Stretchable magnesium–air battery based on dual ions conducting hydrogel for intelligent biomedical applications
Flexible and bio‐integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power sources, serving as one of the most important components, have been suffering from many problems, including deficient biocompatibility, poor stretchabilit...
Gespeichert in:
| Veröffentlicht in: | InfoMat Jg. 5; H. 3 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Melbourne
John Wiley & Sons, Inc
01.03.2023
Wiley |
| Schlagworte: | |
| ISSN: | 2567-3165, 2567-3165 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Flexible and bio‐integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power sources, serving as one of the most important components, have been suffering from many problems, including deficient biocompatibility, poor stretchability, and unstable electrical outputs under deformed conditions, which limits the practical applications in flexible and bio‐integrated electronics. Here, we reported a fully stretchable magnesium (Mg)–air battery based on dual‐ions‐conducting hydrogels (SDICH). The high‐performance battery enables long‐term operation with lighting 120 lighting emitting diodes (LEDs) for over 5 h. Benefiting from the advanced materials and mechanical designs, the battery exhibits stability electrical outputs under stretching, which allows to operate ordinarily under various mechanical deformations without performance decay. Furthermore, the great biocompatibility of the battery offers great opportunity for biomedical applications, which is demonstrated by a self‐adaption wound dressing system. The in vitro and in vivo results prove that the self‐adaption wound dressing can effectively prevent wound inflammation and promote wound healing. By exploiting thermal feedback mechanics, the system can adjust antibiotic release rate and dosage spontaneously according to the real‐time wound conditions. The proposed fully stretchable Mg–air battery and self‐adaption wound dressing display great potential in skin‐integrated electronics and personalized medicine.
Stretchable Magnesium‐Air Battery Based on Dual Ions Conducting Hydrogel for Intelligent Biomedical Applications. |
|---|---|
| AbstractList | Abstract Flexible and bio‐integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power sources, serving as one of the most important components, have been suffering from many problems, including deficient biocompatibility, poor stretchability, and unstable electrical outputs under deformed conditions, which limits the practical applications in flexible and bio‐integrated electronics. Here, we reported a fully stretchable magnesium (Mg)–air battery based on dual‐ions‐conducting hydrogels (SDICH). The high‐performance battery enables long‐term operation with lighting 120 lighting emitting diodes (LEDs) for over 5 h. Benefiting from the advanced materials and mechanical designs, the battery exhibits stability electrical outputs under stretching, which allows to operate ordinarily under various mechanical deformations without performance decay. Furthermore, the great biocompatibility of the battery offers great opportunity for biomedical applications, which is demonstrated by a self‐adaption wound dressing system. The in vitro and in vivo results prove that the self‐adaption wound dressing can effectively prevent wound inflammation and promote wound healing. By exploiting thermal feedback mechanics, the system can adjust antibiotic release rate and dosage spontaneously according to the real‐time wound conditions. The proposed fully stretchable Mg–air battery and self‐adaption wound dressing display great potential in skin‐integrated electronics and personalized medicine. Flexible and bio-integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power sources, serving as one of the most important components, have been suffering from many problems, including deficient biocompatibility, poor stretchability, and unstable electrical outputs under deformed conditions, which limits the practical applications in flexible and bio-integrated electronics. Here, we reported a fully stretchable magnesium (Mg)–air battery based on dual-ions-conducting hydrogels (SDICH). The high-performance battery enables long-term operation with lighting 120 lighting emitting diodes (LEDs) for over 5 h. Benefiting from the advanced materials and mechanical designs, the battery exhibits stability electrical outputs under stretching, which allows to operate ordinarily under various mechanical deformations without performance decay. Furthermore, the great biocompatibility of the battery offers great opportunity for biomedical applications, which is demonstrated by a self-adaption wound dressing system. The in vitro and in vivo results prove that the self-adaption wound dressing can effectively prevent wound inflammation and promote wound healing. By exploiting thermal feedback mechanics, the system can adjust antibiotic release rate and dosage spontaneously according to the real-time wound conditions. The proposed fully stretchable Mg–air battery and self-adaption wound dressing display great potential in skin-integrated electronics and personalized medicine. Flexible and bio‐integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power sources, serving as one of the most important components, have been suffering from many problems, including deficient biocompatibility, poor stretchability, and unstable electrical outputs under deformed conditions, which limits the practical applications in flexible and bio‐integrated electronics. Here, we reported a fully stretchable magnesium (Mg)–air battery based on dual‐ions‐conducting hydrogels (SDICH). The high‐performance battery enables long‐term operation with lighting 120 lighting emitting diodes (LEDs) for over 5 h. Benefiting from the advanced materials and mechanical designs, the battery exhibits stability electrical outputs under stretching, which allows to operate ordinarily under various mechanical deformations without performance decay. Furthermore, the great biocompatibility of the battery offers great opportunity for biomedical applications, which is demonstrated by a self‐adaption wound dressing system. The in vitro and in vivo results prove that the self‐adaption wound dressing can effectively prevent wound inflammation and promote wound healing. By exploiting thermal feedback mechanics, the system can adjust antibiotic release rate and dosage spontaneously according to the real‐time wound conditions. The proposed fully stretchable Mg–air battery and self‐adaption wound dressing display great potential in skin‐integrated electronics and personalized medicine. Stretchable Magnesium‐Air Battery Based on Dual Ions Conducting Hydrogel for Intelligent Biomedical Applications. Flexible and bio‐integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power sources, serving as one of the most important components, have been suffering from many problems, including deficient biocompatibility, poor stretchability, and unstable electrical outputs under deformed conditions, which limits the practical applications in flexible and bio‐integrated electronics. Here, we reported a fully stretchable magnesium (Mg)–air battery based on dual‐ions‐conducting hydrogels (SDICH). The high‐performance battery enables long‐term operation with lighting 120 lighting emitting diodes (LEDs) for over 5 h. Benefiting from the advanced materials and mechanical designs, the battery exhibits stability electrical outputs under stretching, which allows to operate ordinarily under various mechanical deformations without performance decay. Furthermore, the great biocompatibility of the battery offers great opportunity for biomedical applications, which is demonstrated by a self‐adaption wound dressing system. The in vitro and in vivo results prove that the self‐adaption wound dressing can effectively prevent wound inflammation and promote wound healing. By exploiting thermal feedback mechanics, the system can adjust antibiotic release rate and dosage spontaneously according to the real‐time wound conditions. The proposed fully stretchable Mg–air battery and self‐adaption wound dressing display great potential in skin‐integrated electronics and personalized medicine. image |
| Author | Yu, Xinge Yiu, Chun Ki Gao, Yuyu Li, Yuhang Zhao, Ling Mo, Jiaying Wang, Jinpei Wang, Zuankai Wong, Tsz Hung Park, Wooyoung Zhao, Zhao Shi, Rui Li, Dengfeng Li, Jiyu Zhang, Binbin Liu, Yiming Zhou, Jingkun Li, Hu Huang, Ya Zhang, Chao Lim, Chee Kent Huang, Xingcan Li, Jian |
| Author_xml | – sequence: 1 givenname: Xingcan orcidid: 0000-0003-4210-2470 surname: Huang fullname: Huang, Xingcan organization: City University of Hong Kong – sequence: 2 givenname: Yiming orcidid: 0000-0003-0134-1934 surname: Liu fullname: Liu, Yiming organization: City University of Hong Kong – sequence: 3 givenname: Wooyoung surname: Park fullname: Park, Wooyoung organization: City University of Hong Kong – sequence: 4 givenname: Zhao surname: Zhao fullname: Zhao, Zhao organization: Beihang University (BUAA) – sequence: 5 givenname: Jiyu surname: Li fullname: Li, Jiyu organization: Hong Kong Science Park – sequence: 6 givenname: Chee Kent surname: Lim fullname: Lim, Chee Kent organization: City University of Hong Kong – sequence: 7 givenname: Tsz Hung surname: Wong fullname: Wong, Tsz Hung organization: City University of Hong Kong – sequence: 8 givenname: Chun Ki surname: Yiu fullname: Yiu, Chun Ki organization: Hong Kong Science Park – sequence: 9 givenname: Yuyu surname: Gao fullname: Gao, Yuyu organization: City University of Hong Kong – sequence: 10 givenname: Jingkun surname: Zhou fullname: Zhou, Jingkun organization: Hong Kong Science Park – sequence: 11 givenname: Hu surname: Li fullname: Li, Hu organization: City University of Hong Kong – sequence: 12 givenname: Ling surname: Zhao fullname: Zhao, Ling organization: City University of Hong Kong – sequence: 13 givenname: Jian surname: Li fullname: Li, Jian organization: Hong Kong Science Park – sequence: 14 givenname: Binbin surname: Zhang fullname: Zhang, Binbin organization: Hong Kong Science Park – sequence: 15 givenname: Ya surname: Huang fullname: Huang, Ya organization: Hong Kong Science Park – sequence: 16 givenname: Rui surname: Shi fullname: Shi, Rui organization: City University of Hong Kong – sequence: 17 givenname: Dengfeng surname: Li fullname: Li, Dengfeng organization: Hong Kong Science Park – sequence: 18 givenname: Jiaying surname: Mo fullname: Mo, Jiaying organization: City University of Hong Kong – sequence: 19 givenname: Jinpei surname: Wang fullname: Wang, Jinpei organization: City University of Hong Kong – sequence: 20 givenname: Chao surname: Zhang fullname: Zhang, Chao email: czhan25@cityu.edu.hk organization: City University of Hong Kong – sequence: 21 givenname: Yuhang surname: Li fullname: Li, Yuhang email: liyuhang@buaa.edu.cn organization: Ningbo Institute of Technology Beihang University (BUAA) – sequence: 22 givenname: Zuankai surname: Wang fullname: Wang, Zuankai email: zuanwang@cityu.edu.hk organization: City University of Hong Kong – sequence: 23 givenname: Xinge orcidid: 0000-0003-0522-1171 surname: Yu fullname: Yu, Xinge email: xingeyu@cityu.edu.hk organization: Shenzhen Research Institute City University of Hong Kong |
| BookMark | eNp9kcGKFDEQhoOs4DruxScIeBNmTdJJuvsoi6sDi3tQz6E6qfRmyCRjOoPMzXfwDX0Se6YVZBFPVYTv-6nwPycXKSck5CVn15wx8SYkL665aLruCbkUSrfrhmt18df-jFxN05bNsGJSKH5JyqdasNoHGCLSHYwJp3DY_fz-A0KhA9SK5TjPCR3NiboDRBpymqjNyR1sDWmkD0dX8oiR-lxoSBVjDCOmSoeQd-iCnR3Y7-O81JP7gjz1ECe8-j1X5Mvtu883H9Z39-83N2_v1la2rFuD61jLrQDZ94PUXavAg9NCSbS-Hzgw3Ym-1xpaJ4RE6blTjDvPLLTSQ7MimyXXZdiafQk7KEeTIZjzQy6jgVKDjWhkr12PXnUarMSmHaSEDpxyjW48SjtnvVqy9iV_PeBUzTYfSprPN6LtesV7NqMrwhbKljxNBb2xoZ4_XQuEaDgzp6LMqShzLmpWXj9S_hz6T5gv8LcQ8fgf0mw-3orF-QVkNqf- |
| CitedBy_id | crossref_primary_10_1016_j_matt_2025_101959 crossref_primary_10_1016_j_apmt_2024_102342 crossref_primary_10_1002_adma_202406798 crossref_primary_10_1021_acsnano_5c09857 crossref_primary_10_1016_j_scib_2024_09_032 crossref_primary_10_1007_s11814_025_00456_7 crossref_primary_10_1007_s40843_024_3238_4 crossref_primary_10_1002_admt_202300398 crossref_primary_10_3390_batteries11010035 crossref_primary_10_1039_D3SE00509G crossref_primary_10_1016_j_celbio_2025_100054 crossref_primary_10_1002_adfm_202310777 crossref_primary_10_1002_adhm_202302969 crossref_primary_10_1002_adsr_202300070 crossref_primary_10_1002_sus2_70007 crossref_primary_10_1016_j_revmat_2025_100087 crossref_primary_10_1002_smll_202310398 crossref_primary_10_1016_j_jma_2025_08_012 crossref_primary_10_1002_smtd_202300501 crossref_primary_10_3390_gels11090741 crossref_primary_10_1002_adsu_202400259 crossref_primary_10_1007_s42765_024_00470_0 crossref_primary_10_1002_adfm_202412796 crossref_primary_10_1002_est2_586 crossref_primary_10_1002_smll_202309306 |
| Cites_doi | 10.1021/acsami.9b19721 10.1021/acs.energyfuels.9b04036 10.1002/adma.201902133 10.1002/adma.201801072 10.1039/D0TA05908K 10.1002/advs.201900149 10.1002/aenm.202101242 10.1002/aisy.202100031 10.1002/admi.201600709 10.1038/ncomms2553 10.1007/s42242-021-00156-1 10.1002/adma.202105996 10.1002/adma.202007829 10.1016/j.bioactmat.2022.04.020 10.1016/j.mtener.2021.100786 10.1002/anie.202104536 10.34133/2020/1085417 10.1016/j.carbon.2014.01.017 10.1021/nl102919m 10.1016/j.nanoen.2022.107442 10.1002/admt.201900744 10.1002/adma.201400910 10.1002/smtd.201700231 10.1002/adfm.201802083 10.1002/adfm.202005646 10.1039/c3ee43870h 10.1002/adma.202204457 10.1039/C5EE02474A 10.1039/C3MH00059A 10.1016/B978-0-12-818890-3.00020-5 10.1002/adfm.201402987 10.3390/en14217373 10.1016/j.mtchem.2019.03.006 10.1002/inf2.12064 10.1039/C2NR32600K 10.1038/s41586-019-1687-0 10.1002/smll.201804966 10.1016/j.mattod.2021.01.026 10.1016/j.nanoen.2019.05.033 10.1016/j.tibtech.2016.05.009 10.1186/s11671-019-3084-x 10.1002/adma.202110140 10.1038/s41551-021-00723-y 10.1002/inf2.12079 10.1016/j.electacta.2014.10.156 10.1002/adhm.202100199 10.1016/j.jma.2021.04.011 10.1007/s11581-018-2710-4 10.1039/C4TA06008C 10.1109/TIA.2017.2672674 10.1002/adhm.201400642 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1002/inf2.12388 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2567-3165 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_496d9ef586ac4e37b44a8ad5d363fe4c 10_1002_inf2_12388 INF212388 |
| Genre | article |
| GrantInformation_xml | – fundername: Qiantang Science & Technology Innovation Center – fundername: City University of Hong Kong funderid: 9667221; 9678274; 9680322 – fundername: Shenzhen Science and Technology Innovation Council, China funderid: 9240061; JCYJ20200109143206663 – fundername: Innovation and Technology Fund funderid: GHP/021/19SZ – fundername: Shenzhen Science and Technology Innovation Commission funderid: JCYJ20200109110201713 – fundername: InnoHK Project 1.3 ‐ Flexible and Stretchable Technologies (FAST) for monitoring of CVD risk factors: Sensing and Applications at Hong Kong Centre for Cerebro‐cardiovascular Health Engineering (COCHE) – fundername: Center of Flexible Electronics Technology – fundername: National Natural Science Foundation of China funderid: 62122002 |
| GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PIMPY PTHSS WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB 8FE 8FG ABUWG AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4708-ad8071c2a499b46875afad6254ecf9b1a06829966a7d224e4f1d501df0ca74fa3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889440100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2567-3165 |
| IngestDate | Fri Oct 03 12:45:33 EDT 2025 Wed Aug 13 04:00:03 EDT 2025 Sat Nov 29 02:51:17 EST 2025 Tue Nov 18 22:19:46 EST 2025 Wed Jan 22 16:22:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4708-ad8071c2a499b46875afad6254ecf9b1a06829966a7d224e4f1d501df0ca74fa3 |
| Notes | Funding information City University of Hong Kong, Grant/Award Numbers: 9667221, 9678274, 9680322; National Natural Science Foundation of China, Grant/Award Number: 62122002; Shenzhen Science and Technology Innovation Commission, Grant/Award Number: JCYJ20200109110201713; InnoHK Project 1.3 ‐ Flexible and Stretchable Technologies (FAST) for monitoring of CVD risk factors: Sensing and Applications at Hong Kong Centre for Cerebro‐cardiovascular Health Engineering (COCHE); Center of Flexible Electronics Technology; Qiantang Science & Technology Innovation Center; Innovation and Technology Fund, Grant/Award Number: GHP/021/19SZ; Shenzhen Science and Technology Innovation Council, China, Grant/Award Numbers: 9240061, JCYJ20200109143206663 Xingcan Huang, Yiming Liu, Wooyoung Park, and Zhao Zhao contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4210-2470 0000-0003-0134-1934 0000-0003-0522-1171 |
| OpenAccessLink | https://www.proquest.com/docview/2789519036?pq-origsite=%requestingapplication% |
| PQID | 2789519036 |
| PQPubID | 5068510 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_496d9ef586ac4e37b44a8ad5d363fe4c proquest_journals_2789519036 crossref_citationtrail_10_1002_inf2_12388 crossref_primary_10_1002_inf2_12388 wiley_primary_10_1002_inf2_12388_INF212388 |
| PublicationCentury | 2000 |
| PublicationDate | March 2023 2023-03-00 20230301 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Melbourne |
| PublicationPlace_xml | – name: Melbourne – name: Beijing |
| PublicationTitle | InfoMat |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 21 2013; 4 2017; 4 2019; 12 2019; 15 2019; 14 2014; 26 2011; 11 2020; 12 2013; 5 2016; 34 2014; 1 2020; 8 2018; 2 2021; 31 2019; 62 2020; 2 2021; 33 2019; 25 2022; 34 2014; 7 2021; 9 2018; 28 2021; 48 2019; 4 2021; 5 2021; 3 2015; 4 2019; 6 2021; 2 2015; 3 2019; 31 2023; 19 2020; 34 2020; 32 2021; 1 2020; 10(1) 2021; 14 2015; 151 2017; 53 2015; 25 2021; 10 2016; 2 2020; 2020 2021; 11 2021 2019; 575 2022; 99 2021; 60 2014; 71 2016; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 Chen S‐T (e_1_2_7_53_1) 2020; 10 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Li D (e_1_2_7_9_1) 2021; 2 Yeo JC (e_1_2_7_8_1) 2016; 2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 Wong TH (e_1_2_7_2_1) 2021; 1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 575 start-page: 473 issue: 7783 year: 2019 end-page: 479 article-title: Skin‐integrated wireless haptic interfaces for virtual and augmented reality publication-title: Nature – volume: 5 start-page: 1273 issue: 4 year: 2013 end-page: 1283 article-title: Intelligent, self‐powered, drug delivery systems publication-title: Nanoscale – volume: 32 issue: 15 year: 2020 article-title: Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability publication-title: Adv Mater – volume: 5 start-page: 201 issue: 1 year: 2021 end-page: 209 article-title: Epidermal self‐powered sweat sensors for glucose and lactate monitoring publication-title: Bio‐Des Manuf – volume: 10(1) start-page: 1 year: 2020 end-page: 7 article-title: Materials and device considerations in electrophoretic drug delivery devices publication-title: Sci Rep – volume: 2020 start-page: 1 year: 2020 end-page: 11 article-title: Electronic skin from high‐throughput fabrication of intrinsically stretchable lead zirconate titanate elastomer publication-title: Research – volume: 7 start-page: 1555 issue: 5 year: 2014 end-page: 1563 article-title: Quantifying the promise of lithium–air batteries for electric vehicles publication-title: Energy Environ Sci – volume: 60 start-page: 15317 issue: 28 year: 2021 end-page: 15322 article-title: High‐energy‐density magnesium‐air battery based on dual‐layer gel electrolyte publication-title: Angew Chem Int Ed Engl – volume: 21 year: 2021 article-title: Self‐powered skin electronics for energy harvesting and healthcare monitoring publication-title: Mater Today Energy – volume: 15 issue: 7 year: 2019 article-title: Silk‐derived 2D porous carbon nanosheets with atomically‐dispersed Fe‐N ‐C sites for highly efficient oxygen reaction catalysts publication-title: Small – volume: 8 start-page: 17691 issue: 34 year: 2020 end-page: 17705 article-title: Developing efficient catalysts for the OER and ORR using a combination of Co, Ni, and Pt oxides along with graphene nanoribbons and NiCo O publication-title: J Mater Chem A – volume: 5 start-page: 759 issue: 7 year: 2021 end-page: 771 article-title: Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue publication-title: Nat Biomed Eng – volume: 19 start-page: 360 year: 2023 end-page: 375 article-title: Smart bioadhesives for wound healing and closure publication-title: Bioact Mater – volume: 4 start-page: 1 issue: 1 year: 2013 end-page: 8 article-title: Stretchable batteries with self‐similar serpentine interconnects and integrated wireless recharging systems publication-title: Nat Commun – volume: 2 start-page: 1 issue: 1 year: 2021 end-page: 20 article-title: Recent progress of skin‐integrated electronics for intelligent sensing publication-title: Light: Adv Manuf – volume: 4 issue: 4 year: 2017 article-title: Electronic devices for human‐machine interfaces publication-title: Adv Mater Interfaces – volume: 11 issue: 30 year: 2021 article-title: Dual‐sites coordination engineering of single atom catalysts for flexible metal–air batteries publication-title: Adv Energy Mater – volume: 31 issue: 9 year: 2019 article-title: Advanced carbon for flexible and wearable electronics publication-title: Adv Mater – volume: 4 issue: 12 year: 2019 article-title: Skin‐integrated graphene‐embedded lead zirconate titanate rubber for energy harvesting and mechanical sensing publication-title: Adv Mater Technol – volume: 1 start-page: 196 issue: 2 year: 2014 end-page: 206 article-title: Magnesium–air batteries: from principle to application publication-title: Mater Horiz – volume: 31 issue: 3 year: 2021 article-title: Advances in natural biopolymer‐based electrolytes and separators for battery applications publication-title: Adv Funct Mater – volume: 9 start-page: 357 issue: 2 year: 2016 end-page: 390 article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress publication-title: Energy Environ Sci – volume: 3 issue: 11 year: 2021 article-title: Stretchable, multifunctional epidermal sensor patch for surface electromyography and strain measurements publication-title: Adv Intell Syst – volume: 28 issue: 34 year: 2018 article-title: Epidermal electronic systems for measuring the thermal properties of human skin at depths of up to several millimeters publication-title: Adv Funct Mater – volume: 2 start-page: 318 issue: 2 year: 2020 end-page: 340 article-title: Recent progress on flexible nanogenerators toward self‐powered systems publication-title: InfoMat – volume: 25 start-page: 1291 issue: 3 year: 2019 end-page: 1301 article-title: An eco‐friendly water‐soluble graphene‐incorporated agar gel electrolyte for magnesium‐air batteries publication-title: Ionics – volume: 9 start-page: 1861 issue: 6 year: 2021 end-page: 1883 article-title: Magnesium alloys as anodes for neutral aqueous magnesium‐air batteries publication-title: J Magnes Alloy – volume: 12 start-page: 6442 issue: 5 year: 2020 end-page: 6450 article-title: Stretchable, biocompatible, and multifunctional silk fibroin‐based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators publication-title: ACS Appl Mater Interfaces – volume: 14 start-page: 1 issue: 1 year: 2019 end-page: 15 article-title: Mini review on flexible and wearable electronics for monitoring human health information publication-title: Nanoscale Res Lett – volume: 71 start-page: 94 year: 2014 end-page: 101 article-title: Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly‐oriented graphene grown inside of nickel foam publication-title: Carbon – volume: 53 start-page: 2541 issue: 3 year: 2017 end-page: 2549 article-title: Lithium‐ion battery charge equalization algorithm for electric vehicle applications publication-title: IEEE Trans Ind Appl – volume: 2 start-page: 1 issue: 1 year: 2016 end-page: 19 article-title: Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications publication-title: Microsyst Nanoeng – volume: 26 start-page: 4763 issue: 28 year: 2014 end-page: 4782 article-title: Flexible energy‐storage devices: design consideration and recent progress publication-title: Adv Mater – volume: 14 start-page: 7373 issue: 21 year: 2021 article-title: Metal‐air batteries—a review publication-title: Energies – volume: 34 issue: 2 year: 2022 article-title: 3 printed, solid‐state conductive ionoelastomer as a generic building block for tactile applications publication-title: Adv Mater – volume: 25 start-page: 375 issue: 3 year: 2015 end-page: 383 article-title: Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures publication-title: Adv Funct Mater – volume: 62 start-page: 355 year: 2019 end-page: 366 article-title: Minimalist and multi‐functional human machine interface (hmi) using a flexible wearable triboelectric patch publication-title: Nano Energy – volume: 34 issue: 14 year: 2022 article-title: Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high‐performance zinc‐ion batteries publication-title: Adv Mater – volume: 12 start-page: 324 year: 2019 end-page: 331 article-title: Recent advances in air‐battery chemistries publication-title: Mater Today Chem – volume: 48 start-page: 176 year: 2021 end-page: 197 article-title: Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries publication-title: Mater Today – volume: 2 start-page: 212 issue: 1 year: 2020 end-page: 234 article-title: The recent advances in self‐powered medical information sensors publication-title: InfoMat – volume: 34 start-page: 2425 issue: 2 year: 2020 end-page: 2434 article-title: Mechanism of electrocatalytically active precious metal (Ni, Pd, Pt, and Ru) complexes in the graphene basal plane for ORR applications in novel fuel cells publication-title: Energy Fuel – volume: 3 start-page: 1795 issue: 5 year: 2015 end-page: 1810 article-title: Potential of metal‐free “graphene alloy” as electrocatalysts for oxygen reduction reaction publication-title: J Mater Chem A – volume: 10 year: 2021 article-title: Recent advances of energy solutions for implantable bioelectronics publication-title: Adv Healthcare Mater – volume: 1 start-page: 10 year: 2021 article-title: Tattoo‐like epidermal electronics as skin sensors for human‐machine interfaces publication-title: Soft Sci – volume: 4 start-page: 646 issue: 5 year: 2015 end-page: 658 article-title: Flexible piezoelectric thin‐film energy harvesters and nanosensors for biomedical applications publication-title: Adv Healthc Mater – volume: 99 year: 2022 article-title: Skin‐integrated, stretchable, transparent triboelectric nanogenerators based on ion‐conducting hydrogel for energy harvesting and tactile sensing publication-title: Nano Energy – volume: 6 issue: 14 year: 2019 article-title: Investigation of low‐current direct stimulation for rehabilitation treatment related to muscle function loss using self‐powered teng system publication-title: Adv Sci – volume: 151 start-page: 99 year: 2015 end-page: 108 article-title: Mesoporous NiCo O nanoneedles grown on 3D graphene‐nickel foam for supercapacitor and methanol electro‐oxidation publication-title: Electrochim Acta – year: 2021 article-title: Flexible and wearable monitoring systems for biomedical applications in organic flexible electronics: fundamentals, devices, and applications publication-title: Org Flexible Electron – volume: 34 year: 2022 article-title: Stretchable and biodegradable batteries with high energy and power density publication-title: Adv Mater – volume: 34 start-page: 909 issue: 11 year: 2016 end-page: 921 article-title: Flexible substrate‐based devices for point‐of‐care diagnostics publication-title: Trends Biotechnol – volume: 11 start-page: 101 issue: 1 year: 2011 end-page: 106 article-title: Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three‐dimensional battery applications publication-title: Nano Lett – volume: 2 issue: 2 year: 2018 article-title: Flexible metal–air batteries: Progress, challenges, and perspectives publication-title: Small Methods – volume: 33 year: 2021 article-title: Poly(vinyl alcohol) hydrogels with broad‐range tunable mechanical properties via the hofmeister effect publication-title: Adv Mater – ident: e_1_2_7_37_1 doi: 10.1021/acsami.9b19721 – ident: e_1_2_7_49_1 doi: 10.1021/acs.energyfuels.9b04036 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201902133 – ident: e_1_2_7_35_1 doi: 10.1002/adma.201801072 – ident: e_1_2_7_48_1 doi: 10.1039/D0TA05908K – ident: e_1_2_7_26_1 doi: 10.1002/advs.201900149 – ident: e_1_2_7_33_1 doi: 10.1002/aenm.202101242 – ident: e_1_2_7_3_1 doi: 10.1002/aisy.202100031 – ident: e_1_2_7_12_1 doi: 10.1002/admi.201600709 – ident: e_1_2_7_4_1 doi: 10.1038/ncomms2553 – volume: 10 start-page: 1 year: 2020 ident: e_1_2_7_53_1 article-title: Materials and device considerations in electrophoretic drug delivery devices publication-title: Sci Rep – ident: e_1_2_7_23_1 doi: 10.1007/s42242-021-00156-1 – ident: e_1_2_7_55_1 doi: 10.1002/adma.202105996 – ident: e_1_2_7_42_1 doi: 10.1002/adma.202007829 – ident: e_1_2_7_54_1 doi: 10.1016/j.bioactmat.2022.04.020 – ident: e_1_2_7_22_1 doi: 10.1016/j.mtener.2021.100786 – ident: e_1_2_7_38_1 doi: 10.1002/anie.202104536 – ident: e_1_2_7_16_1 doi: 10.34133/2020/1085417 – ident: e_1_2_7_43_1 doi: 10.1016/j.carbon.2014.01.017 – ident: e_1_2_7_51_1 doi: 10.1021/nl102919m – ident: e_1_2_7_56_1 doi: 10.1016/j.nanoen.2022.107442 – ident: e_1_2_7_5_1 doi: 10.1002/admt.201900744 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201400910 – ident: e_1_2_7_32_1 doi: 10.1002/smtd.201700231 – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201802083 – volume: 2 start-page: 1 issue: 1 year: 2021 ident: e_1_2_7_9_1 article-title: Recent progress of skin‐integrated electronics for intelligent sensing publication-title: Light: Adv Manuf – ident: e_1_2_7_52_1 doi: 10.1002/adfm.202005646 – ident: e_1_2_7_21_1 doi: 10.1039/c3ee43870h – ident: e_1_2_7_50_1 doi: 10.1002/adma.202204457 – ident: e_1_2_7_46_1 doi: 10.1039/C5EE02474A – ident: e_1_2_7_40_1 doi: 10.1039/C3MH00059A – ident: e_1_2_7_14_1 doi: 10.1016/B978-0-12-818890-3.00020-5 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201402987 – ident: e_1_2_7_34_1 doi: 10.3390/en14217373 – ident: e_1_2_7_31_1 doi: 10.1016/j.mtchem.2019.03.006 – ident: e_1_2_7_25_1 doi: 10.1002/inf2.12064 – ident: e_1_2_7_19_1 doi: 10.1039/C2NR32600K – ident: e_1_2_7_17_1 doi: 10.1038/s41586-019-1687-0 – ident: e_1_2_7_45_1 doi: 10.1002/smll.201804966 – ident: e_1_2_7_28_1 doi: 10.1016/j.mattod.2021.01.026 – ident: e_1_2_7_10_1 doi: 10.1016/j.nanoen.2019.05.033 – ident: e_1_2_7_15_1 doi: 10.1016/j.tibtech.2016.05.009 – ident: e_1_2_7_36_1 doi: 10.1186/s11671-019-3084-x – ident: e_1_2_7_41_1 doi: 10.1002/adma.202110140 – volume: 1 start-page: 10 year: 2021 ident: e_1_2_7_2_1 article-title: Tattoo‐like epidermal electronics as skin sensors for human‐machine interfaces publication-title: Soft Sci – ident: e_1_2_7_18_1 doi: 10.1038/s41551-021-00723-y – ident: e_1_2_7_24_1 doi: 10.1002/inf2.12079 – ident: e_1_2_7_44_1 doi: 10.1016/j.electacta.2014.10.156 – ident: e_1_2_7_27_1 doi: 10.1002/adhm.202100199 – ident: e_1_2_7_29_1 doi: 10.1016/j.jma.2021.04.011 – ident: e_1_2_7_39_1 doi: 10.1007/s11581-018-2710-4 – ident: e_1_2_7_47_1 doi: 10.1039/C4TA06008C – ident: e_1_2_7_20_1 doi: 10.1109/TIA.2017.2672674 – volume: 2 start-page: 1 issue: 1 year: 2016 ident: e_1_2_7_8_1 article-title: Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications publication-title: Microsyst Nanoeng – ident: e_1_2_7_7_1 doi: 10.1002/adhm.201400642 |
| SSID | ssj0002504251 |
| Score | 2.3731396 |
| Snippet | Flexible and bio‐integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power sources,... Flexible and bio-integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power sources,... Abstract Flexible and bio‐integrated electronics have attracted great attention due to their enormous contributions to personalized medical devices. Power... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Air batteries Biocompatibility bioelectronics Biomedical materials Conductivity Customization Deformation Design Drug delivery systems Electrolytes Electronics flexible electronics Graphene Hydrogels Lighting Magnesium Medical electronics Metal air batteries Mg–air battery Polymers Power Power sources Skin Stretchability stretchable battery Wearable computers Wound healing |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA4iHvQg_uL6R0AvCtVtm6bpUcVFL4sHBW8hzSS6oLtSV8Gb7-Ab-iTOpHWtIHrxFkoow8xk5huS-Yax3SwFZ6QSUeldEonEZriyMoLMx9I5AYXyYdhE3u-r6-viojXqi96E1fTAteIORSGhcD5T0ljh0rwUwigDGaQy9U5Yir6IelrFFMVgIubCzD3hI00O0V7JAYbpMGLlKwMFov5v6LKNUUOS6S2w-QYd8qNaqkU25YZLbK7FGbjMKrpHRlVTyxO_NzcYqgZP9--vb2ZQ8TKwZb5wyk3AR0NOnVacPItj3UvUrvgPfvsC1ejG3XEErHww4eQc87oXn8zG2xfbK-yqd3p5chY1gxMiK_KuigwoRA42MVjOlEJiSWK8Aax0hLO-KGPTlSqhQsfkgCncCR9D1o3Bd63JhTfpKpsejoZujfESRGqFzWSZouJjVVglMjAGvKJLReiwvU9latuwitNwiztd8yEnmhSvg-I7bGey96Hm0vhx1zHZZLKD-K_DB_QK3XiF_ssrOmzz06K6OZSPmpp-EbBizu6w_WDlX8TQ5_1eElbr_yHQBpulQfX167VNNj2untwWm7HP48FjtR2c9wPFAfhE priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7SpIf20KY_IdumQdBeWnCzliVZhl6akCW5LDm0kJuQ9bNdSHaDd1PIre_QN8yTZEb2OhsohdKbMGMjNDOabyTPNwAfZOGDVVpkdQw8E9xJHDmVeRlzFYLwlY6p2UQ5Huvz8-psA76samFafoj-wI08I-3X5OC2Xhzck4aiAvhn3He1fgRbeV5oatzAxVl_wkLkXDz1X8SwTodxSvb8pPzg_vUHESkR9z9Am-uYNQWd0fP_m-42POvAJvvaWscL2Aizl_B0jYLwFTR0LY2aowoqdmknuPNNry9vf_2204bViXzzhlGo82w-Y1S4xchQGabRxBSL32A_bnwzn4QLhviXTXuKzyVrS_vJCtj6Pflr-D46_nZ0knV9GDInyqHOrNcIRBy3mB3VQmGGY6P1mDiJ4GJV53aoNKe8yZYeEUEQMfdymPs4dLYU0RY7sDmbz8IusNqLwgknVV0IYXNdOS2kt9ZHTXeUfgAfV7owriMpp14ZF6alV-aG1tGkdRzA-172qqXm-KPUIam0lyA67fRg3kxM551GVMpXIUqtrBOhKGucnLZe-kIVMQg3gL2VQZjOxxeGaogR_yIEGMCnpPq_TMOcjkc8jd78i_BbeEL97duf3vZgc9lch3fw2P1cThfNfrL3O3FKBUU priority: 102 providerName: Wiley-Blackwell |
| Title | Stretchable magnesium–air battery based on dual ions conducting hydrogel for intelligent biomedical applications |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12388 https://www.proquest.com/docview/2789519036 https://doaj.org/article/496d9ef586ac4e37b44a8ad5d363fe4c |
| Volume | 5 |
| WOSCitedRecordID | wos000889440100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: P5Z dateStart: 20210701 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: M7S dateStart: 20210701 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: KB. dateStart: 20210701 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: BENPR dateStart: 20210701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: PIMPY dateStart: 20210701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: WIN dateStart: 20190101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iLQtYlGfFlDKyBBuQ0k4cJ3FWiEEdMUJEEQ9R2ESOH8NI7aRkpkjd8Q_8IV_CvU4mHSTUDZvISSzL0rHv0z4X4FkcGasSKYLKWR4IrmNs6SQwsQsTa4XJpPPFJtI8lycnWdEF3Jbdscq1TPSC2tSaYuRHdGMTrQ0UuC_PvwdUNYqyq10JjS3YIZYE7o_ufehjLETPhfq7ZyXlR4gaP0Rh7QutXOkhT9f_l425aal6VTO587-TvAu7nZHJXrWr4h7csIv7cHuDevABNJSORsTo5hQ7UzOUePOLs98_f6l5wypPunnJSMUZVi8YXdhitEAZus_EEItjsG-Xpqln9pSh3cvmPbXnirVX-gl9tpkffwifJscfX78JuvoLgRbpSAbKSDRANFfoFVUiQc9GOWXQYRJWu6wK1SiRnPwllRq0BKxwoYlHoXEjrVLhVLQH24t6YR8Bq4yItNBxUkVCqFBmWorYKGWcpNykGcDzNRql7sjJqUbGadnSKvOSkCs9cgN42vc9byk5_tlrTKD2PYhG23-om1nZ7cpSZInJrItlorSwUVrh5KQysYmSyFmhB3Cwxrns9vayvAJ5AC_8MrlmGuU0n3Df2r9-rMdwiyrZt8fbDmB71VzYJ3BT_1jNl80QtrgohrAzPs6L90MfOMDn2_Hh0K94fBbxV_xfTN8VX_Dt8zT_A7WYDZA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98EZdKGAJOIAUunGcxDkgxGvVVcsKiSL1Fhw_lpXapGS3oL3xH_gf_Ch-CTPOo4uEeuuBmxVZlhN_nvmc8XwD8DiOjFWJFEHhLA8E1zG2dBKY2IWJtcJk0vliE-lkIg8Osg9r8KvLhaFrlZ1N9IbaVJr-kW9TxiayDTS4L4-_BlQ1iqKrXQmNBha7dvkdj2zzF-O3uL5POB-923-zE7RVBQIt0qEMlJHoVjVXyPULkSBfV04ZPAYIq11WhGqYSE6nAJUa9G9WuNDEw9C4oVapcCrCcS_ARUHW318V_Nj_0yE5MOQLvQoq30aU8OfoHHxhl1O_58sD_MVpV5mxd22ja__bR7kOV1sSzV41qL8Ba7a8CRsr0oq3oKZwOyKSMsPYkZqiRZ-dHP3-8VPNalZ4UdElIxduWFUySkhjtAGZrkpSwMUx2JelqaupPWTI69msly5dsEaygNDNVuP_t-HTubz0HVgvq9JuAiuMiLTQcVJEQqhQZlqK2ChlnKTYqxnA0271c92Kr1MNkMO8kY3mOSEl90gZwKO-73EjOfLPXq8JRH0Pkgn3D6p6mrdWJxdZYjLrYpkoLWyUFjg5qUxsoiRyVugBbHW4ylvbNc9PQTWAZx6WZ0wjH09G3Lfunj3WQ7i8s_9-L98bT3bvwRWOXLG5yrcF64v6xN6HS_rbYjavH_g9xeDzeeP1DxdaYgA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tC0Jw4B9RWMAScAAptHGcxDkgBCwV1aKqB5BWXILjn1JpN1nSLqg33oG34XF4Emacny0S2tseuFmRZTnJ55lvbM83AI_jyFiVSBEUzvJAcB1jSyeBiV2YWCtMJp0vNpFOp3J_P5ttwa8uF4auVXY20RtqU2naIx9SxiayDTS4Q9dei5jtjl8efQ2oghSdtHblNBqI7Nn1dwzfli8mu_ivn3A-fvvhzbugrTAQaJGOZKCMRBeruULeX4gEubtyymBIIKx2WRGqUSI5RQQqNejrrHChiUehcSOtUuFUhOOeg_MpxpgU-M3iT_3-DkmDIXfoFVH5EBHDn6Oj8EVeTnygLxXwF7_dZMnezY2v_s8f6Bpcack1e9WshuuwZcsbcHlDcvEm1HQMj0iljDF2qOZo6RfHh79__FSLmhVebHTNyLUbVpWMEtUYLUymq5KUcXEM9mVt6mpuDxjyfbboJU1XrJEyINSzzXsBt-Djmbz0bdguq9LeAVYYEWmh46SIhFChzLQUsVHKOElnsmYATzsk5LoVZafaIAd5IyfNc0JN7lEzgEd936NGiuSfvV4ToPoeJB_uH1T1PG-tUS6yxGTWxTJRWtgoLXByUpnYREnkrNAD2Okwlrc2bZmfAGwAzzxET5lGPpmOuW_dPX2sh3ARYZq_n0z37sEljhSyueG3A9ur-tjehwv622qxrB_45cXg81nD9Q_QFGrj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretchable+magnesium%E2%80%93air+battery+based+on+dual+ions+conducting+hydrogel+for+intelligent+biomedical+applications&rft.jtitle=InfoMat&rft.au=Huang%2C+Xingcan&rft.au=Liu%2C+Yiming&rft.au=Park%2C+Wooyoung&rft.au=Zhao%2C+Zhao&rft.date=2023-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3165&rft.volume=5&rft.issue=3&rft_id=info:doi/10.1002%2Finf2.12388&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |