Medical image classification based on multi-scale non-negative sparse coding

•We propose a multi-scale non-negative sparse coding model to construct visual dictionary thus to overcome the defects of BoVW-based algorithms.•We utilize multi-scale decomposition method to decompose images into multiple scale layers and extract more representative image features.•We introduce fis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Artificial intelligence in medicine Ročník 83; s. 44 - 51
Hlavní autori: Zhang, Ruijie, Shen, Jian, Wei, Fushan, Li, Xiong, Sangaiah, Arun Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.11.2017
Predmet:
ISSN:0933-3657, 1873-2860, 1873-2860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •We propose a multi-scale non-negative sparse coding model to construct visual dictionary thus to overcome the defects of BoVW-based algorithms.•We utilize multi-scale decomposition method to decompose images into multiple scale layers and extract more representative image features.•We introduce fisher discriminative analysis algorithm to non-negative sparse coding model thus to exploit more contextual spatial information.•Our model performs superior to other related algorithms in terms of efficiency and classification accuracy. With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance.
AbstractList With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance.With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance.
•We propose a multi-scale non-negative sparse coding model to construct visual dictionary thus to overcome the defects of BoVW-based algorithms.•We utilize multi-scale decomposition method to decompose images into multiple scale layers and extract more representative image features.•We introduce fisher discriminative analysis algorithm to non-negative sparse coding model thus to exploit more contextual spatial information.•Our model performs superior to other related algorithms in terms of efficiency and classification accuracy. With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance.
Highlights • We propose a multi-scale non-negative sparse coding model to construct visual dictionary thus to overcome the defects of BoVW-based algorithms. • We utilize multi-scale decomposition method to decompose images into multiple scale layers and extract more representative image features. • We introduce fisher discriminative analysis algorithm to non-negative sparse coding model thus to exploit more contextual spatial information. • Our model performs superior to other related algorithms in terms of efficiency and classification accuracy.
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance.
Author Wei, Fushan
Shen, Jian
Zhang, Ruijie
Li, Xiong
Sangaiah, Arun Kumar
Author_xml – sequence: 1
  givenname: Ruijie
  surname: Zhang
  fullname: Zhang, Ruijie
  email: rjz_wonder@163.com
  organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450002, China
– sequence: 2
  givenname: Jian
  surname: Shen
  fullname: Shen, Jian
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Fushan
  surname: Wei
  fullname: Wei, Fushan
  email: weifs831020@163.com
  organization: State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450002, China
– sequence: 4
  givenname: Xiong
  surname: Li
  fullname: Li, Xiong
  email: lixiongzhq@163.com
  organization: School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
– sequence: 5
  givenname: Arun Kumar
  surname: Sangaiah
  fullname: Sangaiah, Arun Kumar
  email: arunkumarsangaiah@gmail.com
  organization: School of Computer Science and Engineering, VIT University, Vellore, 632014, Tamilnadu, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28559133$$D View this record in MEDLINE/PubMed
BookMark eNqVkkFv1DAQhS1URLeFf4BQjlwSxnbsxAghoQpapEUcgPPIccYrL9lksZNK_fc4bHtBQhUnW9Z7zzPfzAU7G6eRGHvJoeLA9Zt9ZeN8oL4SwJsKVAWgn7ANbxtZilbDGduAkbKUWjXn7CKlPQA0NdfP2LlolTJcyg3bfqE-ODsU4WB3VLjBphR8fpnDNBadTdQX-XJYhjmUKQupyHWUI-2y4paKdLQxZd_Uh3H3nD31dkj04v68ZD8-ffx-dVNuv15_vvqwLV3dwFxyR95rRZ3XuvFd65ywnZDGW62UM9ZQ6xstOVDnOmu4r5Vx5Mi2vTfKg7xkr0-5xzj9WijNeAjJ0TDYkaYlITdQC6lEK7P01b106TIsPMbcaLzDBwJZ8PYkcHFKKZJHF-Y_3c_RhgE54Iob93jCjStuBIUZdzbXf5kf8h-xvT_ZKEO6DRQxuUCjy6OI5Gbsp_C_AW4I4zrHn3RHaT8tccwDQI5JIOC3dRHWPeBaggZhcsC7fwc8_v9vycfGFQ
CitedBy_id crossref_primary_10_1007_s40846_020_00532_9
crossref_primary_10_1016_j_compbiomed_2019_103516
crossref_primary_10_1016_j_suscom_2018_05_010
crossref_primary_10_1007_s10586_017_1668_8
crossref_primary_10_1007_s10916_017_0875_4
crossref_primary_10_1038_s41598_024_67145_z
crossref_primary_10_1007_s10916_017_0851_z
crossref_primary_10_1007_s10916_017_0853_x
crossref_primary_10_1016_j_comcom_2019_10_007
crossref_primary_10_1007_s12652_018_0988_8
crossref_primary_10_1007_s11042_017_5406_2
crossref_primary_10_1016_j_ejmp_2021_05_026
crossref_primary_10_1007_s10916_018_0910_0
crossref_primary_10_3390_electronics10050562
crossref_primary_10_3390_diagnostics12123133
crossref_primary_10_1007_s00521_019_04385_5
crossref_primary_10_1007_s12652_017_0627_9
crossref_primary_10_1109_TIP_2024_3482189
crossref_primary_10_1007_s11548_020_02190_3
crossref_primary_10_1016_j_neucom_2025_130291
crossref_primary_10_1016_j_media_2020_101918
crossref_primary_10_1007_s12243_019_00740_8
crossref_primary_10_1016_j_compeleceng_2019_04_012
crossref_primary_10_1007_s10916_017_0880_7
crossref_primary_10_1155_2020_6636321
crossref_primary_10_1007_s12652_018_0692_8
crossref_primary_10_1007_s40747_022_00726_5
crossref_primary_10_32604_cmc_2022_028560
crossref_primary_10_1007_s10489_019_01460_1
crossref_primary_10_1007_s10916_017_0846_9
crossref_primary_10_1016_j_asoc_2020_106114
crossref_primary_10_1111_neup_12880
crossref_primary_10_1007_s10916_017_0843_z
crossref_primary_10_1007_s10916_017_0845_x
crossref_primary_10_1109_TFUZZ_2024_3410929
crossref_primary_10_1109_TCBB_2022_3143897
crossref_primary_10_1016_j_artmed_2019_101709
crossref_primary_10_1016_j_eswa_2020_113500
crossref_primary_10_32604_cmc_2022_030963
crossref_primary_10_1007_s10278_022_00715_7
crossref_primary_10_1007_s10916_018_0912_y
crossref_primary_10_1016_j_future_2017_11_002
crossref_primary_10_1007_s10916_018_0915_8
crossref_primary_10_1016_j_compag_2018_02_025
crossref_primary_10_1016_j_artmed_2020_101876
crossref_primary_10_1155_2021_5522452
crossref_primary_10_1007_s10916_017_0819_z
crossref_primary_10_1007_s10916_017_0855_8
crossref_primary_10_1007_s12517_022_09536_y
crossref_primary_10_1007_s00500_018_3491_4
crossref_primary_10_1109_JIOT_2018_2871630
crossref_primary_10_1002_cpe_5130
crossref_primary_10_1007_s11042_021_11342_9
crossref_primary_10_1007_s11517_020_02281_y
crossref_primary_10_1007_s11227_017_2209_1
crossref_primary_10_1007_s12652_018_0725_3
crossref_primary_10_1007_s10916_017_0887_0
crossref_primary_10_1007_s10489_021_03140_5
crossref_primary_10_1007_s10489_021_02781_w
crossref_primary_10_1109_ACCESS_2018_2812835
crossref_primary_10_1109_TFUZZ_2024_3419140
crossref_primary_10_3233_JIFS_212171
crossref_primary_10_1007_s10044_020_00909_1
Cites_doi 10.1109/TIFS.2016.2596138
10.1109/TIP.2011.2180916
10.1109/TPDS.2015.2506573
10.1016/j.compbiomed.2016.03.010
10.1016/j.protcy.2013.12.227
10.1109/TIP.2015.2499698
10.1109/TIFS.2014.2381872
10.1007/s11042-015-2626-1
10.1016/j.neucom.2015.06.074
10.1111/jmi.12421
10.1016/j.neucom.2015.07.136
10.1016/j.neucom.2015.11.008
10.1109/TNB.2017.2661756
10.1109/TIFS.2016.2590944
10.1016/j.eswa.2016.12.012
10.3233/THC-161194
10.1109/TMI.2015.2493530
10.3233/IFS-141378
10.1016/j.ins.2016.06.026
10.4156/jdcta.vol6.issue1.48
10.1109/CC.2016.7559082
10.1023/B:VISI.0000029664.99615.94
10.1016/j.neucom.2013.07.027
10.1016/j.neunet.2015.03.013
10.1109/TBC.2016.2580920
10.1016/j.media.2011.05.006
10.3390/ijms17122118
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.artmed.2017.05.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 51
ExternalDocumentID 28559133
10_1016_j_artmed_2017_05_006
S0933365716306029
1_s2_0_S0933365716306029
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c470t-1ceff65ebf667fb8cc2ab239fa655c9a9e8f76310ebcba91f459cecea8df95f03
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418314700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0933-3657
1873-2860
IngestDate Thu Oct 02 11:38:17 EDT 2025
Thu Apr 03 07:10:33 EDT 2025
Sat Nov 29 01:37:20 EST 2025
Tue Nov 18 21:02:40 EST 2025
Fri Feb 23 02:25:17 EST 2024
Sun Feb 23 10:19:33 EST 2025
Tue Oct 14 19:30:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords The semantic gap
Multi-scale decomposition
Non-negative sparse coding
Fisher discriminative analysis
Medical image classification
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-1ceff65ebf667fb8cc2ab239fa655c9a9e8f76310ebcba91f459cecea8df95f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28559133
PQID 1904235283
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1904235283
pubmed_primary_28559133
crossref_citationtrail_10_1016_j_artmed_2017_05_006
crossref_primary_10_1016_j_artmed_2017_05_006
elsevier_sciencedirect_doi_10_1016_j_artmed_2017_05_006
elsevier_clinicalkeyesjournals_1_s2_0_S0933365716306029
elsevier_clinicalkey_doi_10_1016_j_artmed_2017_05_006
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fu, Sun, Ji, Xie (bib0080) 2016
Li, Liu, Liu, Guo (bib0120) 2016; 184
Ji, Jing, Wang, Su (bib0075) 2012; 6
Zhang, Song, Cai (bib0090) 2016; 177
Zhuang, Gao, Liu, Yu (bib0135) 2011; 22
Lowe (bib0175) 2004; 60
Cao, Cao (bib0100) 2016; 24
Fu, Ren, Shu, Sun, Huang (bib0155) 2016; 27
Zheng, Jeon, Xu, Jonathan Wu, Zhang (bib0160) 2015; 28
Liu (bib0095) 2012
Liu, Chen, Zhu, Hou (bib0125) 2016; 75
Fu, Ren, Shu, Sun, Huang (bib0210) 2016; 27
Liu, Zhang, Yang (bib0105) 2016; 23
Yang, Zhu (bib0040) 2012
Wei, Tang, Zou (bib0010) 2017; 384
Marée, Denis, Wehenkel, Geurts (bib0070) 2010
Fu, Wu, Guan, Sun, Ren (bib0200) 2016; 11
Johnson, Wichem (bib0165) 1982
Yuan, Xia, Sun (bib0220) 2017; 18
Gu, Victor (bib0205) 2016
Shang (bib0150) 2016
Wei, Xing, Tang, Zou (bib0005) 2017
Hafner, Liedlgruber, Uhl (bib0030) 2012; 16
Zhang, Wei, Li (bib0085) 2014; 124
Shi, Wan, Wu (bib0115) 2017; 72
Gu Bin, Victor Sheng, Shuo Li (bib0185) 2015
Tang, Zha, Tao, Chua (bib0045) 2012; 21
Wu (bib0195) 2012; 21
Qu, Keeney, Robitzsch, Zaman, Wang (bib0215) 2016; 13
Su, Zhang, Pham, Davey, Bischof, Vallotton, Sun (bib0015) 2016; 264
Li J (bib0190) 2010
Vu, Mousavi, Monga, Rao, Rao (bib0050) 2016; 35
Pan, Lei, Zhang, Sun, Kwong (bib0060) 2016; 62
Vardan, Michael (bib0140) 2016; 25
Li, Li, Yang, Sun (bib0145) 2015; 10
Yuan L, Liu W, Li Y., Non-negative dictionary based sparse representation classification for ear recognition with occlusion[J]. 2016, 171: 540–550.
Wei, Zou (bib0020) 2016; 17
Lee, Battle, Raina (bib0170) 2007; 80
Wang, Yang, Yu, Lv, Huang, Gong (bib0130) 2010
Xia, Wang, Zhang, Qin, Sun, Ren (bib0055) 2016; 11
Liu, Wu, Zhang, Wang, Chou (bib0025) 2017
Liu, Wang, Huang, Deng, Zeng, Chen (bib0065) 2016; 72
Gu, Sheng, Wang, Ho, Osman, Li (bib0180) 2015; 67
Lashari, Ibrahim (bib0035) 2013; 11
Wei (10.1016/j.artmed.2017.05.006_bib0010) 2017; 384
Qu (10.1016/j.artmed.2017.05.006_bib0215) 2016; 13
Wei (10.1016/j.artmed.2017.05.006_bib0005) 2017
Gu (10.1016/j.artmed.2017.05.006_bib0205) 2016
Yuan (10.1016/j.artmed.2017.05.006_bib0220) 2017; 18
Gu Bin (10.1016/j.artmed.2017.05.006_bib0185) 2015
Su (10.1016/j.artmed.2017.05.006_bib0015) 2016; 264
Lashari (10.1016/j.artmed.2017.05.006_bib0035) 2013; 11
Liu (10.1016/j.artmed.2017.05.006_bib0095) 2012
Wu (10.1016/j.artmed.2017.05.006_bib0195) 2012; 21
Vu (10.1016/j.artmed.2017.05.006_bib0050) 2016; 35
Fu (10.1016/j.artmed.2017.05.006_bib0200) 2016; 11
Gu (10.1016/j.artmed.2017.05.006_bib0180) 2015; 67
Marée (10.1016/j.artmed.2017.05.006_bib0070) 2010
Lowe (10.1016/j.artmed.2017.05.006_bib0175) 2004; 60
Shang (10.1016/j.artmed.2017.05.006_bib0150) 2016
Wang (10.1016/j.artmed.2017.05.006_bib0130) 2010
Fu (10.1016/j.artmed.2017.05.006_bib0080) 2016
Wei (10.1016/j.artmed.2017.05.006_bib0020) 2016; 17
Hafner (10.1016/j.artmed.2017.05.006_bib0030) 2012; 16
Xia (10.1016/j.artmed.2017.05.006_bib0055) 2016; 11
Johnson (10.1016/j.artmed.2017.05.006_bib0165) 1982
Liu (10.1016/j.artmed.2017.05.006_bib0065) 2016; 72
Zheng (10.1016/j.artmed.2017.05.006_bib0160) 2015; 28
Pan (10.1016/j.artmed.2017.05.006_bib0060) 2016; 62
10.1016/j.artmed.2017.05.006_bib0110
Li (10.1016/j.artmed.2017.05.006_bib0120) 2016; 184
Zhuang (10.1016/j.artmed.2017.05.006_bib0135) 2011; 22
Tang (10.1016/j.artmed.2017.05.006_bib0045) 2012; 21
Vardan (10.1016/j.artmed.2017.05.006_bib0140) 2016; 25
Lee (10.1016/j.artmed.2017.05.006_bib0170) 2007; 80
Liu (10.1016/j.artmed.2017.05.006_bib0125) 2016; 75
Yang (10.1016/j.artmed.2017.05.006_bib0040) 2012
Zhang (10.1016/j.artmed.2017.05.006_bib0085) 2014; 124
Fu (10.1016/j.artmed.2017.05.006_bib0155) 2016; 27
Liu (10.1016/j.artmed.2017.05.006_bib0025) 2017
Li (10.1016/j.artmed.2017.05.006_bib0145) 2015; 10
Liu (10.1016/j.artmed.2017.05.006_bib0105) 2016; 23
Zhang (10.1016/j.artmed.2017.05.006_bib0090) 2016; 177
Fu (10.1016/j.artmed.2017.05.006_bib0210) 2016; 27
Cao (10.1016/j.artmed.2017.05.006_bib0100) 2016; 24
Li J (10.1016/j.artmed.2017.05.006_bib0190) 2010
Shi (10.1016/j.artmed.2017.05.006_bib0115) 2017; 72
Ji (10.1016/j.artmed.2017.05.006_bib0075) 2012; 6
References_xml – volume: 21
  start-page: 2354
  year: 2012
  end-page: 2360
  ident: bib0045
  article-title: Semantic-gap-oriented active learning for multilabel image annotation[J]
  publication-title: IEEE Trans Image Process
– start-page: 3532
  year: 2015
  end-page: 3539
  ident: bib0185
  article-title: Bi-parameter space partition for cost-sensitive SVM[C]
  publication-title: Proceedings of the 24th AAAI International Conference on Artificial Intelligence
– volume: 18
  start-page: 209
  year: 2017
  end-page: 216
  ident: bib0220
  article-title: Coverless image steganography based on SIFT and BOF
  publication-title: J Internet Technol
– volume: 23
  start-page: 5
  year: 2016
  end-page: 243
  ident: bib0105
  article-title: Palmprint recognition via sparse coding spatial pyramid matching representation of SIFT Feature[C]
  publication-title: Chin Conf Biom Recognit
– start-page: 1
  year: 2016
  end-page: 9
  ident: bib0080
  article-title: Towards efficient content-aware search over encrypted outsourced data in cloud[C]
  publication-title: The 35th Annual IEEE International Conference on Computer Communications
– start-page: 3360
  year: 2010
  end-page: 3367
  ident: bib0130
  article-title: Locality-Constrained Linear Coding for Image Classification[C]
  publication-title: Proc IEEE Conf Comput Vision Pattern Recognit
– volume: 22
  start-page: 89
  year: 2011
  end-page: 95
  ident: bib0135
  article-title: Non-negative locality linear sparse coding[J]
  publication-title: Chin J Soft
– volume: 21
  start-page: 42
  year: 2012
  end-page: 53
  ident: bib0195
  article-title: Efficient HIK SVM learning for image classification[J]
  publication-title: IEEE Trans Image Proc
– volume: 264
  start-page: 127
  year: 2016
  end-page: 142
  ident: bib0015
  article-title: Detection of tubule boundaries based on circular shortest path and polar‐transformation of arbitrary shapes[J]
  publication-title: J Microsc
– volume: 17
  start-page: 2118
  year: 2016
  ident: bib0020
  article-title: Recent progress in machine learning-based methods for protein fold recognition[J]
  publication-title: Int J Mol Sci
– year: 1982
  ident: bib0165
  article-title: Applied multivariate statistical analysis[M]
– start-page: 433
  year: 2012
  end-page: 438
  ident: bib0040
  article-title: Narrowing semantic gap in content-based image retrieval[C]
  publication-title: IEEE Int Conf Comput Distributed Control Intel Monit
– start-page: 91
  year: 2010
  end-page: 100
  ident: bib0070
  article-title: Incremental indexing and distributed image search using shared randomized vocabularies[C]
  publication-title: Proc Int Conf Multimedia Inf Ret ACM
– volume: 177
  start-page: 75
  year: 2016
  end-page: 88
  ident: bib0090
  article-title: Dictionary pruning with visual word significance for medical image retrieval[J]
  publication-title: Neurocomputing
– volume: 16
  start-page: 75
  year: 2012
  end-page: 86
  ident: bib0030
  article-title: Color treatment in endoscopic image classification using multi-scale local color vector patterns[J]
  publication-title: Med Image Anal
– volume: 11
  start-page: 548
  year: 2013
  end-page: 556
  ident: bib0035
  article-title: A framework for medical images classification using soft set[J]
  publication-title: Procedia Technol
– volume: 72
  start-page: 185
  year: 2016
  end-page: 200
  ident: bib0065
  article-title: Medical image classification using spatial adjacent histogram based on adaptive local binary patterns[J]
  publication-title: Comput Biol Med
– volume: 80
  start-page: 1
  year: 2007
  end-page: 808
  ident: bib0170
  article-title: Efficient sparse coding algorithms[C]
  publication-title: Proc Adv Neural Inf Proc Syst
– volume: 124
  start-page: 105
  year: 2014
  end-page: 110
  ident: bib0085
  article-title: E2LSH based multiple kernel approach for object detection[J]
  publication-title: Neurocomputing
– volume: 27
  start-page: 2546
  year: 2016
  end-page: 2559
  ident: bib0155
  article-title: Enabling personalized search over encrypted outsourced data with efficiency improvement[J]
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 11
  start-page: 2706
  year: 2016
  end-page: 2716
  ident: bib0200
  article-title: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy Improvement[J]
  publication-title: IEEE Trans Inf For Sec
– volume: 28
  start-page: 961
  year: 2015
  end-page: 973
  ident: bib0160
  article-title: Image segmentation by generalized hierarchical fuzzy C-means algorithm[J]
  publication-title: J Intell Fuzzy Syst
– year: 2016
  ident: bib0205
  article-title: Sheng a robust regularization path algorithm for ν-support vector classification[J]
  publication-title: IEEE Trans Neural Net Learn Syst
– volume: 24
  start-page: S665
  year: 2016
  end-page: S674
  ident: bib0100
  article-title: The research on medical image classification algorithm based on PLSA-BOW model[J]
  publication-title: Technol Health Care
– volume: 67
  start-page: 140
  year: 2015
  end-page: 150
  ident: bib0180
  article-title: Incremental learning for ν-support vector regression[J]
  publication-title: Neural Netw
– start-page: 2006
  year: 2016
  ident: bib0150
  article-title: Sparse coding algorithm and its applications[D]
  publication-title: Hefei: Univ Sci Technol China
– volume: 13
  start-page: 108
  year: 2016
  end-page: 116
  ident: bib0215
  article-title: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks
  publication-title: China Commun
– volume: 27
  start-page: 2546
  year: 2016
  end-page: 2559
  ident: bib0210
  article-title: Enabling personalized search over encrypted outsourced data with efficiency Improvement[J]
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 6
  start-page: 398
  year: 2012
  end-page: 404
  ident: bib0075
  article-title: Scene image classification with biased spatial block and pLSA[J]
  publication-title: Int J Digital Content Technol Appl
– year: 2012
  ident: bib0095
  article-title: Research and implementation of medical image classication based on bag of words model[D]
– volume: 35
  start-page: 738
  year: 2016
  end-page: 751
  ident: bib0050
  article-title: Histopathological image classification using discriminative feature-oriented dictionary learning[J]
  publication-title: IEEE Trans Med Imaging
– volume: 11
  start-page: 2594
  year: 2016
  end-page: 2608
  ident: bib0055
  article-title: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing[J]
  publication-title: IEEE Trans Inf Forensics Secur
– volume: 25
  start-page: 249
  year: 2016
  end-page: 261
  ident: bib0140
  article-title: Multi-scale patch-based image restoration[J]
  publication-title: IEEE Trans Image Proc
– start-page: 2889
  year: 2010
  end-page: 2892
  ident: bib0190
  article-title: Nonlinear combination of multiple kernels for support vector machines [C]
  publication-title: Proceedings of the 20th IEEE International Conference on Pattern Recognition[C]
– volume: 384
  start-page: 135
  year: 2017
  end-page: 144
  ident: bib0010
  article-title: Local-DPP: an improved DNA-binding protein prediction method by exploring local evolutionary information[J]
  publication-title: Inf Sci
– volume: 10
  start-page: 507
  year: 2015
  end-page: 518
  ident: bib0145
  article-title: Segmentation-based image copy-move forgery detection scheme[J]
  publication-title: IEEE Trans Inf Forensics Secur
– year: 2017
  ident: bib0025
  article-title: Pse-analysis: a python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods[J]
  publication-title: Oncotarget
– volume: 184
  start-page: 36
  year: 2016
  end-page: 42
  ident: bib0120
  article-title: A robust local sparse coding method for image classification with histogram intersection kernel[J]
  publication-title: Neurocomputing
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: bib0175
  article-title: Distinctive image features from scale-invariant keypoints[J]
  publication-title: J Comput Vision
– reference: Yuan L, Liu W, Li Y., Non-negative dictionary based sparse representation classification for ear recognition with occlusion[J]. 2016, 171: 540–550.
– volume: 62
  start-page: 675
  year: 2016
  end-page: 684
  ident: bib0060
  article-title: Fast motion estimation based on content property for low-complexity H.265/HEVC encoder[J]
  publication-title: IEEE Trans Broadcast
– volume: 72
  start-page: 121
  year: 2017
  end-page: 129
  ident: bib0115
  article-title: Non-negativity and locality constrained laplacian sparse coding for image classification[J]
  publication-title: Expert Syst Appl
– year: 2017
  ident: bib0005
  article-title: PhosPred-RF: a novel sequence-based predictor for phosphorylation sites using sequential information only[J]
  publication-title: IEEE Trans NanoBiosci
– volume: 75
  start-page: 15619
  year: 2016
  end-page: 15633
  ident: bib0125
  article-title: Image classification using label constrained sparse coding[J]
  publication-title: Multimedia Tools Appl
– volume: 11
  start-page: 2706
  issue: 12
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0200
  article-title: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy Improvement[J]
  publication-title: IEEE Trans Inf For Sec
  doi: 10.1109/TIFS.2016.2596138
– start-page: 3532
  year: 2015
  ident: 10.1016/j.artmed.2017.05.006_bib0185
  article-title: Bi-parameter space partition for cost-sensitive SVM[C]
  publication-title: Proceedings of the 24th AAAI International Conference on Artificial Intelligence
– volume: 23
  start-page: 5
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0105
  article-title: Palmprint recognition via sparse coding spatial pyramid matching representation of SIFT Feature[C]
  publication-title: Chin Conf Biom Recognit
– volume: 21
  start-page: 2354
  issue: 4
  year: 2012
  ident: 10.1016/j.artmed.2017.05.006_bib0045
  article-title: Semantic-gap-oriented active learning for multilabel image annotation[J]
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2180916
– year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0205
  article-title: Sheng a robust regularization path algorithm for ν-support vector classification[J]
  publication-title: IEEE Trans Neural Net Learn Syst
– start-page: 2006
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0150
  article-title: Sparse coding algorithm and its applications[D]
  publication-title: Hefei: Univ Sci Technol China
– volume: 27
  start-page: 2546
  issue: 9
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0155
  article-title: Enabling personalized search over encrypted outsourced data with efficiency improvement[J]
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2506573
– volume: 72
  start-page: 185
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0065
  article-title: Medical image classification using spatial adjacent histogram based on adaptive local binary patterns[J]
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.03.010
– volume: 11
  start-page: 548
  year: 2013
  ident: 10.1016/j.artmed.2017.05.006_bib0035
  article-title: A framework for medical images classification using soft set[J]
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2013.12.227
– start-page: 3360
  year: 2010
  ident: 10.1016/j.artmed.2017.05.006_bib0130
  article-title: Locality-Constrained Linear Coding for Image Classification[C]
  publication-title: Proc IEEE Conf Comput Vision Pattern Recognit
– volume: 25
  start-page: 249
  issue: 1
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0140
  article-title: Multi-scale patch-based image restoration[J]
  publication-title: IEEE Trans Image Proc
  doi: 10.1109/TIP.2015.2499698
– volume: 10
  start-page: 507
  issue: 3
  year: 2015
  ident: 10.1016/j.artmed.2017.05.006_bib0145
  article-title: Segmentation-based image copy-move forgery detection scheme[J]
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2014.2381872
– volume: 75
  start-page: 15619
  issue: 23
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0125
  article-title: Image classification using label constrained sparse coding[J]
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-015-2626-1
– start-page: 1
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0080
  article-title: Towards efficient content-aware search over encrypted outsourced data in cloud[C]
  publication-title: The 35th Annual IEEE International Conference on Computer Communications
– ident: 10.1016/j.artmed.2017.05.006_bib0110
  doi: 10.1016/j.neucom.2015.06.074
– volume: 264
  start-page: 127
  issue: 2
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0015
  article-title: Detection of tubule boundaries based on circular shortest path and polar‐transformation of arbitrary shapes[J]
  publication-title: J Microsc
  doi: 10.1111/jmi.12421
– volume: 184
  start-page: 36
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0120
  article-title: A robust local sparse coding method for image classification with histogram intersection kernel[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.136
– volume: 177
  start-page: 75
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0090
  article-title: Dictionary pruning with visual word significance for medical image retrieval[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.008
– year: 2017
  ident: 10.1016/j.artmed.2017.05.006_bib0005
  article-title: PhosPred-RF: a novel sequence-based predictor for phosphorylation sites using sequential information only[J]
  publication-title: IEEE Trans NanoBiosci
  doi: 10.1109/TNB.2017.2661756
– volume: 11
  start-page: 2594
  issue: 11
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0055
  article-title: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing[J]
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2590944
– volume: 72
  start-page: 121
  year: 2017
  ident: 10.1016/j.artmed.2017.05.006_bib0115
  article-title: Non-negativity and locality constrained laplacian sparse coding for image classification[J]
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.12.012
– volume: 24
  start-page: S665
  issue: s2
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0100
  article-title: The research on medical image classification algorithm based on PLSA-BOW model[J]
  publication-title: Technol Health Care
  doi: 10.3233/THC-161194
– volume: 35
  start-page: 738
  issue: 3
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0050
  article-title: Histopathological image classification using discriminative feature-oriented dictionary learning[J]
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2493530
– volume: 18
  start-page: 209
  issue: 2
  year: 2017
  ident: 10.1016/j.artmed.2017.05.006_bib0220
  article-title: Coverless image steganography based on SIFT and BOF
  publication-title: J Internet Technol
– volume: 28
  start-page: 961
  issue: 2
  year: 2015
  ident: 10.1016/j.artmed.2017.05.006_bib0160
  article-title: Image segmentation by generalized hierarchical fuzzy C-means algorithm[J]
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-141378
– start-page: 91
  year: 2010
  ident: 10.1016/j.artmed.2017.05.006_bib0070
  article-title: Incremental indexing and distributed image search using shared randomized vocabularies[C]
  publication-title: Proc Int Conf Multimedia Inf Ret ACM
– volume: 22
  start-page: 89
  issue: 2
  year: 2011
  ident: 10.1016/j.artmed.2017.05.006_bib0135
  article-title: Non-negative locality linear sparse coding[J]
  publication-title: Chin J Soft
– start-page: 433
  year: 2012
  ident: 10.1016/j.artmed.2017.05.006_bib0040
  article-title: Narrowing semantic gap in content-based image retrieval[C]
  publication-title: IEEE Int Conf Comput Distributed Control Intel Monit
– volume: 27
  start-page: 2546
  issue: 9
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0210
  article-title: Enabling personalized search over encrypted outsourced data with efficiency Improvement[J]
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2506573
– volume: 384
  start-page: 135
  year: 2017
  ident: 10.1016/j.artmed.2017.05.006_bib0010
  article-title: Local-DPP: an improved DNA-binding protein prediction method by exploring local evolutionary information[J]
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.06.026
– volume: 6
  start-page: 398
  issue: 1
  year: 2012
  ident: 10.1016/j.artmed.2017.05.006_bib0075
  article-title: Scene image classification with biased spatial block and pLSA[J]
  publication-title: Int J Digital Content Technol Appl
  doi: 10.4156/jdcta.vol6.issue1.48
– year: 2012
  ident: 10.1016/j.artmed.2017.05.006_bib0095
– volume: 80
  start-page: 1
  year: 2007
  ident: 10.1016/j.artmed.2017.05.006_bib0170
  article-title: Efficient sparse coding algorithms[C]
  publication-title: Proc Adv Neural Inf Proc Syst
– start-page: 2889
  year: 2010
  ident: 10.1016/j.artmed.2017.05.006_bib0190
  article-title: Nonlinear combination of multiple kernels for support vector machines [C]
  publication-title: Proceedings of the 20th IEEE International Conference on Pattern Recognition[C]
– volume: 21
  start-page: 42
  issue: 10
  year: 2012
  ident: 10.1016/j.artmed.2017.05.006_bib0195
  article-title: Efficient HIK SVM learning for image classification[J]
  publication-title: IEEE Trans Image Proc
– volume: 13
  start-page: 108
  issue: 7
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0215
  article-title: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks
  publication-title: China Commun
  doi: 10.1109/CC.2016.7559082
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.artmed.2017.05.006_bib0175
  article-title: Distinctive image features from scale-invariant keypoints[J]
  publication-title: J Comput Vision
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 124
  start-page: 105
  year: 2014
  ident: 10.1016/j.artmed.2017.05.006_bib0085
  article-title: E2LSH based multiple kernel approach for object detection[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.07.027
– year: 1982
  ident: 10.1016/j.artmed.2017.05.006_bib0165
– volume: 67
  start-page: 140
  year: 2015
  ident: 10.1016/j.artmed.2017.05.006_bib0180
  article-title: Incremental learning for ν-support vector regression[J]
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2015.03.013
– volume: 62
  start-page: 675
  issue: 3
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0060
  article-title: Fast motion estimation based on content property for low-complexity H.265/HEVC encoder[J]
  publication-title: IEEE Trans Broadcast
  doi: 10.1109/TBC.2016.2580920
– volume: 16
  start-page: 75
  year: 2012
  ident: 10.1016/j.artmed.2017.05.006_bib0030
  article-title: Color treatment in endoscopic image classification using multi-scale local color vector patterns[J]
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2011.05.006
– volume: 17
  start-page: 2118
  issue: 12
  year: 2016
  ident: 10.1016/j.artmed.2017.05.006_bib0020
  article-title: Recent progress in machine learning-based methods for protein fold recognition[J]
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17122118
– year: 2017
  ident: 10.1016/j.artmed.2017.05.006_bib0025
  article-title: Pse-analysis: a python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods[J]
  publication-title: Oncotarget
SSID ssj0007416
Score 2.433739
Snippet •We propose a multi-scale non-negative sparse coding model to construct visual dictionary thus to overcome the defects of BoVW-based algorithms.•We utilize...
Highlights • We propose a multi-scale non-negative sparse coding model to construct visual dictionary thus to overcome the defects of BoVW-based algorithms. •...
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Artificial Intelligence
Diagnostic Imaging - classification
Fisher discriminative analysis
Humans
Image Interpretation, Computer-Assisted - methods
Internal Medicine
Medical image classification
Multi-scale decomposition
Non-negative sparse coding
Other
Pattern Recognition, Automated
Predictive Value of Tests
ROC Curve
The semantic gap
Title Medical image classification based on multi-scale non-negative sparse coding
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365716306029
https://www.clinicalkey.es/playcontent/1-s2.0-S0933365716306029
https://dx.doi.org/10.1016/j.artmed.2017.05.006
https://www.ncbi.nlm.nih.gov/pubmed/28559133
https://www.proquest.com/docview/1904235283
Volume 83
WOSCitedRecordID wos000418314700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYhxAvXMatXCYj8YaM4qRJ7McJbQI0JsQG5M1yXHtLxbKqadF-Pse3ECjVxgMvUeTEderz-Vzsz8cIvWKmMLKYGpJCyEPA_8-I1BClTMHX12lRmsyxCb8elkdHrKr4p0Dl7dxxAmXbsstLPv-vooYyELbdOvsP4u5_FArgHoQOVxA7XK8l-Lj00pxbOo6y3rGlA3lBW6M1tQsEjkhIOnhRv24vWtLqU58CHDTMwlHYe6PW56h1tCJ3yMcwj2fTri3Q97PQn1fNrOmLj-NOkAEkv2lHJzhYdWcDdpArq-CDT4ezEmDpaD8rob0mZWVGUuYPC4iqlmUDXenzPq6pcD-bMHsDHQhfb8l3PreqS0ywHAhwfu4kmDIIiqjPpvFH6uz4aAttpxAXJSO0vfd-v_rQm2rrjsb9lI70t96ozRYdfmaT67IpNHEuysk9dCfEFnjPY-I-uqHbHXQ3ntuBgxrfQbc-Bnk9QIcBLdihBf-OFuzQguFmgBY8RAv2aMEeLQ_Rl4P9k7fvSDhgg6hJmSwJVdqYIte1KWBU1kypVNZpxmH05rnikmtmwP7QRNeqlpyaSc6VVlqyqeG5SbJHaASN6icIl3xKGVeqZIpNpOGSSqool4pJiMCNGqMs9p1QIfu8PQTlu4g0w5nwnS9s54skF9D5Y0T6WnOffeWK9_MoFhF3FoMtFICtK-qVf6unuzCuO0FFl4pEHNsJwKzISwhjkiJJ-bBm8Fm9L3qNNl9G3AhQ6XadTrb6YgVtcUtWs1mXxuixB1T_7yMWn2588gzd_jUgn6PRcrHSL9BN9WPZdItdtFVWbDeMg58K48j3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+image+classification+based+on+multi-scale+non-negative+sparse+coding&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Zhang%2C+Ruijie&rft.au=Shen%2C+Jian&rft.au=Wei%2C+Fushan&rft.au=Li%2C+Xiong&rft.date=2017-11-01&rft.eissn=1873-2860&rft.volume=83&rft.spage=44&rft_id=info:doi/10.1016%2Fj.artmed.2017.05.006&rft_id=info%3Apmid%2F28559133&rft.externalDocID=28559133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon