Multi-Channel Multi-Scale Convolution Attention Variational Autoencoder (MCA-VAE): An Interpretable Anomaly Detection Algorithm Based on Variational Autoencoder
With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular op...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 24; číslo 16; s. 5316 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
16.08.2024
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability. |
|---|---|
| AbstractList | With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability. With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability.With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability. |
| Author | Liu, Jingwen Yang, Yuchen Chen, Yanru Zhang, Yuanyuan Huang, Yuchen Chen, Liangyin Wu, Dizhi |
| AuthorAffiliation | 2 College of Computer Science, East China Normal University, Shanghai 200062, China; 10225102401@stu.ecnu.edu.cn 1 College of Computer Science, Sichuan University, Chengdu 610065, China; liujw@stu.scu.edu.cn (J.L.); yuchen_huang@stu.scu.edu.cn (Y.H.); wudizhi1234@163.com (D.W.); chenyanru@scu.edu.cn (Y.C.); chenliangyin@scu.edu.cn (L.C.) 3 Institude for Industrial Internet Research, Sichuan University, Chengdu 610065, China |
| AuthorAffiliation_xml | – name: 1 College of Computer Science, Sichuan University, Chengdu 610065, China; liujw@stu.scu.edu.cn (J.L.); yuchen_huang@stu.scu.edu.cn (Y.H.); wudizhi1234@163.com (D.W.); chenyanru@scu.edu.cn (Y.C.); chenliangyin@scu.edu.cn (L.C.) – name: 3 Institude for Industrial Internet Research, Sichuan University, Chengdu 610065, China – name: 2 College of Computer Science, East China Normal University, Shanghai 200062, China; 10225102401@stu.ecnu.edu.cn |
| Author_xml | – sequence: 1 givenname: Jingwen orcidid: 0009-0008-7763-5246 surname: Liu fullname: Liu, Jingwen – sequence: 2 givenname: Yuchen orcidid: 0000-0002-1537-4924 surname: Huang fullname: Huang, Yuchen – sequence: 3 givenname: Dizhi surname: Wu fullname: Wu, Dizhi – sequence: 4 givenname: Yuchen surname: Yang fullname: Yang, Yuchen – sequence: 5 givenname: Yanru orcidid: 0000-0002-9677-7142 surname: Chen fullname: Chen, Yanru – sequence: 6 givenname: Liangyin orcidid: 0000-0001-7301-5295 surname: Chen fullname: Chen, Liangyin – sequence: 7 givenname: Yuanyuan orcidid: 0000-0001-6265-7188 surname: Zhang fullname: Zhang, Yuanyuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39205010$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1u1DAUhSNURH9gwQugSGzaReh17PyYDQrTFkZqxQLo1nKcmxmPPPbUcSr1bXhUPJO2aotY-dg-9_PR9T1M9qyzmCTvCXyilMPpkDNSFpSUr5IDwnKW1XkOe0_0fnI4DCuAnFJav0n2Kc-hAAIHyZ-r0QSdzZbSWjTptPuppMF05uytM2PQzqZNCGh36lp6LbdKmrQZg0OrXIc-Pb6aNdl1c37yOW1sOrcB_cZjkG0kNdatpblLzzCgmnhm4bwOy3X6VQ7Ypf8Hv01e99IM-O5-PUp-X5z_mn3PLn98m8-ay0yxCkJGsMdeYkn7ru1p3rKesbKraMsRirIldQslk7yGlvc9ySkvClqUdQWKdkCrjh4l84nbObkSG6_X0t8JJ7XYHTi_ENIHrQwKBA4FbVl8pWNEFZwByF4ClkiIqlVkfZlYm7FdY6di67w0z6DPb6xeioW7FYTQImZkkXB8T_DuZsQhiLUeFBojLbpxEBQ4r3hZFlvrxxfWlRt97OLOVeekolUeXR-eRnrM8jAJ0XA6GZR3w-CxF0qH3X_EhNoIAmI7a-Jx1mLFyYuKB-i_3r97hdRm |
| CitedBy_id | crossref_primary_10_1177_09544070251331258 crossref_primary_10_1142_S021812662550433X |
| Cites_doi | 10.1145/3219819.3219845 10.1109/ICDM50108.2020.00093 10.1016/j.inffus.2022.10.008 10.1016/j.neucom.2020.10.084 10.1016/j.compind.2022.103692 10.3390/s23052844 10.1109/TII.2023.3347000 10.1109/JSEN.2022.3211874 10.1016/j.cose.2023.103094 10.1109/JIOT.2022.3144127 10.1145/3292500.3330672 10.1109/TCCN.2019.2911524 10.1016/j.psep.2022.08.035 10.3390/s22082886 10.14778/3514061.3514067 10.3390/s20133738 10.1007/s10618-018-0569-7 10.1109/SCISISIS55246.2022.10002131 10.1007/978-3-030-30490-4_56 10.1016/j.compind.2022.103614 10.1609/aaai.v35i5.16523 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24165316 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_e09053b42b4d41c59400afa0e6e11c8c PMC11359804 39205010 10_3390_s24165316 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for Central Universities grantid: YJ202420 – fundername: National Natural Science Foundation of China grantid: 62302324 – fundername: National Natural Science Foundation of China grantid: 62072319 – fundername: National Key Research and Development Program of China grantid: 2023YFB3308300 – fundername: National Key Research and Development Program of China grantid: 2023YFB3308800 – fundername: Sichuan Provincial Natural Science Foundation grantid: 24NSFSC1386 – fundername: Regional Innovation Cooperation Project grantid: 2023YFQ0022 – fundername: National Key Research and Development Program of China grantid: 2023YFB3308300; 2023YFB3308800 – fundername: National Natural Science Foundation of China grantid: 62302324; 62072319 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c470t-1efefae63fdbf32b4f446d73b9e056b18b064a980b9ff123955356870c3d037d3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305774200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:34:02 EST 2025 Tue Nov 04 02:05:33 EST 2025 Fri Sep 05 06:34:21 EDT 2025 Tue Oct 07 07:16:30 EDT 2025 Wed Feb 19 02:04:41 EST 2025 Tue Nov 18 21:41:06 EST 2025 Sat Nov 29 07:06:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | industrial control systems anomaly detection anomaly interpretation variational autoencoder |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c470t-1efefae63fdbf32b4f446d73b9e056b18b064a980b9ff123955356870c3d037d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-1537-4924 0000-0001-7301-5295 0000-0002-9677-7142 0000-0001-6265-7188 0009-0008-7763-5246 |
| OpenAccessLink | https://www.proquest.com/docview/3098217372?pq-origsite=%requestingapplication% |
| PMID | 39205010 |
| PQID | 3098217372 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e09053b42b4d41c59400afa0e6e11c8c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11359804 proquest_miscellaneous_3099796654 proquest_journals_3098217372 pubmed_primary_39205010 crossref_citationtrail_10_3390_s24165316 crossref_primary_10_3390_s24165316 |
| PublicationCentury | 2000 |
| PublicationDate | 20240816 |
| PublicationDateYYYYMMDD | 2024-08-16 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240816 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_13 ref_10 Truong (ref_1) 2022; 140 ref_19 Nizam (ref_17) 2022; 22 Wang (ref_20) 2018; 32 ref_15 Rajendran (ref_18) 2019; 5 Li (ref_21) 2023; 91 ref_25 ref_24 Corallo (ref_2) 2022; 137 Epiphaniou (ref_12) 2022; 9 ref_22 Zhang (ref_14) 2024; 20 Liang (ref_16) 2021; 423 Wang (ref_23) 2021; 34 Zhao (ref_3) 2022; 166 Tang (ref_11) 2023; 127 ref_9 ref_8 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_6 doi: 10.1145/3219819.3219845 – ident: ref_7 – ident: ref_24 doi: 10.1109/ICDM50108.2020.00093 – volume: 91 start-page: 93 year: 2023 ident: ref_21 article-title: Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.10.008 – volume: 423 start-page: 444 year: 2021 ident: ref_16 article-title: Robust unsupervised anomaly detection via multi-time scale DCGANs with forgetting mechanism for industrial multivariate time series publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.084 – volume: 140 start-page: 103692 year: 2022 ident: ref_1 article-title: Light-weight federated learning-based anomaly detection for time-series data in industrial control systems publication-title: Comput. Ind. doi: 10.1016/j.compind.2022.103692 – ident: ref_5 doi: 10.3390/s23052844 – volume: 20 start-page: 6457 year: 2024 ident: ref_14 article-title: Graph Structure Change-Based Anomaly Detection in Multivariate Time Series of Industrial Processes publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3347000 – volume: 22 start-page: 22836 year: 2022 ident: ref_17 article-title: Real-time deep anomaly detection framework for multivariate time-series data in industrial iot publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3211874 – volume: 127 start-page: 103094 year: 2023 ident: ref_11 article-title: GRU-based interpretable multivariate time series anomaly detection in industrial control system publication-title: Comput. Secur. doi: 10.1016/j.cose.2023.103094 – volume: 34 start-page: 5443 year: 2021 ident: ref_23 article-title: Posterior collapse and latent variable non-identifiability publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 13279 year: 2022 ident: ref_12 article-title: Super learner ensemble for anomaly detection and cyber-risk quantification in industrial control systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3144127 – ident: ref_8 doi: 10.1145/3292500.3330672 – volume: 5 start-page: 637 year: 2019 ident: ref_18 article-title: Unsupervised wireless spectrum anomaly detection with interpretable features publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2019.2911524 – volume: 166 start-page: 617 year: 2022 ident: ref_3 article-title: Anomaly detection of the blast furnace smelting process using an improved multivariate statistical process control model publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.08.035 – ident: ref_4 doi: 10.3390/s22082886 – ident: ref_15 doi: 10.14778/3514061.3514067 – ident: ref_10 doi: 10.3390/s20133738 – volume: 32 start-page: 1806 year: 2018 ident: ref_20 article-title: Exact variable-length anomaly detection algorithm for univariate and multivariate time series publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-018-0569-7 – ident: ref_13 – ident: ref_25 doi: 10.1109/SCISISIS55246.2022.10002131 – ident: ref_9 doi: 10.1007/978-3-030-30490-4_56 – volume: 137 start-page: 103614 year: 2022 ident: ref_2 article-title: Cybersecurity awareness in the context of the Industrial Internet of Things: A systematic literature review publication-title: Comput. Ind. doi: 10.1016/j.compind.2022.103614 – ident: ref_19 doi: 10.1609/aaai.v35i5.16523 – ident: ref_22 |
| SSID | ssj0023338 |
| Score | 2.4609938 |
| Snippet | With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5316 |
| SubjectTerms | Algorithms anomaly detection anomaly interpretation Engineers Factories industrial control systems Neural networks Sensors Time series Variables variational autoencoder |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqLzTBzKIQzlEtePYjntLl1YcoEICVr1FfoWutHXQbrZS_w0_lXGSDbuoiAvaU9aW4_V8zsyXHX-D0FtCraFaitR7LdKcx-cgr7OUuiyrfZ3zojv1Pv0oLy6Ky0v1eaPUV8wJ6-WB-4U79kQBTkyemdzl1PJYyFvXmnjhKbWFjU9fItWaTA1UiwHz6nWEGJD64yX4KQFoE1vepxPpvyuy_DNBcsPjnO-iR0OoiMt-io_RPR-eoIcbAoJP0c_u_GwajwgEP8f91RdYdo8nTbgZYIXLtu2zGvEUqPHw-g-Xq7aJMpbOL_DRp0mZTsuzdye4DPh3JqKBkcrQXOv5LX7v2y5vC8abf28Ws_bqGp-CE3T47wM_Q9_Oz75OPqRDzYXU5pK0KfVgIe0Fq52pGSx6DXzRSWaUh1DJ0MJADKNVQYyqa_B6inPGBWx6yxxh0rHnaCc0wb9E2EILfCiHoCMXWmoDtwACA9RXWWdpgo7WtqjsIEge62LMKyAm0WzVaLYEvRm7_uhVOO7qdBoNOnaIwtndFwCnaoBT9S84JehgDYdq2M3LihFVAHVjMkvQ67EZ9mH8c0UH36y6PkqqWMs5QS969IwzgRiUcCC-CSq2cLU11e2WMLvqtL4pjRKLJN_7Hz9uHz3IICaLr8SpOEA77WLlD9F9e9POlotX3Q76BY-9Ipg priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Channel Multi-Scale Convolution Attention Variational Autoencoder (MCA-VAE): An Interpretable Anomaly Detection Algorithm Based on Variational Autoencoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39205010 https://www.proquest.com/docview/3098217372 https://www.proquest.com/docview/3099796654 https://pubmed.ncbi.nlm.nih.gov/PMC11359804 https://doaj.org/article/e09053b42b4d41c59400afa0e6e11c8c |
| Volume | 24 |
| WOSCitedRecordID | wos001305774200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BywEO5Q2GEi2IQzlY9Xr9Wi7ICalAIlHEIwona19uK6V2mziVuPBb-KnMrjdOgwoXFMlSvKv1WDM7M994dgah1wGRgvA08bXmiR_FRg_GZegTFYalLqM4s6fep5_S8TibzdjEBdyWLq1yrROtola1NDHyQxqwDNxnmobvzi980zXKfF11LTRuol3TNtvIeTrbAC4K-KutJkQB2h8uwVolIHPJlg2ypfqv8y__TJO8YneO7v4vxffQnvM4cd6KyH10Q1cP0J0rdQgfol_2GK5vThpUeo7bf1-AexoP6urSSSfOm6ZNjsRTQNguiojzVVObaphKL_DBaJD703z45i3OK7xJaBSwUl7VZ3z-A7_XjU3_gvXmx0Bvc3KG-2BLFf77wo_Qt6Ph18EH37Vu8GWUBo1PNDCa64SWSpQ0FFEJsFOlVDANHpcgmQBXiLMsEKwswXiyOKZxArpDUhXQVNHHaKeqK_0UYQkj8CMx-C5RwlMu4BGAgwBBM6kk8dDBmpmFdHXNTXuNeQH4xvC96PjuoVfd1PO2mMd1k_pGIroJpv62vVEvjgu3nQsdMNBeIoI3UxGRsWkvz0se6EQTIjPpof21TBROKSyLjUB46GU3DNvZfKPhla5Xdg5LmWkJ7aEnrfh1lIArG8SAnz2UbQnmFqnbI9XpiS0ZToip1BhEz_5N13N0OwSnzcTMSbKPdprFSr9At-Rlc7pc9Ozmstesh3b7w_Hkc8_GMOA6-jmEe5OPo8n332yGNwc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwCqRyi2nFeRkIo3bZq1e0KibLaW3Acp11pm5Rstqj_hl_Ab2Scx24XFW49oJwSO47jfPN5Jh7PALylTCVMBr6ttfRt1zM86GWOzVLHyXTmemG9633YDwaDcDQSn1fgV7cXxrhVdpxYE3VaKPOPfINTEaL6zAPn0-l322SNMqurXQqNBhb7-vwHmmzTj3tb-H3fOc7O9mFv126zCtjKDWhlM419kNrnWZpk3EncDC2iNOCJ0KgMJCxMcJaWIqSJyDLkdeF53PMR1oqnlAcpx3avwXXk8cAYe8FoYeBxtPea6EWcC7oxxdnRR4z7S3NenRrgMn32T7fMC_Pczt3_bYTuwZ1WoyZRIwL3YUXnD-D2hTiLD-Fnvc3YNjspcj0hzdkXRKcmvSI_a6WPRFXVOH-SoSzH7V9SEs2qwkT7THVJ1g96kT2Mtt9_IFFOFg6bCbYU5cWJnJyTLV3V7m3Y3uQIx6c6PiGbqCuk5O8NP4KvVzJEj2E1L3L9FIjCEjyYh7qZ68tAJvgItPM8vEulilmw3oEnVm3cdpM-ZBKj_WZwFs9xZsGbedXTJljJZZU2DQLnFUx88fpCUR7FLV3Fmgpk58TFN0tdpjyBVC8zSbWvGVOhsmCtw2Dckt40XgDQgtfzYqQrswYlc13M6joiECbltQVPGrjPe4KqOvUooxaES4Kw1NXlknx8XIdEZ8xEoqTus3_36xXc3D086Mf9vcH-c7jloIJq1geYvwarVTnTL-CGOqvG0_JlLdgEvl21nPwGWl2NZw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDiF44PsjMMAgkMZDVDvOJxJCWbuKaltVCVaNp-A4zlapS0aaDu2_4e_gr-OcpNmKBm97QH1K7TqO-7u738XnO4A3lMmYCc81lRKuaTtaDzqpZbLEslKV2o5fnXqf7HqjkX9wEIzX4NfyLIwOq1zqxEpRJ7nU78i7nAY-0mfuWd20CYsY9wcfT76buoKU3mldltOoIbKjzn6g-zb_MOzjf_3WsgbbX3qfzKbCgCltj5YmUzgfoVyeJnHKrdhO0TtKPB4HColBzPwYLbYIfBoHaYo6PnAc7rgIcckTyr2E47jXYB0puW11YH083Bt_bd09jt5fncuI84B252grXUS8u2IBq0IBl7HbP4M0L1i9wZ3_eb3uwu2Ga5OwFo57sKay-3DrQgbGB_CzOoBs6jMWmZqR-uoz4laRXp6dNnJJwrKsw0LJRBTT5v0pCRdlrvOAJqogm3u90JyE2-_ekzAj56GcMY4UZvmxmJ2RviqrwDccb3aI61MeHZMtZBEJ-fvAD2H_SpboEXSyPFNPgEhswQ9zkLXZrvBEjLdAD9DBX8lEMgM2l0CKZJPRXRcWmUXo2WnMRS3mDHjddj2p05hc1mlLo7HtoDOPV1_kxWHUKLJI0QD1dmzjkyU2k06ARkCkgipXMSZ9acDGEo9Row7n0TkYDXjVNqMi07tTIlP5ouoTeIEuhm3A4xr67UyQxFOHMmqAvyIUK1NdbcmmR1WydMZ0jkpqP_33vF7CDRSPaHc42nkGNy1krnrjgLkb0CmLhXoO1-VpOZ0XLxopJ_DtqgXlN0Rfl7Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Channel+Multi-Scale+Convolution+Attention+Variational+Autoencoder+%28MCA-VAE%29%3A+An+Interpretable+Anomaly+Detection+Algorithm+Based+on+Variational+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jingwen&rft.au=Huang%2C+Yuchen&rft.au=Wu%2C+Dizhi&rft.au=Yang%2C+Yuchen&rft.date=2024-08-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=16&rft.spage=5316&rft_id=info:doi/10.3390%2Fs24165316&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |