663
crossref_primary_10_1109_TPAMI_2015_2408359
crossref_primary_10_1016_j_patcog_2015_12_006
crossref_primary_10_1016_j_patcog_2015_04_003
crossref_primary_10_1007_s11042_018_5679_0
crossref_primary_10_1109_ACCESS_2019_2909039
crossref_primary_10_1016_j_neucom_2014_11_012
crossref_primary_10_1007_s10489_022_04101_2
crossref_primary_10_1109_ACCESS_2020_2985128
crossref_primary_10_1109_TCYB_2022_3163707
crossref_primary_10_3233_JIFS_211106
crossref_primary_10_1016_j_neucom_2015_06_041
crossref_primary_10_1016_j_patcog_2016_11_029
crossref_primary_10_1016_j_patcog_2016_11_027
crossref_primary_10_1631_FITEE_1500085
crossref_primary_10_1016_j_knosys_2019_01_022
crossref_primary_10_1088_1742_6596_1544_1_012158
crossref_primary_10_1080_19361610_2019_1581877
crossref_primary_10_1007_s11042_020_09394_4
crossref_primary_10_1016_j_neucom_2015_04_116
crossref_primary_10_1155_2018_4707954
crossref_primary_10_1109_TMM_2020_3019701
crossref_primary_10_1016_j_patcog_2016_11_016
crossref_primary_10_3390_s140916692
crossref_primary_10_1016_j_patcog_2021_107894
crossref_primary_10_1007_s11042_016_4243_z
crossref_primary_10_1007_s12161_019_01617_1
crossref_primary_10_1016_j_jvcir_2018_07_002
crossref_primary_10_1007_s00138_016_0820_4
crossref_primary_10_1109_TIFS_2014_2327757
crossref_primary_10_1109_TIFS_2019_2919950
crossref_primary_10_1109_TNNLS_2020_2985099
crossref_primary_10_1007_s12369_013_0199_6
crossref_primary_10_1109_ACCESS_2022_3185137
crossref_primary_10_1016_j_neucom_2014_06_012
crossref_primary_10_1109_JIOT_2020_3031390
crossref_primary_10_1145_2733383
crossref_primary_10_1109_TCYB_2014_2376934
crossref_primary_10_1016_j_ins_2018_08_005
crossref_primary_10_1016_j_foodchem_2021_129545
crossref_primary_10_1364_AO_54_006887
crossref_primary_10_1007_s11633_016_0974_6
crossref_primary_10_1109_TII_2020_3036676
crossref_primary_10_1016_j_patcog_2014_05_004
crossref_primary_10_1007_s00371_020_01802_y
crossref_primary_10_1016_j_foodchem_2018_06_097
crossref_primary_10_1109_TIP_2014_2312643
crossref_primary_10_1007_s11042_018_7002_5
crossref_primary_10_1016_j_cmpb_2018_01_016
crossref_primary_10_3390_s25051574
crossref_primary_10_1016_j_neucom_2016_02_072
crossref_primary_10_1016_j_neucom_2016_12_013
crossref_primary_10_1007_s11063_017_9693_4
crossref_primary_10_1007_s11063_019_10083_z
crossref_primary_10_1109_TCYB_2019_2910751
crossref_primary_10_3390_sym12030434
crossref_primary_10_1007_s11760_017_1222_4
crossref_primary_10_1109_TIP_2018_2875346
crossref_primary_10_1371_journal_pone_0138859
crossref_primary_10_1016_j_inffus_2015_08_006
crossref_primary_10_1109_TNNLS_2020_3041636
crossref_primary_10_1016_j_neucom_2016_02_063
crossref_primary_10_1016_j_cviu_2017_04_008
crossref_primary_10_1155_2013_516052
crossref_primary_10_1016_j_eswa_2018_04_039
crossref_primary_10_1016_j_knosys_2022_109563
crossref_primary_10_1109_TCSVT_2019_2903563
crossref_primary_10_1016_j_neucom_2015_01_099
crossref_primary_10_1109_TCSVT_2013_2241353
crossref_primary_10_1016_j_patcog_2016_08_007
crossref_primary_10_1007_s11042_022_12382_5
crossref_primary_10_1016_j_patcog_2017_05_009
crossref_primary_10_1109_TIP_2015_2475625
crossref_primary_10_1109_TIFS_2021_3050055
crossref_primary_10_1007_s11220_018_0188_9
crossref_primary_10_1016_j_knosys_2013_09_004
crossref_primary_10_1016_j_neucom_2018_06_077
crossref_primary_10_1111_exsy_13088
crossref_primary_10_1016_j_neucom_2015_08_134
crossref_primary_10_3390_s141223509
crossref_primary_10_1007_s40745_021_00323_2
crossref_primary_10_1016_j_imavis_2014_07_001
crossref_primary_10_1007_s11042_015_3005_7
crossref_primary_10_1109_TPAMI_2017_2710183
crossref_primary_10_1007_s11760_020_01642_2
crossref_primary_10_1016_j_neunet_2016_10_001
crossref_primary_10_1016_j_compeleceng_2015_01_014
crossref_primary_10_1016_j_patcog_2017_10_001
crossref_primary_10_1016_j_ins_2015_03_063
crossref_primary_10_1016_j_patcog_2017_02_009
crossref_primary_10_3103_S0146411619060099
crossref_primary_10_1007_s11771_017_3700_9
crossref_primary_10_1109_TNNLS_2021_3103194
crossref_primary_10_1007_s00521_017_2897_8
crossref_primary_10_1155_2016_8637260
crossref_primary_10_1186_s13640_018_0288_4
crossref_primary_10_1109_ACCESS_2019_2903333
crossref_primary_10_1007_s11042_020_10244_6
crossref_primary_10_1007_s10044_019_00818_y
crossref_primary_10_1016_j_neucom_2015_11_112
crossref_primary_10_1016_j_neucom_2015_11_111
crossref_primary_10_1016_j_neucom_2015_11_114
crossref_primary_10_1016_j_neucom_2015_11_113
crossref_primary_10_1109_TCYB_2017_2739338
crossref_primary_10_1109_TCBB_2022_3149791
crossref_primary_10_1109_TIFS_2018_2866295
crossref_primary_10_1016_j_neucom_2024_127900
crossref_primary_10_1109_TIFS_2014_2363792
crossref_primary_10_1007_s11063_017_9630_6
crossref_primary_10_1016_j_neucom_2022_06_113
crossref_primary_10_1016_j_neucom_2016_02_039
crossref_primary_10_1016_j_neucom_2015_11_116
crossref_primary_10_1016_j_neucom_2015_11_115
crossref_primary_10_1016_j_neucom_2015_11_117
crossref_primary_10_1109_MCE_2013_2284939
crossref_primary_10_1016_j_jvcir_2018_02_004
crossref_primary_10_1111_exsy_12503
crossref_primary_10_1016_j_neucom_2020_06_136
crossref_primary_10_1016_j_sigpro_2015_09_026
crossref_primary_10_1016_j_ijleo_2015_08_181
crossref_primary_10_3390_s19010043
crossref_primary_10_1049_iet_ipr_2020_0394
crossref_primary_10_1109_THMS_2016_2598763
crossref_primary_10_1016_j_neucom_2015_07_127
crossref_primary_10_1155_2015_472473
crossref_primary_10_1007_s11063_018_9852_2
crossref_primary_10_1109_TIP_2016_2515987
crossref_primary_10_1016_j_patcog_2017_02_032
crossref_primary_10_1016_j_patcog_2017_02_031
crossref_primary_10_1109_TETCI_2021_3100646
crossref_primary_10_1109_TIFS_2020_2965301
crossref_primary_10_1109_TIP_2015_2409738
crossref_primary_10_1016_j_cogsys_2018_09_009
crossref_primary_10_1007_s11220_025_00612_7
crossref_primary_10_1109_TPAMI_2013_134
crossref_primary_10_1016_j_neunet_2019_01_001
crossref_primary_10_1007_s00371_017_1468_4
crossref_primary_10_1016_j_neucom_2016_01_102
crossref_primary_10_1109_MMUL_2016_27
crossref_primary_10_3233_JIFS_169646
crossref_primary_10_1007_s12652_015_0321_8
crossref_primary_10_1016_j_jksuci_2023_03_016
crossref_primary_10_1007_s00521_015_1913_0
crossref_primary_10_1016_j_patcog_2023_109742
crossref_primary_10_1109_ACCESS_2017_2784842
crossref_primary_10_1016_j_neucom_2015_12_125
crossref_primary_10_1016_j_neucom_2015_12_126
crossref_primary_10_1016_j_patcog_2017_03_001
crossref_primary_10_1016_j_patrec_2023_05_002
crossref_primary_10_1016_j_neucom_2015_12_121
crossref_primary_10_1007_s00500_014_1561_9
crossref_primary_10_1016_j_neucom_2015_12_122
crossref_primary_10_1145_2974024
crossref_primary_10_1016_j_neucom_2015_12_123
crossref_primary_10_1007_s10489_019_01411_w
crossref_primary_10_1016_j_patrec_2019_10_015
crossref_primary_10_1007_s11042_016_4105_8
crossref_primary_10_1109_TCSVT_2020_3032964
crossref_primary_10_1109_ACCESS_2020_3017479
crossref_primary_10_1109_TPAMI_2020_3033994
crossref_primary_10_1007_s11063_019_10100_1
crossref_primary_10_1016_j_knosys_2019_05_033
crossref_primary_10_1016_j_image_2018_03_003
crossref_primary_10_1007_s12161_020_01827_y
crossref_primary_10_1016_j_patcog_2019_01_005
crossref_primary_10_1016_j_sigpro_2017_05_012
crossref_primary_10_1007_s00779_016_0954_4
crossref_primary_10_1016_j_patcog_2015_11_020
crossref_primary_10_1007_s10462_017_9578_y
crossref_primary_10_1007_s10044_020_00906_4
crossref_primary_10_1016_j_jvcir_2018_04_013
crossref_primary_10_1109_TNNLS_2016_2522431
crossref_primary_10_1007_s10462_023_10551_y
crossref_primary_10_1016_j_cviu_2017_12_003
crossref_primary_10_1016_j_eswa_2024_123831
crossref_primary_10_1088_1361_6501_acb454
crossref_primary_10_1007_s12652_021_03255_0
crossref_primary_10_1007_s00371_015_1169_9
crossref_primary_10_1016_j_heliyon_2020_e03751
crossref_primary_10_1007_s11042_017_5062_6
crossref_primary_10_3390_app13169180
crossref_primary_10_1016_j_patcog_2016_12_028
crossref_primary_10_1016_j_patrec_2015_05_001
crossref_primary_10_1016_j_ins_2021_07_046
crossref_primary_10_1016_j_compeleceng_2022_108003
crossref_primary_10_1007_s11042_015_3207_z
crossref_primary_10_1016_j_neucom_2018_07_043
crossref_primary_10_1007_s00371_020_01827_3
crossref_primary_10_1049_iet_spr_2016_0067
crossref_primary_10_1109_TIP_2017_2717505
crossref_primary_10_1109_ACCESS_2020_2999030
crossref_primary_10_1016_j_imavis_2016_08_007
crossref_primary_10_1016_j_compind_2023_103975
crossref_primary_10_1109_TCSVT_2014_2367357
crossref_primary_10_1016_j_imavis_2016_08_009
crossref_primary_10_1016_j_patcog_2017_03_010
crossref_primary_10_1016_j_eswa_2014_08_016
crossref_primary_10_1016_j_jvcir_2015_03_001
crossref_primary_10_1016_j_inffus_2018_07_011
crossref_primary_10_3390_info12080333
crossref_primary_10_3390_math10050752
crossref_primary_10_1016_j_ins_2016_02_001
crossref_primary_10_1049_iet_bmt_2014_0053
crossref_primary_10_3390_s21030728
Cites_doi 10.1109/TIP.2010.2060207
10.1109/TNN.2005.849817
10.1016/j.patrec.2004.03.012
10.1016/j.neucom.2005.06.004
10.1109/TNN.2007.901277
10.1109/IJCB.2011.6117538
10.1016/j.amc.2004.04.016
10.1162/jocn.1991.3.1.71
10.1109/TIP.2006.884929
10.1145/1553374.1553432
10.1016/j.patcog.2008.05.024
10.1109/ICCV.2007.4408855
10.1007/978-3-642-15567-3_35
10.1109/34.598228
10.1109/ICCV.2005.167
10.1016/j.patcog.2007.10.029
10.1109/TKDE.2009.126
10.1109/TIP.2006.884956
10.1109/CVPR.2005.216
10.1109/ICCV.2011.6126464
10.1016/j.imavis.2005.11.006
10.1016/j.imavis.2005.07.009
10.1109/TIFS.2009.2035976
10.1109/AFGR.2002.4527207
10.1007/978-3-540-24670-1_36
10.1109/TIP.2007.904421
10.1109/TPAMI.2007.250598
10.1016/S0262-8856(97)00070-X
10.1109/CVPR.2009.5206850
10.1109/34.879790
10.1016/S0167-8655(02)00134-4
10.1109/ICASSP.2007.366305
10.1016/j.patcog.2003.12.010
10.1109/AFGR.2008.4813349
10.1126/science.290.5500.2319
10.1109/TIFS.2007.916280
10.1007/3-540-44989-2_40
10.1016/j.patrec.2003.11.005
10.1007/978-3-642-15549-9_23
10.1109/CVPR.2008.4587719
10.1109/TPAMI.2002.1008382
10.1109/34.908974
10.1109/AFGR.2008.4813353
10.1109/TSMCB.2005.850151
10.1109/TPAMI.2005.55
10.1109/CVPR.2007.383054
10.1126/science.290.5500.2323
10.1109/TSMCB.2009.2032926
10.1007/s11263-006-8098-z
10.1016/s0169-7161(82)02042-2
10.1016/j.patcog.2006.03.013
10.1109/CVPR.2010.5539990
10.1016/j.patcog.2009.12.004
10.1109/TPAMI.2004.57
10.1109/TIP.2009.2035882
10.1109/TPAMI.2005.58
10.1109/ICCV.2005.147
10.1109/TIFS.2006.890313
10.1016/j.amc.2008.05.019
10.1109/TPAMI.2004.1261097
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TPAMI.2012.70
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 51
ExternalDocumentID 2825187991
22431525
27677732
10_1109_TPAMI_2012_70
6175025
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c470t-228f2acccc439416d3e359a4ee746bc709e54d369ff70034503c65136dfd057e3
IEDL.DBID RIE
ISICitedReferencesCount 286
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000311127700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 19:47:23 EDT 2025
Sun Nov 09 11:11:45 EST 2025
Sun Jun 29 16:21:22 EDT 2025
Mon Jul 21 05:52:38 EDT 2025
Wed Apr 02 07:18:35 EDT 2025
Tue Nov 18 22:37:42 EST 2025
Sat Nov 29 08:05:25 EST 2025
Tue Aug 26 16:41:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords single training sample per person
Computer vision
Discriminant analysis
Image processing
Face recognition
Image databank
Subspace method
manifold learning
subspace learning
Dimension reduction
Image analysis
Experimental result
Multidimensional analysis
Official document
Facies
Selection criterion
Feature extraction
Reduced order model
Pattern extraction
Electronic government
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-228f2acccc439416d3e359a4ee746bc709e54d369ff70034503c65136dfd057e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 22431525
PQID 1204655813
PQPubID 85458
PageCount 13
ParticipantIDs crossref_primary_10_1109_TPAMI_2012_70
crossref_citationtrail_10_1109_TPAMI_2012_70
pubmed_primary_22431525
pascalfrancis_primary_27677732
ieee_primary_6175025
proquest_miscellaneous_1315135450
proquest_journals_1204655813
proquest_miscellaneous_1266711620
PublicationCentury 2000
PublicationDate 2013-Jan.
2013-01-00
2013
2013-Jan
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2013
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
Martinez (ref30) 1998
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref22
  doi: 10.1109/TIP.2010.2060207
– ident: ref38
  doi: 10.1109/TNN.2005.849817
– ident: ref7
  doi: 10.1016/j.patrec.2004.03.012
– ident: ref59
  doi: 10.1016/j.neucom.2005.06.004
– ident: ref23
  doi: 10.1109/TNN.2007.901277
– ident: ref43
  doi: 10.1109/IJCB.2011.6117538
– ident: ref58
  doi: 10.1016/j.amc.2004.04.016
– ident: ref41
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref50
  doi: 10.1109/TIP.2006.884929
– ident: ref18
  doi: 10.1145/1553374.1553432
– ident: ref19
  doi: 10.1016/j.patcog.2008.05.024
– ident: ref3
  doi: 10.1109/ICCV.2007.4408855
– ident: ref35
  doi: 10.1007/978-3-642-15567-3_35
– ident: ref2
  doi: 10.1109/34.598228
– ident: ref14
  doi: 10.1109/ICCV.2005.167
– ident: ref16
  doi: 10.1016/j.patcog.2007.10.029
– ident: ref36
  doi: 10.1109/TKDE.2009.126
– ident: ref57
  doi: 10.1109/TIP.2006.884956
– ident: ref5
  doi: 10.1109/CVPR.2005.216
– ident: ref26
  doi: 10.1109/ICCV.2011.6126464
– ident: ref55
  doi: 10.1016/j.imavis.2005.11.006
– ident: ref13
  doi: 10.1016/j.imavis.2005.07.009
– ident: ref24
  doi: 10.1109/TIFS.2009.2035976
– ident: ref53
  doi: 10.1109/AFGR.2002.4527207
– ident: ref1
  doi: 10.1007/978-3-540-24670-1_36
– year: 1998
  ident: ref30
  article-title: The AR Face Database
– ident: ref61
  doi: 10.1109/TIP.2007.904421
– ident: ref51
  doi: 10.1109/TPAMI.2007.250598
– ident: ref32
  doi: 10.1016/S0262-8856(97)00070-X
– ident: ref44
  doi: 10.1109/CVPR.2009.5206850
– ident: ref31
  doi: 10.1109/34.879790
– ident: ref48
  doi: 10.1016/S0167-8655(02)00134-4
– ident: ref27
  doi: 10.1109/ICASSP.2007.366305
– ident: ref6
  doi: 10.1016/j.patcog.2003.12.010
– ident: ref21
  doi: 10.1109/AFGR.2008.4813349
– ident: ref40
  doi: 10.1126/science.290.5500.2319
– ident: ref9
  doi: 10.1109/TIFS.2007.916280
– ident: ref33
  doi: 10.1007/3-540-44989-2_40
– ident: ref12
  doi: 10.1016/j.patrec.2003.11.005
– ident: ref42
  doi: 10.1007/978-3-642-15549-9_23
– ident: ref45
  doi: 10.1109/CVPR.2008.4587719
– ident: ref28
  doi: 10.1109/TPAMI.2002.1008382
– ident: ref29
  doi: 10.1109/34.908974
– ident: ref54
  doi: 10.1109/AFGR.2008.4813353
– ident: ref11
  doi: 10.1109/TSMCB.2005.850151
– ident: ref15
  doi: 10.1109/TPAMI.2005.55
– ident: ref4
  doi: 10.1109/CVPR.2007.383054
– ident: ref34
  doi: 10.1126/science.290.5500.2323
– ident: ref25
  doi: 10.1109/TSMCB.2009.2032926
– ident: ref47
  doi: 10.1007/s11263-006-8098-z
– ident: ref17
  doi: 10.1016/s0169-7161(82)02042-2
– ident: ref39
  doi: 10.1016/j.patcog.2006.03.013
– ident: ref37
  doi: 10.1109/CVPR.2010.5539990
– ident: ref8
  doi: 10.1016/j.patcog.2009.12.004
– ident: ref46
  doi: 10.1109/TPAMI.2004.57
– ident: ref56
  doi: 10.1109/TIP.2009.2035882
– ident: ref20
  doi: 10.1109/TPAMI.2005.58
– ident: ref60
  doi: 10.1109/ICCV.2005.147
– ident: ref49
  doi: 10.1109/TIFS.2006.890313
– ident: ref10
  doi: 10.1016/j.amc.2008.05.019
– ident: ref52
  doi: 10.1109/TPAMI.2004.1261097
SSID ssj0014503
Score 2.5540404
Snippet Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Biometrics
Biometry - methods
Computer science; control theory; systems
Data processing. List processing. Character string processing
Discriminant Analysis
Educational institutions
Effectiveness
Exact sciences and technology
Face
Face - anatomy & histology
Face recognition
Feature extraction
Humans
Image Interpretation, Computer-Assisted - methods
Intelligence
Learning
Learning and adaptive systems
manifold learning
Manifolds
Memory organisation. Data processing
Pattern analysis
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Sample Size
Semantics
Signal Processing, Computer-Assisted
single training sample per person
Software
subspace learning
Subtraction Technique
Training
Title Discriminative Multimanifold Analysis for Face Recognition from a Single Training Sample per Person
URI https://ieeexplore.ieee.org/document/6175025
https://www.ncbi.nlm.nih.gov/pubmed/22431525
https://www.proquest.com/docview/1204655813
https://www.proquest.com/docview/1266711620
https://www.proquest.com/docview/1315135450
Volume 35
WOSCitedRecordID wos000311127700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeoEAfobBypaonFmI7sZMjKqzgAFqVrbS3yLEdCWmVIHaX38-M86BIpVJzipJRYmVmMmN75vsAvsd0XRk-5toJnKCgGWelpW40a6vKykrplmxC395m83k-3YCToRfGex-Kz_wpnYa9fNfYNS2VnWG0TTFGb8Km1rrt1Rp2DJI0sCBjBoMejtOIFzzNs9n0_OaaqrjEqSbmN4xakmh_XoWiwK1ClZFmiR-nalkt3k47Q_iZ7P7fwD_ATpdmsvPWLvZgw9f7sNtTOLDOo_fh_R94hAdgL-7pL0LVMfQXZKE7lwAyqmbhWI9fwjDPZRNjPfvVVx81NaM-FWbYHT5o4dmsY55gd4bgh9kDvnQakvuP8HtyOft5Ne5YGMY20fFqLERWCWPxoCZarpz0Ms1N4r1OFKo1zn2aOKlo8ZfQblAPVqVcKlc5TAa9_ARbdVP7L8Bkig_JlCpLYRKc95TaOVFxneU2S3XJIzjpFVLYDqKcmDIWRZiqxHkRVFmQKgsdR_BjEH9osTneEjwgnQxCnToiGL3S9nBfaIUGJkUER736i861lwUXMWHOZVxG8G24jU5JOy2m9s2aZBTaOJpi_A8ZtEEuMYFFmc-tab0MoLPQw78P_Cu8E4GVg1aCjmBr9bj2x7Btn1b3y8cResc8GwXveAbYegn5
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6sLbQ-1FbbmmrtFkqfPM3uJrvJo7Q9lOpx1Cv4Fja7GxCORLw7_35nNj-sUIXmKSRDsuSbyczuzswH8DWm68rwEddO4AQF1TgrLVWjWVtVVlZKt2QTejLJLi_z6RocDLUw3vuQfOYP6TTs5bvGrmip7Ai9bYo--hk8T5NE8LZaa9gzSNLAg4wxDNo4TiTuO2oezabH56eUxyUONXG_od-SRPzzwBkFdhXKjTQL_DxVy2vxeOAZHNB48_-G_gZed4EmO2414y2s-XoLNnsSB9bZ9BZs_NWRcBvsjyv6j1B-DP0HWajPpRYZVTN3rO9gwjDSZWNjPfvd5x81NaNKFWbYBT5o7tms455gF4YaELNrfOk0hPfv4M_45-z7yajjYRjZRMfLkRBZJYzFg8pouXLSyzQ3ifc6UQhsnPs0cVLR8i_1u0EcrEq5VK5yGA56-R7W66b2O8Bkig_JlCpLYRDCrNTOiYrrLLdZqksewUEPSGG7JuXElTEvwmQlzosAZUFQFjqO4Nsgft1253hMcJswGYQ6OCLYf4D2cF9opbWWIoK9Hv6iM-5FwUVMXecyLiP4MtxGs6S9FlP7ZkUyCrUcVTF-QgZ1kEsMYVHmQ6ta9wPoNPTjvwf-GV6ezM7PirPTya9deCUCRwetC-3B-vJm5T_BC3u7vFrc7AcbuQOIJwxY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+Multimanifold+Analysis+for+Face+Recognition+from+a+Single+Training+Sample+per+Person&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=JIWEN+LU&rft.au=TAN%2C+Yap-Peng&rft.au=GANG+WANG&rft.date=2013&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=35&rft.issue=1&rft.spage=39&rft.epage=51&rft_id=info:doi/10.1109%2FTPAMI.2012.70&rft.externalDBID=n%2Fa&rft.externalDocID=27677732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon