Multi-Channel Multi-Scale Convolution Attention Variational Autoencoder (MCA-VAE): An Interpretable Anomaly Detection Algorithm Based on Variational Autoencoder

With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular op...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 24; číslo 16; s. 5316
Hlavní autori: Liu, Jingwen, Huang, Yuchen, Wu, Dizhi, Yang, Yuchen, Chen, Yanru, Chen, Liangyin, Zhang, Yuanyuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 16.08.2024
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability.
AbstractList With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability.
With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability.With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have high accuracy, and they need to be able to promptly discover and locate the specific equipment causing the anomaly to restore the regular operation of the abnormal equipment. However, the neural network models currently deployed in factories cannot effectively capture both temporal features within dimensions and relationship features between dimensions; some algorithms that consider both types of features lack interpretability. Therefore, we propose a high-precision, interpretable anomaly detection algorithm based on variational autoencoder (VAE). We use a multi-scale local weight-sharing convolutional neural network structure to fully extract the temporal features within each dimension of the multi-dimensional time series. Then, we model the features from various aspects through multiple attention heads, extracting the relationship features between dimensions. We map the attention output results to the latent space distribution of the VAE and propose an optimization method to improve the reconstruction performance of the VAE, detecting anomalies through reconstruction errors. Regarding anomaly interpretability, we utilize the VAE probability distribution characteristics, decompose the obtained joint probability density into conditional probabilities on each dimension, and calculate the anomaly score, which provides helpful value for technicians. Experimental results show that our algorithm performed best in terms of F1 score and AUC value. The AUC value for anomaly detection is 0.982, and the F1 score is 0.905, which is 4% higher than the best-performing baseline algorithm, Transformer with a Discriminator for Anomaly Detection (TDAD). It also provides accurate anomaly interpretation capability.
Author Liu, Jingwen
Yang, Yuchen
Chen, Yanru
Zhang, Yuanyuan
Huang, Yuchen
Chen, Liangyin
Wu, Dizhi
AuthorAffiliation 2 College of Computer Science, East China Normal University, Shanghai 200062, China; 10225102401@stu.ecnu.edu.cn
1 College of Computer Science, Sichuan University, Chengdu 610065, China; liujw@stu.scu.edu.cn (J.L.); yuchen_huang@stu.scu.edu.cn (Y.H.); wudizhi1234@163.com (D.W.); chenyanru@scu.edu.cn (Y.C.); chenliangyin@scu.edu.cn (L.C.)
3 Institude for Industrial Internet Research, Sichuan University, Chengdu 610065, China
AuthorAffiliation_xml – name: 1 College of Computer Science, Sichuan University, Chengdu 610065, China; liujw@stu.scu.edu.cn (J.L.); yuchen_huang@stu.scu.edu.cn (Y.H.); wudizhi1234@163.com (D.W.); chenyanru@scu.edu.cn (Y.C.); chenliangyin@scu.edu.cn (L.C.)
– name: 3 Institude for Industrial Internet Research, Sichuan University, Chengdu 610065, China
– name: 2 College of Computer Science, East China Normal University, Shanghai 200062, China; 10225102401@stu.ecnu.edu.cn
Author_xml – sequence: 1
  givenname: Jingwen
  orcidid: 0009-0008-7763-5246
  surname: Liu
  fullname: Liu, Jingwen
– sequence: 2
  givenname: Yuchen
  orcidid: 0000-0002-1537-4924
  surname: Huang
  fullname: Huang, Yuchen
– sequence: 3
  givenname: Dizhi
  surname: Wu
  fullname: Wu, Dizhi
– sequence: 4
  givenname: Yuchen
  surname: Yang
  fullname: Yang, Yuchen
– sequence: 5
  givenname: Yanru
  orcidid: 0000-0002-9677-7142
  surname: Chen
  fullname: Chen, Yanru
– sequence: 6
  givenname: Liangyin
  orcidid: 0000-0001-7301-5295
  surname: Chen
  fullname: Chen, Liangyin
– sequence: 7
  givenname: Yuanyuan
  orcidid: 0000-0001-6265-7188
  surname: Zhang
  fullname: Zhang, Yuanyuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39205010$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAUhSNURH9gwQugSGzaReh17PyYDQrTFkZqxQLo1nKcmxmPPPbUcSr1bXhUPJO2aotY-dg-9_PR9T1M9qyzmCTvCXyilMPpkDNSFpSUr5IDwnKW1XkOe0_0fnI4DCuAnFJav0n2Kc-hAAIHyZ-r0QSdzZbSWjTptPuppMF05uytM2PQzqZNCGh36lp6LbdKmrQZg0OrXIc-Pb6aNdl1c37yOW1sOrcB_cZjkG0kNdatpblLzzCgmnhm4bwOy3X6VQ7Ypf8Hv01e99IM-O5-PUp-X5z_mn3PLn98m8-ay0yxCkJGsMdeYkn7ru1p3rKesbKraMsRirIldQslk7yGlvc9ySkvClqUdQWKdkCrjh4l84nbObkSG6_X0t8JJ7XYHTi_ENIHrQwKBA4FbVl8pWNEFZwByF4ClkiIqlVkfZlYm7FdY6di67w0z6DPb6xeioW7FYTQImZkkXB8T_DuZsQhiLUeFBojLbpxEBQ4r3hZFlvrxxfWlRt97OLOVeekolUeXR-eRnrM8jAJ0XA6GZR3w-CxF0qH3X_EhNoIAmI7a-Jx1mLFyYuKB-i_3r97hdRm
CitedBy_id crossref_primary_10_1177_09544070251331258
crossref_primary_10_1142_S021812662550433X
Cites_doi 10.1145/3219819.3219845
10.1109/ICDM50108.2020.00093
10.1016/j.inffus.2022.10.008
10.1016/j.neucom.2020.10.084
10.1016/j.compind.2022.103692
10.3390/s23052844
10.1109/TII.2023.3347000
10.1109/JSEN.2022.3211874
10.1016/j.cose.2023.103094
10.1109/JIOT.2022.3144127
10.1145/3292500.3330672
10.1109/TCCN.2019.2911524
10.1016/j.psep.2022.08.035
10.3390/s22082886
10.14778/3514061.3514067
10.3390/s20133738
10.1007/s10618-018-0569-7
10.1109/SCISISIS55246.2022.10002131
10.1007/978-3-030-30490-4_56
10.1016/j.compind.2022.103614
10.1609/aaai.v35i5.16523
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24165316
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e09053b42b4d41c59400afa0e6e11c8c
PMC11359804
39205010
10_3390_s24165316
Genre Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for Central Universities
  grantid: YJ202420
– fundername: National Natural Science Foundation of China
  grantid: 62302324
– fundername: National Natural Science Foundation of China
  grantid: 62072319
– fundername: National Key Research and Development Program of China
  grantid: 2023YFB3308300
– fundername: National Key Research and Development Program of China
  grantid: 2023YFB3308800
– fundername: Sichuan Provincial Natural Science Foundation
  grantid: 24NSFSC1386
– fundername: Regional Innovation Cooperation Project
  grantid: 2023YFQ0022
– fundername: National Key Research and Development Program of China
  grantid: 2023YFB3308300; 2023YFB3308800
– fundername: National Natural Science Foundation of China
  grantid: 62302324; 62072319
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c470t-1efefae63fdbf32b4f446d73b9e056b18b064a980b9ff123955356870c3d037d3
IEDL.DBID 7X7
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305774200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:34:02 EST 2025
Tue Nov 04 02:05:33 EST 2025
Fri Sep 05 06:34:21 EDT 2025
Tue Oct 07 07:16:30 EDT 2025
Wed Feb 19 02:04:41 EST 2025
Tue Nov 18 21:41:06 EST 2025
Sat Nov 29 07:06:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords industrial control systems
anomaly detection
anomaly interpretation
variational autoencoder
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-1efefae63fdbf32b4f446d73b9e056b18b064a980b9ff123955356870c3d037d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-1537-4924
0000-0001-7301-5295
0000-0002-9677-7142
0000-0001-6265-7188
0009-0008-7763-5246
OpenAccessLink https://www.proquest.com/docview/3098217372?pq-origsite=%requestingapplication%
PMID 39205010
PQID 3098217372
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e09053b42b4d41c59400afa0e6e11c8c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11359804
proquest_miscellaneous_3099796654
proquest_journals_3098217372
pubmed_primary_39205010
crossref_citationtrail_10_3390_s24165316
crossref_primary_10_3390_s24165316
PublicationCentury 2000
PublicationDate 20240816
PublicationDateYYYYMMDD 2024-08-16
PublicationDate_xml – month: 8
  year: 2024
  text: 20240816
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_13
ref_10
Truong (ref_1) 2022; 140
ref_19
Nizam (ref_17) 2022; 22
Wang (ref_20) 2018; 32
ref_15
Rajendran (ref_18) 2019; 5
Li (ref_21) 2023; 91
ref_25
ref_24
Corallo (ref_2) 2022; 137
Epiphaniou (ref_12) 2022; 9
ref_22
Zhang (ref_14) 2024; 20
Liang (ref_16) 2021; 423
Wang (ref_23) 2021; 34
Zhao (ref_3) 2022; 166
Tang (ref_11) 2023; 127
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_6
  doi: 10.1145/3219819.3219845
– ident: ref_7
– ident: ref_24
  doi: 10.1109/ICDM50108.2020.00093
– volume: 91
  start-page: 93
  year: 2023
  ident: ref_21
  article-title: Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.10.008
– volume: 423
  start-page: 444
  year: 2021
  ident: ref_16
  article-title: Robust unsupervised anomaly detection via multi-time scale DCGANs with forgetting mechanism for industrial multivariate time series
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.084
– volume: 140
  start-page: 103692
  year: 2022
  ident: ref_1
  article-title: Light-weight federated learning-based anomaly detection for time-series data in industrial control systems
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2022.103692
– ident: ref_5
  doi: 10.3390/s23052844
– volume: 20
  start-page: 6457
  year: 2024
  ident: ref_14
  article-title: Graph Structure Change-Based Anomaly Detection in Multivariate Time Series of Industrial Processes
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3347000
– volume: 22
  start-page: 22836
  year: 2022
  ident: ref_17
  article-title: Real-time deep anomaly detection framework for multivariate time-series data in industrial iot
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3211874
– volume: 127
  start-page: 103094
  year: 2023
  ident: ref_11
  article-title: GRU-based interpretable multivariate time series anomaly detection in industrial control system
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2023.103094
– volume: 34
  start-page: 5443
  year: 2021
  ident: ref_23
  article-title: Posterior collapse and latent variable non-identifiability
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 13279
  year: 2022
  ident: ref_12
  article-title: Super learner ensemble for anomaly detection and cyber-risk quantification in industrial control systems
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3144127
– ident: ref_8
  doi: 10.1145/3292500.3330672
– volume: 5
  start-page: 637
  year: 2019
  ident: ref_18
  article-title: Unsupervised wireless spectrum anomaly detection with interpretable features
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2019.2911524
– volume: 166
  start-page: 617
  year: 2022
  ident: ref_3
  article-title: Anomaly detection of the blast furnace smelting process using an improved multivariate statistical process control model
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.08.035
– ident: ref_4
  doi: 10.3390/s22082886
– ident: ref_15
  doi: 10.14778/3514061.3514067
– ident: ref_10
  doi: 10.3390/s20133738
– volume: 32
  start-page: 1806
  year: 2018
  ident: ref_20
  article-title: Exact variable-length anomaly detection algorithm for univariate and multivariate time series
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-018-0569-7
– ident: ref_13
– ident: ref_25
  doi: 10.1109/SCISISIS55246.2022.10002131
– ident: ref_9
  doi: 10.1007/978-3-030-30490-4_56
– volume: 137
  start-page: 103614
  year: 2022
  ident: ref_2
  article-title: Cybersecurity awareness in the context of the Industrial Internet of Things: A systematic literature review
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2022.103614
– ident: ref_19
  doi: 10.1609/aaai.v35i5.16523
– ident: ref_22
SSID ssj0023338
Score 2.4609938
Snippet With the rapid development of industry, the risks factories face are increasing. Therefore, the anomaly detection algorithms deployed in factories need to have...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5316
SubjectTerms Algorithms
anomaly detection
anomaly interpretation
Engineers
Factories
industrial control systems
Neural networks
Sensors
Time series
Variables
variational autoencoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqLzTBzKIQzlEtePYjntLl1YcoEICVr1FfoWutHXQbrZS_w0_lXGSDbuoiAvaU9aW4_V8zsyXHX-D0FtCraFaitR7LdKcx-cgr7OUuiyrfZ3zojv1Pv0oLy6Ky0v1eaPUV8wJ6-WB-4U79kQBTkyemdzl1PJYyFvXmnjhKbWFjU9fItWaTA1UiwHz6nWEGJD64yX4KQFoE1vepxPpvyuy_DNBcsPjnO-iR0OoiMt-io_RPR-eoIcbAoJP0c_u_GwajwgEP8f91RdYdo8nTbgZYIXLtu2zGvEUqPHw-g-Xq7aJMpbOL_DRp0mZTsuzdye4DPh3JqKBkcrQXOv5LX7v2y5vC8abf28Ws_bqGp-CE3T47wM_Q9_Oz75OPqRDzYXU5pK0KfVgIe0Fq52pGSx6DXzRSWaUh1DJ0MJADKNVQYyqa_B6inPGBWx6yxxh0rHnaCc0wb9E2EILfCiHoCMXWmoDtwACA9RXWWdpgo7WtqjsIEge62LMKyAm0WzVaLYEvRm7_uhVOO7qdBoNOnaIwtndFwCnaoBT9S84JehgDYdq2M3LihFVAHVjMkvQ67EZ9mH8c0UH36y6PkqqWMs5QS969IwzgRiUcCC-CSq2cLU11e2WMLvqtL4pjRKLJN_7Hz9uHz3IICaLr8SpOEA77WLlD9F9e9POlotX3Q76BY-9Ipg
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Channel Multi-Scale Convolution Attention Variational Autoencoder (MCA-VAE): An Interpretable Anomaly Detection Algorithm Based on Variational Autoencoder
URI https://www.ncbi.nlm.nih.gov/pubmed/39205010
https://www.proquest.com/docview/3098217372
https://www.proquest.com/docview/3099796654
https://pubmed.ncbi.nlm.nih.gov/PMC11359804
https://doaj.org/article/e09053b42b4d41c59400afa0e6e11c8c
Volume 24
WOSCitedRecordID wos001305774200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BywEO5Q2GEi2IQzlY9Xr9Wi7ICalAIlHEIwona19uK6V2mziVuPBb-KnMrjdOgwoXFMlSvKv1WDM7M994dgah1wGRgvA08bXmiR_FRg_GZegTFYalLqM4s6fep5_S8TibzdjEBdyWLq1yrROtola1NDHyQxqwDNxnmobvzi980zXKfF11LTRuol3TNtvIeTrbAC4K-KutJkQB2h8uwVolIHPJlg2ypfqv8y__TJO8YneO7v4vxffQnvM4cd6KyH10Q1cP0J0rdQgfol_2GK5vThpUeo7bf1-AexoP6urSSSfOm6ZNjsRTQNguiojzVVObaphKL_DBaJD703z45i3OK7xJaBSwUl7VZ3z-A7_XjU3_gvXmx0Bvc3KG-2BLFf77wo_Qt6Ph18EH37Vu8GWUBo1PNDCa64SWSpQ0FFEJsFOlVDANHpcgmQBXiLMsEKwswXiyOKZxArpDUhXQVNHHaKeqK_0UYQkj8CMx-C5RwlMu4BGAgwBBM6kk8dDBmpmFdHXNTXuNeQH4xvC96PjuoVfd1PO2mMd1k_pGIroJpv62vVEvjgu3nQsdMNBeIoI3UxGRsWkvz0se6EQTIjPpof21TBROKSyLjUB46GU3DNvZfKPhla5Xdg5LmWkJ7aEnrfh1lIArG8SAnz2UbQnmFqnbI9XpiS0ZToip1BhEz_5N13N0OwSnzcTMSbKPdprFSr9At-Rlc7pc9Ozmstesh3b7w_Hkc8_GMOA6-jmEe5OPo8n332yGNwc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwCqRyi2nFeRkIo3bZq1e0KibLaW3Acp11pm5Rstqj_hl_Ab2Scx24XFW49oJwSO47jfPN5Jh7PALylTCVMBr6ttfRt1zM86GWOzVLHyXTmemG9633YDwaDcDQSn1fgV7cXxrhVdpxYE3VaKPOPfINTEaL6zAPn0-l322SNMqurXQqNBhb7-vwHmmzTj3tb-H3fOc7O9mFv126zCtjKDWhlM419kNrnWZpk3EncDC2iNOCJ0KgMJCxMcJaWIqSJyDLkdeF53PMR1oqnlAcpx3avwXXk8cAYe8FoYeBxtPea6EWcC7oxxdnRR4z7S3NenRrgMn32T7fMC_Pczt3_bYTuwZ1WoyZRIwL3YUXnD-D2hTiLD-Fnvc3YNjspcj0hzdkXRKcmvSI_a6WPRFXVOH-SoSzH7V9SEs2qwkT7THVJ1g96kT2Mtt9_IFFOFg6bCbYU5cWJnJyTLV3V7m3Y3uQIx6c6PiGbqCuk5O8NP4KvVzJEj2E1L3L9FIjCEjyYh7qZ68tAJvgItPM8vEulilmw3oEnVm3cdpM-ZBKj_WZwFs9xZsGbedXTJljJZZU2DQLnFUx88fpCUR7FLV3Fmgpk58TFN0tdpjyBVC8zSbWvGVOhsmCtw2Dckt40XgDQgtfzYqQrswYlc13M6joiECbltQVPGrjPe4KqOvUooxaES4Kw1NXlknx8XIdEZ8xEoqTus3_36xXc3D086Mf9vcH-c7jloIJq1geYvwarVTnTL-CGOqvG0_JlLdgEvl21nPwGWl2NZw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDiF44PsjMMAgkMZDVDvOJxJCWbuKaltVCVaNp-A4zlapS0aaDu2_4e_gr-OcpNmKBm97QH1K7TqO-7u738XnO4A3lMmYCc81lRKuaTtaDzqpZbLEslKV2o5fnXqf7HqjkX9wEIzX4NfyLIwOq1zqxEpRJ7nU78i7nAY-0mfuWd20CYsY9wcfT76buoKU3mldltOoIbKjzn6g-zb_MOzjf_3WsgbbX3qfzKbCgCltj5YmUzgfoVyeJnHKrdhO0TtKPB4HColBzPwYLbYIfBoHaYo6PnAc7rgIcckTyr2E47jXYB0puW11YH083Bt_bd09jt5fncuI84B252grXUS8u2IBq0IBl7HbP4M0L1i9wZ3_eb3uwu2Ga5OwFo57sKay-3DrQgbGB_CzOoBs6jMWmZqR-uoz4laRXp6dNnJJwrKsw0LJRBTT5v0pCRdlrvOAJqogm3u90JyE2-_ekzAj56GcMY4UZvmxmJ2RviqrwDccb3aI61MeHZMtZBEJ-fvAD2H_SpboEXSyPFNPgEhswQ9zkLXZrvBEjLdAD9DBX8lEMgM2l0CKZJPRXRcWmUXo2WnMRS3mDHjddj2p05hc1mlLo7HtoDOPV1_kxWHUKLJI0QD1dmzjkyU2k06ARkCkgipXMSZ9acDGEo9Row7n0TkYDXjVNqMi07tTIlP5ouoTeIEuhm3A4xr67UyQxFOHMmqAvyIUK1NdbcmmR1WydMZ0jkpqP_33vF7CDRSPaHc42nkGNy1krnrjgLkb0CmLhXoO1-VpOZ0XLxopJ_DtqgXlN0Rfl7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Channel+Multi-Scale+Convolution+Attention+Variational+Autoencoder+%28MCA-VAE%29%3A+An+Interpretable+Anomaly+Detection+Algorithm+Based+on+Variational+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jingwen&rft.au=Huang%2C+Yuchen&rft.au=Wu%2C+Dizhi&rft.au=Yang%2C+Yuchen&rft.date=2024-08-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=16&rft.spage=5316&rft_id=info:doi/10.3390%2Fs24165316&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon