Management of cover crops in temperate climates influences soil organic carbon stocks a meta-analysis
Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-q...
Uloženo v:
| Vydáno v: | Ecological applications Ročník 31; číslo 3; s. 1 - 19 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
John Wiley and Sons, Inc
01.04.2021
Ecological Society of America |
| Témata: | |
| ISSN: | 1051-0761, 1939-5582 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha−1·yr−1) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO₂) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets. |
|---|---|
| AbstractList | Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0-30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20-30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha-1 ·yr-1 ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2 ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0-30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20-30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha-1 ·yr-1 ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2 ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets. Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0-30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20-30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha ·yr ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets. Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high‐quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta‐analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta‐analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha⁻¹·yr⁻¹) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO₂) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision‐support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets. Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high‐quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta‐analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta‐analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks ( P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha −1 ·yr −1 ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO 2 ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision‐support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets. Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha−1·yr−1) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO₂) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets. Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high‐quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta‐analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta‐analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha−1·yr−1) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision‐support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets. Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high‐quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta‐analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta‐analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha−1·yr−1) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision‐support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets. |
| Author | Paustian, Keith Schipanski, Meagan E. McClelland, Shelby C. |
| Author_xml | – sequence: 1 givenname: Shelby C. surname: McClelland fullname: McClelland, Shelby C. – sequence: 2 givenname: Keith surname: Paustian fullname: Paustian, Keith – sequence: 3 givenname: Meagan E. surname: Schipanski fullname: Schipanski, Meagan E. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33320994$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1rHDEMhk1JaT5ayB9oMOSSy2xs-WPHxxDSppDSHpLz4HXk4O2MPbFnWvLv42W3KYSW-iJhP3pl6T0kezFFJOSYswVnDM7RjguAZfuGHHAjTKNUC3s1Z4o3bKn5PjksZc3qAYB3ZF8IAcwYeUDuvtpoH3DAONHkqUs_MVOX01hoiHTCYcRsJ6SuD0ONm1vfzxhdTUsKPU35wcbgqLN5lSItU3I_ynvy1tu-4IddPCK3n65uL6-bm2-fv1xe3DROLlnbCMe9ZCvfSq1AGu-NYTWVRjmLoLy0AuujQ84kV1xqL1ZGW98iKm2tOCJnW9kxp8cZy9QNoTjsexsxzaUDpbhRzGj1f7R-SIMBsUFPX6HrNOdY56iCnBuQoHmlTnbUvBrwvhtzXVB-6n6v9k_Hus1SMvoXhLNu41pXXes2rlV08Qp1YbJTSHHKNvR_K2i2Bb9Cj0__FO6uLr7v-I9bfl39yS88LFkdGbR4Bu-ar2k |
| CitedBy_id | crossref_primary_10_1002_jeq2_70058 crossref_primary_10_1016_j_compag_2025_110924 crossref_primary_10_1002_saj2_70008 crossref_primary_10_1029_2024EF005698 crossref_primary_10_1080_00380768_2024_2360022 crossref_primary_10_5194_soil_9_1_2023 crossref_primary_10_1016_j_agrformet_2023_109812 crossref_primary_10_3389_fagro_2024_1446404 crossref_primary_10_1002_agj2_21209 crossref_primary_10_1002_ecs2_70397 crossref_primary_10_3389_fsufs_2025_1527898 crossref_primary_10_3390_agronomy14122835 crossref_primary_10_1139_cjss_2024_0024 crossref_primary_10_2489_jswc_2021_0920A crossref_primary_10_2489_jswc_2023_00132 crossref_primary_10_1007_s11104_022_05438_w crossref_primary_10_1002_jeq2_70046 crossref_primary_10_3390_plants12162966 crossref_primary_10_3390_agronomy14061229 crossref_primary_10_1016_j_foreco_2024_122107 crossref_primary_10_1038_s41893_023_01131_7 crossref_primary_10_1111_ejss_70012 crossref_primary_10_1016_j_soilbio_2024_109616 crossref_primary_10_1016_j_agee_2023_108393 crossref_primary_10_1016_j_still_2024_106419 crossref_primary_10_1111_sum_13064 crossref_primary_10_1016_j_fcr_2023_109076 crossref_primary_10_1016_j_soilbio_2023_109110 crossref_primary_10_3389_fagro_2022_844166 crossref_primary_10_1007_s10705_022_10253_x crossref_primary_10_1016_j_geoderma_2024_116808 crossref_primary_10_1002_agj2_21185 crossref_primary_10_1007_s42729_023_01192_9 crossref_primary_10_1002_saj2_20566 crossref_primary_10_1016_j_scitotenv_2023_168010 crossref_primary_10_1007_s13165_024_00466_5 crossref_primary_10_1016_j_still_2024_106020 crossref_primary_10_1002_agj2_21340 crossref_primary_10_1016_j_agee_2025_109858 crossref_primary_10_1002_saj2_20683 crossref_primary_10_1016_j_still_2025_106469 crossref_primary_10_3389_fsufs_2023_1067506 crossref_primary_10_1002_agg2_20454 crossref_primary_10_1016_j_tifs_2024_104477 crossref_primary_10_1111_gcb_70133 crossref_primary_10_1111_gcb_17372 crossref_primary_10_1016_j_soilbio_2025_109888 crossref_primary_10_1080_14735903_2023_2211484 crossref_primary_10_1038_s41598_025_08419_y crossref_primary_10_1088_1748_9326_ad35d8 crossref_primary_10_1038_s41597_024_02996_9 crossref_primary_10_1002_cft2_70051 crossref_primary_10_1002_ecs2_4459 crossref_primary_10_1016_j_scitotenv_2021_150632 crossref_primary_10_1111_gcb_17012 crossref_primary_10_1016_j_fcr_2025_109860 crossref_primary_10_1088_1748_9326_adc3ae crossref_primary_10_1002_jeq2_70026 crossref_primary_10_1002_saj2_20730 crossref_primary_10_1038_s41598_025_98916_x crossref_primary_10_1094_PBIOMES_09_24_0086_R crossref_primary_10_1002_saj2_20739 crossref_primary_10_1016_j_eja_2024_127114 crossref_primary_10_1002_agj2_21634 crossref_primary_10_1080_17583004_2023_2268071 crossref_primary_10_1016_j_jhydrol_2024_130710 crossref_primary_10_1016_j_scitotenv_2022_159990 crossref_primary_10_1016_j_agsy_2023_103663 crossref_primary_10_1016_j_geoderma_2022_115855 crossref_primary_10_1016_j_scitotenv_2023_164961 crossref_primary_10_1016_j_atech_2025_101201 crossref_primary_10_1016_j_scitotenv_2023_162300 crossref_primary_10_1007_s13593_023_00912_w crossref_primary_10_1007_s11104_023_06175_4 crossref_primary_10_1016_j_scitotenv_2024_170854 crossref_primary_10_1002_eap_2278 crossref_primary_10_3390_horticulturae11040396 crossref_primary_10_1007_s43994_024_00177_3 crossref_primary_10_1002_agj2_70013 crossref_primary_10_1016_j_agee_2024_108985 crossref_primary_10_1002_jeq2_20390 crossref_primary_10_1029_2025EF006009 crossref_primary_10_3390_su15086517 crossref_primary_10_1002_saj2_20747 crossref_primary_10_1088_1748_9326_ac8609 crossref_primary_10_1016_j_rse_2024_114594 crossref_primary_10_1111_1365_2745_14199 crossref_primary_10_1088_1748_9326_acd708 crossref_primary_10_1016_j_agsy_2022_103415 crossref_primary_10_1111_sum_12903 crossref_primary_10_1007_s43621_024_00662_z crossref_primary_10_1016_j_geoderma_2023_116719 crossref_primary_10_1080_14735903_2024_2335106 crossref_primary_10_1002_eap_2784 crossref_primary_10_3390_su14138067 crossref_primary_10_1029_2022EF003142 crossref_primary_10_1016_j_agee_2023_108599 crossref_primary_10_1016_j_catena_2024_108491 crossref_primary_10_1016_j_jenvman_2024_123104 crossref_primary_10_1111_nph_19951 crossref_primary_10_1093_plcell_koac303 crossref_primary_10_1590_0034_737x202370040009 crossref_primary_10_1088_2515_7620_acd6dc crossref_primary_10_1016_j_eja_2024_127140 crossref_primary_10_1146_annurev_ecolsys_102320_085332 crossref_primary_10_3389_fenrg_2022_837883 crossref_primary_10_1016_j_jhazmat_2024_135028 crossref_primary_10_1016_j_scitotenv_2024_176819 crossref_primary_10_1111_gcb_16296 crossref_primary_10_1016_j_apsoil_2023_105160 crossref_primary_10_1016_j_catena_2023_107346 crossref_primary_10_1016_j_ecoleng_2023_107175 crossref_primary_10_1111_ejss_13472 crossref_primary_10_1016_j_scitotenv_2023_168330 crossref_primary_10_1002_csc2_20920 crossref_primary_10_1080_13504509_2024_2393809 crossref_primary_10_1002_saj2_20761 crossref_primary_10_1007_s10533_022_00942_8 crossref_primary_10_1016_j_jrurstud_2025_103861 crossref_primary_10_1016_j_still_2024_106348 crossref_primary_10_1016_j_ecolind_2021_108414 crossref_primary_10_1002_agg2_20496 crossref_primary_10_1002_agj2_21661 crossref_primary_10_1016_j_soilbio_2025_109726 crossref_primary_10_1016_j_agsy_2021_103151 crossref_primary_10_1002_jpln_202200437 crossref_primary_10_1007_s11104_023_06086_4 crossref_primary_10_1134_S1064229325601441 crossref_primary_10_1002_ldr_5092 crossref_primary_10_1038_s41558_025_02337_7 crossref_primary_10_1016_j_agee_2025_109926 crossref_primary_10_1016_j_fcr_2024_109343 crossref_primary_10_1002_saj2_20378 crossref_primary_10_1016_j_agee_2023_108497 crossref_primary_10_1016_j_scitotenv_2022_154316 crossref_primary_10_1073_pnas_2217481120 crossref_primary_10_1002_ael2_20080 crossref_primary_10_1016_j_soilbio_2022_108708 crossref_primary_10_1111_afe_12663 crossref_primary_10_1016_j_agee_2025_109668 crossref_primary_10_1002_saj2_70032 crossref_primary_10_1016_j_geodrs_2024_e00885 crossref_primary_10_1002_ael2_20114 crossref_primary_10_1016_j_agee_2025_109817 crossref_primary_10_1038_s41598_023_41307_x crossref_primary_10_3390_agriculture15060581 crossref_primary_10_1111_gcb_16632 crossref_primary_10_1016_j_jenvman_2024_123253 crossref_primary_10_1017_S1742170523000492 crossref_primary_10_1038_s41558_025_02349_3 crossref_primary_10_1016_j_jenvman_2024_122284 crossref_primary_10_1073_pnas_2112108118 |
| Cites_doi | 10.2307/3565121 10.2134/agronj15.0182 10.1371/journal.pone.0097351 10.1002/sim.1482 10.1371/journal.pmed.1000097 10.2489/jswc.69.6.471 10.3390/agriculture7050042 10.1046/j.1354-1013.2002.00486.x 10.1111/gcbb.12428 10.2134/agronj1994.00021962008600060025x 10.1002/eap.1648 10.2136/sssaj2001.653771x 10.1111/gcb.12982 10.1023/A:1016125726789 10.1002/eap.2278 10.2489/jswc.72.3.226 10.4081/ija.2016.753 10.5424/sjar/2014124-5818 10.1016/j.agee.2014.10.024 10.4141/cjss96-046 10.1111/gcb.14762 10.1016/j.agee.2019.04.032 10.1016/j.agee.2016.12.016 10.1007/s10021-006-9010-y 10.2134/agronj2008.0103 10.1525/bio.2010.60.9.7 10.21273/HORTSCI.32.1.21 10.18637/jss.v036.i03 10.18637/jss.v067.i01 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V 10.20982/tqmp.12.3.p154 10.3389/fmicb.2019.01146 10.1016/S0038-0717(00)00084-5 10.1016/j.jclinepi.2005.08.017 10.1016/S0065-2504(01)32013-5 10.1007/BF02390179 10.1016/j.agee.2016.03.021 10.1016/j.still.2016.08.022 10.1002/joc.5086 10.2136/sssaj2001.652431x 10.2134/agronj2011.0330 10.1111/gcb.12113 10.1348/000711010X522687 10.1002/eap.1473 10.1016/j.still.2012.07.009 10.1016/j.agee.2016.12.011 10.2136/sssaj2005.0095 10.1111/j.2041-210X.2010.00056.x 10.2134/agronj2005.0322a 10.1038/ngeo2520 10.1016/j.ecolind.2013.04.011 10.1080/10440046.2011.627991 10.1038/nmicrobiol.2017.105 10.1098/rstb.2007.2169 10.1038/s41893-020-0491-z 10.1890/13-0616.1 10.1016/j.geoderma.2018.07.026 10.1016/j.agee.2011.12.003 10.1101/603696 10.20982/tqmp.11.1.p037 10.1016/S0167-1987(01)00244-6 10.1016/j.agee.2018.01.016 10.1016/j.scitotenv.2013.07.023 10.1007/s13593-016-0410-x 10.1111/gcb.14482 10.2134/jeq2004.1010 10.2134/agronj2016.03.0174 10.17221/223/2012-PSE 10.2136/sssaj1997.03615995006100010022x 10.1088/1748-9326/aaf933 10.1016/j.agsy.2013.11.004 10.1016/S0038-0717(00)00179-6 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1097/00010694-193107000-00003 10.2134/agronj2008.0052 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.2136/sssaj2009.0346 10.1111/gcb.14644 10.1023/A:1006271331703 10.2134/agronj2013.0089 10.1126/science.1060391 |
| ContentType | Journal Article |
| Copyright | 2020 by the Ecological Society of America 2020 by the Ecological Society of America. Copyright Ecological Society of America Apr 2021 |
| Copyright_xml | – notice: 2020 by the Ecological Society of America – notice: 2020 by the Ecological Society of America. – notice: Copyright Ecological Society of America Apr 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U7 8FD C1K FR3 M7N P64 RC3 SOI 7X8 7S9 L.6 |
| DOI | 10.1002/eap.2278 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Toxicology Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA CrossRef Entomology Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology Environmental Sciences Agriculture |
| EISSN | 1939-5582 |
| EndPage | 19 |
| ExternalDocumentID | 33320994 10_1002_eap_2278 EAP2278 27029226 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Meta-Analysis Journal Article |
| GrantInformation_xml | – fundername: United States Department of Agriculture National Institute for Food and Agriculture funderid: 2016‐51106‐25712 |
| GroupedDBID | --- -ET -~X ..I 0R~ 1OC 2AX 33P 4.4 42X 53G 5GY 85S 8WZ A6W AAESR AAHBH AAHKG AAHQN AAIHA AAIKC AAISJ AAKGQ AAMMB AAMNL AAMNW AANLZ AAXRX AAYCA AAZKR ABBHK ABCUV ABEFU ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABTLG ABXSQ ACAHQ ACCZN ACGFS ACHIC ACNCT ACPOU ACSTJ ACXBN ACXQS ADBBV ADKYN ADMGS ADNWM ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFFPM AFGKR AFWVQ AFXHP AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ANHSF AZFZN AZVAB BFHJK BMXJE BRXPI CBGCD CS3 CUYZI DCZOG DEVKO DRFUL DRSTM DU5 EBS ECGQY F5P HGLYW H~9 IAO IEA IGH IOF IPSME JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST L7B LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MV1 MXFUL MXSTM NXSMM O9- P2P P2W ROL RSZ SA0 SUPJJ TN5 UKR V62 WBKPD WH7 WOHZO WXSBR XSW YV5 YYM YYP Z0I ZCA ZO4 ZZTAW ~02 ~KM .-4 1OB 29G AAHHS AASGY AAYJJ ABYAD ACCFJ ACTWD ACUBG ADULT ADZOD AEEZP AEQDE AEUQT AHXOZ AI. AIDAL AILXY AIWBW AJBDE AQVQM AS~ DDYGU DOOOF EJD EQZMY FVMVE GTFYD HGD HQ2 HTVGU HVGLF IAG IEP ITC JSODD MVM NHB P0- PALCI RJQFR SAMSI VH1 VOH VQA XIH Y6R YXE ZCG AAYXX ABAWQ ABSQW ACHJO AGUYK AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U7 8FD C1K FR3 M7N P64 RC3 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4708-3c1f40bf8465249ff990465495cae25f4a3ef84ce10415146f3b96af8ee56aa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 170 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624947000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-0761 |
| IngestDate | Fri Sep 05 17:27:18 EDT 2025 Thu Oct 02 07:08:16 EDT 2025 Wed Aug 13 04:49:25 EDT 2025 Wed Feb 19 02:29:03 EST 2025 Tue Nov 18 21:42:14 EST 2025 Sat Nov 29 03:26:45 EST 2025 Wed Jan 22 16:29:20 EST 2025 Thu Jul 03 21:54:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | diversity net primary productivity negative emissions technology cover crop meta-analysis soil organic carbon agroecosystem |
| Language | English |
| License | 2020 by the Ecological Society of America. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4708-3c1f40bf8465249ff990465495cae25f4a3ef84ce10415146f3b96af8ee56aa3 |
| Notes | Corresponding Editor: Jason P. Kaye. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1661-9858 0000-0002-1827-3029 0000-0001-5262-5596 |
| PMID | 33320994 |
| PQID | 2511924261 |
| PQPubID | 2048294 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2551950965 proquest_miscellaneous_2470629235 proquest_journals_2511924261 pubmed_primary_33320994 crossref_primary_10_1002_eap_2278 crossref_citationtrail_10_1002_eap_2278 wiley_primary_10_1002_eap_2278_EAP2278 jstor_primary_27029226 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Ecological applications |
| PublicationTitleAlternate | Ecol Appl |
| PublicationYear | 2021 |
| Publisher | John Wiley and Sons, Inc Ecological Society of America |
| Publisher_xml | – name: John Wiley and Sons, Inc – name: Ecological Society of America |
| References | 2006; 70 2017; 7 2017; 2 2000; 48 2016; 108 2019; 10 2013; 126 2019; 14 2014; 69 1994; 24 2014; 24 2016; 225 1965; 15 2008; 100 1999; 80 2019; 281 2017; 9 2017; 236 1996; 76 2017; 237 2010; 60 2013; 19 2017; 72 2004; 33 2013; 59 2001; 294 2020; 3 2017; 37 2000 1999; 18 2000; 10 2018; 258 2019; 25 2011; 64 1984 2017; 165 2014; 9 2010; 74 2014; 12 2014; 125 2018; 28 1997; 61 2011; 2 2010; 36 2010 2017; 27 2013; 105 2015; 200 2015; 11 2002; 8 2006; 59 1953; 5 2006 2002 2012; 36 2012; 104 2007; 10 2012; 148 2015; 8 2008; 363 1931; 32 2016; 12 1994; 86 2001; 65 2017; 109 2017; 59 2002; 63 2002; 241 1997; 32 2013; 34 2020 2000; 32 2015; 21 2017; 12 2019 2018 2005; 97 2009; 101 2019; 333 2017 2016 2009; 6 2014 2013 2014; 466 2003; 22 2001; 32 e_1_2_7_3_1 Hedges L. V. (e_1_2_7_30_1) 2014 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Paustian K. (e_1_2_7_62_1) 2017 R Core Team (e_1_2_7_69_1) 2013 Fischer G. (e_1_2_7_21_1) 2000 Baker J. S. (e_1_2_7_5_1) 2010 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_94_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_96_1 e_1_2_7_35_1 e_1_2_7_56_1 Hothorn T. (e_1_2_7_32_1) 2016 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_39_1 Morra L. (e_1_2_7_58_1) 2017; 12 Hox J. (e_1_2_7_34_1) 2010 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 National Academies of Sciences and Medicine (e_1_2_7_60_1) 2018 e_1_2_7_84_1 Rosenthal R. (e_1_2_7_71_1) 1984 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_91_1 Raudenbush S. W. (e_1_2_7_70_1) 2002 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_51_1 e_1_2_7_93_1 Broadbent F. (e_1_2_7_11_1) 1953 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – volume: 69 start-page: 471 year: 2014 end-page: 482 article-title: Do cover crops increase or decrease nitrous oxide emissions? A meta‐analysis publication-title: Journal of Soil and Water Conservation – volume: 27 start-page: 662 year: 2017 end-page: 668 article-title: Grassland management impacts on soil carbon stocks: a new synthesis publication-title: Ecological Applications – volume: 76 start-page: 387 year: 1996 end-page: 393 article-title: Water‐stable aggregation and organic matter in four soils under conventional and zero tillage publication-title: Canadian Journal of Soil Science – volume: 225 start-page: 93 year: 2016 end-page: 103 article-title: Scaling‐up: cover crops differentially influence soil carbon in agricultural fields with diverse topography publication-title: Agriculture Ecosystems & Environment – volume: 5 start-page: 153 year: 1953 end-page: 183 – volume: 19 start-page: 988 year: 2013 end-page: 995 article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Global Change Biology – volume: 33 start-page: 1010 year: 2004 end-page: 1016 article-title: Cover cropping to reduce nitrate loss through subsurface drainage in the northern US Corn Belt publication-title: Journal of Environmental Quality – volume: 294 start-page: 843 year: 2001 end-page: 845 article-title: Diversity and productivity in a long‐term grassland experiment publication-title: Science – volume: 74 start-page: 1201 year: 2010 end-page: 1210 article-title: Tracing root vs. residue carbon into soils from conventional and alternative cropping systems publication-title: Soil Science Society of America Journal – volume: 12 start-page: 1000 year: 2014 end-page: 1007 article-title: The short term influence of aboveground biomass cover crops on C sequestration and beta‐glucosidase in a vineyard ground under semiarid conditions publication-title: Spanish Journal of Agricultural Research – year: 2018 – volume: 25 start-page: 2530 year: 2019 end-page: 2543 article-title: A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity publication-title: Global Change Biology – volume: 59 start-page: 22 year: 2013 end-page: 28 article-title: Environmental advantages of binary mixtures of and over individual pure stands publication-title: Plant Soil and Environment – year: 2014 – volume: 32 start-page: 2099 year: 2000 end-page: 2103 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no‐tillage agriculture publication-title: Soil Biology and Biochemistry – volume: 126 start-page: 276 year: 2013 end-page: 283 article-title: Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA publication-title: Soil & Tillage Research – volume: 7 start-page: 42 year: 2017 article-title: Overview of organic cover crop‐based no‐tillage technique in Europe: Farmers’ practices and research challenges publication-title: Agriculture – volume: 9 start-page: 1252 year: 2017 end-page: 1263 article-title: Cover crop root contributions to soil carbon in a no‐till corn bioenergy cropping system publication-title: Global Change Biology Bioenergy – volume: 70 start-page: 1168 year: 2006 end-page: 1177 article-title: Examining changes in soil organic carbon with oat and rye cover crops using terrain covariates publication-title: Soil Science Society of America Journal – volume: 11 start-page: 37 year: 2015 end-page: 50 article-title: A practical tutorial on conducting meta‐analysis in R publication-title: Quantitative Methods for Psychology – volume: 3 start-page: 391 year: 2020 end-page: 398 article-title: The role of soil carbon in natural climate solutions publication-title: Nature Sustainability – volume: 32 start-page: 199 year: 2001 end-page: 247 article-title: Meta‐analysis in ecology publication-title: Advances in Ecological Research – volume: 109 start-page: 259 year: 2017 end-page: 271 article-title: Achieving diverse cover crop mixtures: Effects of planting date and seeding rate publication-title: Agronomy Journal – volume: 101 start-page: 345 year: 2009 end-page: 351 article-title: Cover crops and organic mulch to improve tomato yields and soil fertility publication-title: Agronomy Journal – volume: 65 start-page: 431 year: 2001 end-page: 441 article-title: Carbon balance of the Breton classical plots over half a century publication-title: Soil Science Society of America Journal – volume: 237 start-page: 121 year: 2017 end-page: 133 article-title: Managing the trade off between nitrogen supply and retention with cover crop mixtures publication-title: Agriculture Ecosystems & Environment – volume: 363 start-page: 543 year: 2008 end-page: 555 article-title: The role of conservation agriculture in sustainable agriculture publication-title: Philosophical Transactions of the Royal Society B – volume: 241 start-page: 155 year: 2002 end-page: 176 article-title: Stabilization mechanisms of soil organic matter: implications for C‐saturation of soils publication-title: Plant and Soil – volume: 10 start-page: 1146 year: 2019 article-title: Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward publication-title: Frontiers in Microbiology – volume: 24 start-page: 53 year: 1994 end-page: 65 article-title: Methane emissions associated with a green manure amendment to flooded rice in California publication-title: Biogeochemistry – volume: 105 start-page: 1658 year: 2013 end-page: 1664 article-title: Apparent red clover nitrogen credit to corn: evaluating cover crop introduction publication-title: Agronomy Journal – volume: 72 start-page: 226 year: 2017 end-page: 239 article-title: Corn yield response to winter cover crops: An updated meta‐analysis publication-title: Journal of Soil and Water Conservation – year: 2019 – volume: 466 start-page: 164 year: 2014 end-page: 174 article-title: Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? publication-title: Science of the Total Environment – volume: 48 start-page: 147 year: 2000 end-page: 163 article-title: Management options for reducing CO2 emissions from agricultural soils publication-title: Biogeochemistry – volume: 236 start-page: 243 year: 2017 end-page: 255 article-title: Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France publication-title: Agriculture, Ecosystems & Environment – volume: 28 start-page: 249 year: 2018 end-page: 261 article-title: Crop rotations for increased soil carbon: perenniality as a guiding principle publication-title: Ecological Applications – volume: 104 start-page: 684 year: 2012 end-page: 698 article-title: Winter cover crop seeding rate and variety affects during eight years of organic vegetables: I. Cover crop biomass production publication-title: Agronomy Journal – volume: 21 start-page: 3200 year: 2015 end-page: 3209 article-title: Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept publication-title: Global Change Biology – volume: 61 start-page: 145 year: 1997 end-page: 152 article-title: Winter cover crop effects on soil organic carbon and carbohydrate in soil publication-title: Soil Science Society of America Journal – volume: 15 start-page: 229 year: 1965 end-page: 236 article-title: The carbon‐organic matter factor in various soil types publication-title: Oikos – volume: 333 start-page: 149 year: 2019 end-page: 162 article-title: Soil organic carbon storage as a key function of soils‐a review of drivers and indicators at various scales publication-title: Geoderma – volume: 8 start-page: 345 year: 2002 end-page: 360 article-title: Soil carbon stocks and land use change: a meta analysis publication-title: Global Change Biology – volume: 60 start-page: 698 year: 2010 end-page: 707 article-title: Opportunities and constraints for forest climate mitigation publication-title: BioScience – volume: 24 start-page: 560 year: 2014 end-page: 570 article-title: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta‐analysis publication-title: Ecological Applications – volume: 281 start-page: 81 year: 2019 end-page: 91 article-title: Effect of species identity and diversity on biomass production and its stability in cover crop mixtures publication-title: Agriculture, Ecosystems & Environment – volume: 148 start-page: 72 year: 2012 end-page: 82 article-title: Assessment of the quality of meta‐analysis in agronomy publication-title: Agriculture, Ecosystems & Environment – volume: 8 start-page: 776 year: 2015 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nature Geoscience – volume: 100 start-page: 1703 year: 2008 end-page: 1710 article-title: Use of manure, compost, and cover crops to supplant crop residue carbon in corn stover removed cropping systems publication-title: Agronomy Journal – volume: 80 start-page: 1150 year: 1999 end-page: 1156 article-title: The meta‐analysis of response ratios in experimental ecology publication-title: Ecology – volume: 97 start-page: 322 year: 2005 end-page: 332 article-title: Evaluating cover crops for benefits, costs and performance within cropping system niches publication-title: Agronomy Journal – volume: 258 start-page: 14 year: 2018 end-page: 22 article-title: Intensifying rotations increases soil carbon, fungi, and aggregation in semi‐arid agroecosystems publication-title: Agriculture, Ecosystems & Environment – year: 2000 – volume: 37 start-page: 4 year: 2017 article-title: Using cover crops to mitigate and adapt to climate change. A review publication-title: Agronomy for Sustainable Development – volume: 32 start-page: e33 year: 1931 article-title: The carbon‐organic matter factor in forest soil humus publication-title: Soil Science – volume: 2 start-page: 17105 year: 2017 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nature Microbiology – volume: 63 start-page: 167 year: 2002 end-page: 179 article-title: Long‐term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA publication-title: Soil & Tillage Research – volume: 6 year: 2009 article-title: Preferred reporting items for systematic reviews and meta‐analyses: the PRISMA statement publication-title: PLoS Med – volume: 25 start-page: 12 year: 2019 end-page: 24 article-title: Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry publication-title: Global Change Biology – volume: 25 start-page: 3753 year: 2019 end-page: 3766 article-title: Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils publication-title: Global Change Biology – year: 2016 – volume: 37 start-page: 4302 year: 2017 end-page: 4315 article-title: Worldclim 2: New 1‐km spatial resolution climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 65 start-page: 771 year: 2001 end-page: 779 article-title: Short‐term dynamics of root‐and shoot‐derived carbon from a leguminous green manure publication-title: Soil Science Society of America Journal – volume: 64 start-page: 1 year: 2011 end-page: 19 article-title: Testing overall and moderator effects in random effects meta‐regression publication-title: British Journal of Mathematical and Statistical Psychology – volume: 36 start-page: 1 year: 2010 end-page: 48 article-title: Conducting meta‐analyses in R with the metafor package publication-title: Journal of Statistical Software – year: 2010 – volume: 36 start-page: 423 year: 2012 end-page: 439 article-title: Cover crops in mono‐ and biculture for accumulation of biomass and soil organic carbon publication-title: Journal of Sustainable Agriculture – volume: 165 start-page: 247 year: 2017 end-page: 257 article-title: Total and permanganate‐oxidizable organic carbon in the corn rooting zone of US Coastal Plain soils as affected by forage radish cover crops and N fertilizer publication-title: Soil and Tillage Research – volume: 2 start-page: 1 year: 2011 end-page: 10 article-title: Getting started with meta‐analysis publication-title: Methods in Ecology and Evolution – volume: 18 start-page: 2693 year: 1999 end-page: 2708 article-title: Explaining heterogeneity in meta‐analysis: a comparison of methods publication-title: Statistics in medicine – year: 1984 – volume: 22 start-page: 2693 year: 2003 end-page: 2710 article-title: Improved tests for a random effects meta‐regression with a single covariate publication-title: Statistics in Medicine – volume: 32 start-page: 21 year: 1997 end-page: 28 article-title: Winter cover crops for sustainable agricultural systems: Influence on soil properties, water quality, and crop yields publication-title: HortScience – volume: 125 start-page: 12 year: 2014 end-page: 22 article-title: A framework for evaluating ecosystem services provided by cover crops in agroecosystems publication-title: Agricultural Systems – volume: 34 start-page: 31 year: 2013 end-page: 40 article-title: Soil property, CO2 emission and aridity index as agroecological indicators to assess the mineralization of cover crop green manure in a Mediterranean environment publication-title: Ecological Indicators – volume: 59 start-page: 341 year: 2017 end-page: 359 – year: 2002 – volume: 10 start-page: 59 year: 2007 end-page: 74 article-title: Land‐use intensity effects on soil organic carbon accumulation rates and mechanisms publication-title: Ecosystems – year: 2006 – year: 2020 – volume: 200 start-page: 33 year: 2015 end-page: 41 article-title: Carbon sequestration in agricultural soils via cultivation of cover crops—a meta‐analysis publication-title: Agriculture, Ecosystems & Environment – volume: 86 start-page: 1065 year: 1994 end-page: 1070 article-title: Seeding rate and kill date effects on hairy vetch cereal rye cover crop mixtures for corn production publication-title: Agronomy Journal – volume: 108 start-page: 39 year: 2016 end-page: 52 article-title: Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures publication-title: Agronomy Journal – volume: 10 start-page: 423 year: 2000 end-page: 436 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecological Applications – year: 2017 – volume: 14 year: 2019 article-title: Corrigendum: Satellite detection of cover crops and their effects on crop yield in the Midwestern United States (2018 Environ. Res. Let. 13 064033) publication-title: Environmental Research Letters – volume: 32 start-page: 1485 year: 2000 end-page: 1498 article-title: Review of mechanisms and quantification of priming effects publication-title: Soil Biology and Biochemistry – volume: 9 year: 2014 article-title: Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services publication-title: PLoS ONE – volume: 12 start-page: 154 year: 2016 end-page: 174 article-title: Fitting three‐level meta‐analytic models in R: A step‐by‐step tutorial publication-title: Quantitative Methods for Psychology – volume: 12 start-page: 40 year: 2017 end-page: 46 article-title: Introduction of sorghum (L.) Moench green manure in rotations of head salads and baby leaf crops under greenhouse publication-title: Italian Journal of Agronomy – volume: 59 start-page: 342 year: 2006 end-page: 353 article-title: A systematic review identifies a lack of standardization in methods for handling missing variance data publication-title: Journal of Clinical Epidemiology – year: 2013 – ident: e_1_2_7_33_1 doi: 10.2307/3565121 – ident: e_1_2_7_20_1 doi: 10.2134/agronj15.0182 – ident: e_1_2_7_80_1 doi: 10.1371/journal.pone.0097351 – ident: e_1_2_7_87_1 – ident: e_1_2_7_44_1 doi: 10.1002/sim.1482 – ident: e_1_2_7_57_1 doi: 10.1371/journal.pmed.1000097 – ident: e_1_2_7_7_1 doi: 10.2489/jswc.69.6.471 – ident: e_1_2_7_89_1 doi: 10.3390/agriculture7050042 – volume-title: Negative emissions technologies and reliable sequestration: a research agenda year: 2018 ident: e_1_2_7_60_1 – ident: e_1_2_7_26_1 doi: 10.1046/j.1354-1013.2002.00486.x – ident: e_1_2_7_4_1 doi: 10.1111/gcbb.12428 – ident: e_1_2_7_14_1 doi: 10.2134/agronj1994.00021962008600060025x – ident: e_1_2_7_43_1 doi: 10.1002/eap.1648 – ident: e_1_2_7_68_1 doi: 10.2136/sssaj2001.653771x – ident: e_1_2_7_13_1 doi: 10.1111/gcb.12982 – ident: e_1_2_7_78_1 doi: 10.1023/A:1016125726789 – volume-title: Global agro‐ecological zones assessment: methodology and results year: 2000 ident: e_1_2_7_21_1 – ident: e_1_2_7_55_1 doi: 10.1002/eap.2278 – ident: e_1_2_7_54_1 doi: 10.2489/jswc.72.3.226 – volume: 12 start-page: 40 year: 2017 ident: e_1_2_7_58_1 article-title: Introduction of sorghum Sorghum bicolor (L.) Moench green manure in rotations of head salads and baby leaf crops under greenhouse publication-title: Italian Journal of Agronomy doi: 10.4081/ija.2016.753 – ident: e_1_2_7_64_1 doi: 10.5424/sjar/2014124-5818 – ident: e_1_2_7_66_1 doi: 10.1016/j.agee.2014.10.024 – ident: e_1_2_7_22_1 doi: 10.4141/cjss96-046 – ident: e_1_2_7_84_1 doi: 10.1111/gcb.14762 – ident: e_1_2_7_93_1 doi: 10.1016/j.agee.2019.04.032 – ident: e_1_2_7_94_1 doi: 10.1016/j.agee.2016.12.016 – ident: e_1_2_7_25_1 doi: 10.1007/s10021-006-9010-y – ident: e_1_2_7_91_1 doi: 10.2134/agronj2008.0103 – volume-title: Statistical methods for meta‐analysis year: 2014 ident: e_1_2_7_30_1 – ident: e_1_2_7_38_1 doi: 10.1525/bio.2010.60.9.7 – ident: e_1_2_7_73_1 doi: 10.21273/HORTSCI.32.1.21 – ident: e_1_2_7_88_1 doi: 10.18637/jss.v036.i03 – ident: e_1_2_7_8_1 doi: 10.18637/jss.v067.i01 – ident: e_1_2_7_85_1 doi: 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V – ident: e_1_2_7_3_1 doi: 10.20982/tqmp.12.3.p154 – volume-title: Multivariate multilevel regression models. Multilevel analysis: techniques and applications year: 2010 ident: e_1_2_7_34_1 – ident: e_1_2_7_40_1 doi: 10.3389/fmicb.2019.01146 – ident: e_1_2_7_48_1 doi: 10.1016/S0038-0717(00)00084-5 – volume-title: R: A language and environment for statistical computing year: 2013 ident: e_1_2_7_69_1 – ident: e_1_2_7_95_1 doi: 10.1016/j.jclinepi.2005.08.017 – ident: e_1_2_7_27_1 doi: 10.1016/S0065-2504(01)32013-5 – ident: e_1_2_7_50_1 doi: 10.1007/BF02390179 – ident: e_1_2_7_49_1 doi: 10.1016/j.agee.2016.03.021 – ident: e_1_2_7_90_1 doi: 10.1016/j.still.2016.08.022 – ident: e_1_2_7_19_1 doi: 10.1002/joc.5086 – start-page: 153 volume-title: Advances in agronomy year: 1953 ident: e_1_2_7_11_1 – ident: e_1_2_7_37_1 doi: 10.2136/sssaj2001.652431x – ident: e_1_2_7_10_1 doi: 10.2134/agronj2011.0330 – ident: e_1_2_7_17_1 doi: 10.1111/gcb.12113 – ident: e_1_2_7_36_1 doi: 10.1348/000711010X522687 – start-page: 341 volume-title: Precision conservation: geospatial techniques for agricultural and natural resources conservation year: 2017 ident: e_1_2_7_62_1 – ident: e_1_2_7_15_1 doi: 10.1002/eap.1473 – ident: e_1_2_7_35_1 doi: 10.1016/j.still.2012.07.009 – ident: e_1_2_7_12_1 doi: 10.1016/j.agee.2016.12.011 – ident: e_1_2_7_41_1 doi: 10.2136/sssaj2005.0095 – volume-title: Meta‐analytic procedures for social research year: 1984 ident: e_1_2_7_71_1 – ident: e_1_2_7_28_1 doi: 10.1111/j.2041-210X.2010.00056.x – ident: e_1_2_7_81_1 doi: 10.2134/agronj2005.0322a – ident: e_1_2_7_16_1 doi: 10.1038/ngeo2520 – ident: e_1_2_7_53_1 doi: 10.1016/j.ecolind.2013.04.011 – ident: e_1_2_7_92_1 doi: 10.1080/10440046.2011.627991 – ident: e_1_2_7_51_1 doi: 10.1038/nmicrobiol.2017.105 – ident: e_1_2_7_67_1 – ident: e_1_2_7_31_1 doi: 10.1098/rstb.2007.2169 – ident: e_1_2_7_9_1 doi: 10.1038/s41893-020-0491-z – ident: e_1_2_7_56_1 doi: 10.1890/13-0616.1 – ident: e_1_2_7_96_1 doi: 10.1016/j.geoderma.2018.07.026 – ident: e_1_2_7_65_1 doi: 10.1016/j.agee.2011.12.003 – ident: e_1_2_7_6_1 doi: 10.1101/603696 – ident: e_1_2_7_18_1 doi: 10.20982/tqmp.11.1.p037 – ident: e_1_2_7_74_1 doi: 10.1016/S0167-1987(01)00244-6 – ident: e_1_2_7_72_1 doi: 10.1016/j.agee.2018.01.016 – ident: e_1_2_7_75_1 doi: 10.1016/j.scitotenv.2013.07.023 – ident: e_1_2_7_42_1 doi: 10.1007/s13593-016-0410-x – volume-title: Hierarchical linear models: Applications and data analysis methods year: 2002 ident: e_1_2_7_70_1 – ident: e_1_2_7_82_1 doi: 10.1111/gcb.14482 – ident: e_1_2_7_83_1 doi: 10.2134/jeq2004.1010 – ident: e_1_2_7_59_1 doi: 10.2134/agronj2016.03.0174 – ident: e_1_2_7_46_1 doi: 10.17221/223/2012-PSE – volume-title: Package ‘multcomp’. Simultaneous inference in general parametric models year: 2016 ident: e_1_2_7_32_1 – ident: e_1_2_7_47_1 doi: 10.2136/sssaj1997.03615995006100010022x – ident: e_1_2_7_77_1 doi: 10.1088/1748-9326/aaf933 – ident: e_1_2_7_76_1 doi: 10.1016/j.agsy.2013.11.004 – ident: e_1_2_7_79_1 doi: 10.1016/S0038-0717(00)00179-6 – ident: e_1_2_7_29_1 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – ident: e_1_2_7_52_1 doi: 10.1097/00010694-193107000-00003 – ident: e_1_2_7_61_1 – ident: e_1_2_7_23_1 doi: 10.2134/agronj2008.0052 – ident: e_1_2_7_39_1 doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume-title: Agricultural and Applied Economics Association Policy Issues 7(April 2010): 5 year: 2010 ident: e_1_2_7_5_1 – ident: e_1_2_7_45_1 doi: 10.2136/sssaj2009.0346 – ident: e_1_2_7_2_1 doi: 10.1111/gcb.14644 – ident: e_1_2_7_63_1 doi: 10.1023/A:1006271331703 – ident: e_1_2_7_24_1 doi: 10.2134/agronj2013.0089 – ident: e_1_2_7_86_1 doi: 10.1126/science.1060391 |
| SSID | ssj0000222 |
| Score | 2.6621675 |
| SecondaryResourceType | review_article |
| Snippet | Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric... |
| SourceID | proquest pubmed crossref wiley jstor |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Agricultural ecosystems Agricultural practices Agriculture agroecosystem agroecosystems autumn Biomass biomass production Carbon Carbon dioxide carbon sinks clay fraction Clay soils Climate cover crop Cover crops Crop management Crop Production Crops Crops, Agricultural diversity Drawdown Environmental conditions Environmental management Integration Meta-analysis negative emissions technology Net Primary Productivity Organic carbon Organic matter phytomass Plant biomass Soil Soil depth soil organic carbon Soil organic matter space and time Synchronism Synchronization |
| Subtitle | a meta-analysis |
| Title | Management of cover crops in temperate climates influences soil organic carbon stocks |
| URI | https://www.jstor.org/stable/27029226 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feap.2278 https://www.ncbi.nlm.nih.gov/pubmed/33320994 https://www.proquest.com/docview/2511924261 https://www.proquest.com/docview/2470629235 https://www.proquest.com/docview/2551950965 |
| Volume | 31 |
| WOSCitedRecordID | wos000624947000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1939-5582 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000222 issn: 1051-0761 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED_WdIO9dH-zueuKBmN78projx3trWwJeyiljA7yZiRFomGpXeK00Ld9hH3GfpLe2YpDoRuDPVlYJyNLd9KddPc7gPdZcI7nLk-1zVQqQxikVg5c6jMu7SxT0tgmUPgoPz4eTaf6JHpVUixMiw_RHbiRZDTrNQm4sfXBBjTUm4tPFMe5Bdsc2Vb1YPvr98mPo8063N4hoAKBBjNa62vo2QE_WLe9sxm1_oj3aZp3Fddm55k8-Z8-P4WdqG-yw5ZBnsEDXz6HR20GymssjV0s9cebkDdsEGW-fgFnGw8ZVgXmyOeTUeKvms1LRtBWhMvsmVvMz0lxxbcx70nN6mq-YG3iKMecWdqqZPj77mf9mRl27lfm5tdvE3FRXsLpZHz65Vsa8zOkTuZ0rOqGQQ5sQBVGoRUXAu5sBM-mlTOeqyCN8Fjp_JBwAHBJDsLqzISR9yozRvShV1alfw3MKK2DkV6ZGRqcXujAhc39jOfKh1kWEvi4nqfCRexySqGxKFrUZV7gyBY0sgm86ygvWryOe2j6zVR3BBSTp1EPTWBvPfdFFOW6IBtMkyIzxG931SiEdLNiSl9dIg2OR4afEOovNIqAfAhsJ4FXLV91HRBCUAizTOBDwz5_7HoxPjyh5-6_Er6Bx5y8cBpfoz3orZaX_i08dFereb3ch618OtqPgnML280b5g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDQQv428hY4CREDxla2M7mcfTBK2GKNWEirS3yHFtUdElU9Mh8cZH4DPySXYXO6kmDYTEU6z4HDn2nX1n3_0O4FXqjEkyk8WqSGUsnOvHheib2KaJKGapFLpoAoXH2WRycHqqTjbgbRsL4_EhugM3koxmvSYBpwPp_TVqqNXnexTIeQO2BHIRsvfW-8-jL-P1QuwvEVCDQIsZzfUWe7af7Ldtr-xG3iHxOlXzqubabD2ju__V6XuwHTROduRZ5D5s2PIB3PI5KH9gaWhCqTdcB71hgyD19UP4uvaRYZVjhrw-GaX-qtm8ZARuRcjMlpnF_IxUV3wbMp_UrK7mC-ZTRxlm9LKoSob_b77Vh0yzM7vSv3_-0gEZ5RFMR8Ppu-M4ZGiIjcjoYNUMnOgXDpUYiXacc7i3EUCbkkbbRDqhucVKYweEBICLsuOFSrU7sFamWvMebJZVaZ8A01Ipp4WVeoYmp-XKJbzI7CzJpHWz1EXwpp2o3AT0ckqiscg97nKS48jmNLIRvOwozz1ixzU0vWauOwKKylOoiUaw205-HoS5zskKU6TKDPDbXTWKId2t6NJWF0iD45HiJ7j8C40kKB-C24ngsWesrgOccwpiFhG8bvjnj13Ph0cn9Nz5V8IXcPt4-mmcjz9MPj6FOwn55DSeR7uwuVpe2Gdw03xfzevl8yA_lxsCHu4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDiZe-N8RGGAkBE9hbWInMzxNrBWIqqrQkPYWOY6tVeuSqumQeOMj8Bn3SXYXO6kmDYTEU6L4Ejm2z_6dffc7gDeJ1TpKdRrKPBEht3YQ5nygQ5NEPC8SwVXeBApP0un04OREzrbgYxsL4_ghug030oxmviYFN8vC7m9YQ41avqdAzluwzSmHTA-2j76Nv082E7E7REAEgRYzmust9-wg2m_fvbYaOYfEm6DmdeTaLD3j-_9V6QdwzyNOduiGyEPYMuUjuONyUP7Eu5H2d_3RJugNX_BaXz-G042PDKss0-T1ySj1V83mJSNyK2JmNkwv5ucEXfGpz3xSs7qaL5hLHaWZVqu8Khn-vz6rPzDFzs1aXf76rTwzyhM4Ho-OP30OfYaGUPOUNlb10PJBbhHECLTjrMW1jQjapNDKRMJyFRss1GZITAA4Kds4l4myB8aIRKm4D72yKs1TYEpIaRU3QhVocppY2ijOU1NEqTC2SGwA79qOyrRnL6ckGovM8S5HGbZsRi0bwOtOcukYO26Q6Td93QlQVJ5EJBrAXtv5mVfmOiMrTBKUGeK3u2JUQzpbUaWpLlAG2yPBT8TiLzKCqHyIbieAXTewugrEcUxBzDyAt834-WPVs9HhjK7P_lXwFezMjsbZ5Mv063O4G5FLTuN4tAe99erCvIDb-sd6Xq9eevW5AnnvHmk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Management+of+cover+crops+in+temperate+climates+influences+soil+organic+carbon+stocks%3A+a+meta%E2%80%90analysis&rft.jtitle=Ecological+applications&rft.au=McClelland%2C+Shelby+C&rft.au=Paustian%2C+Keith&rft.au=Schipanski%2C+Meagan+E&rft.date=2021-04-01&rft.pub=Ecological+Society+of+America&rft.issn=1051-0761&rft.eissn=1939-5582&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1002%2Feap.2278&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon |