Management of cover crops in temperate climates influences soil organic carbon stocks a meta-analysis

Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-q...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ecological applications Ročník 31; číslo 3; s. 1 - 19
Hlavní autoři: McClelland, Shelby C., Paustian, Keith, Schipanski, Meagan E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States John Wiley and Sons, Inc 01.04.2021
Ecological Society of America
Témata:
ISSN:1051-0761, 1939-5582
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha−1·yr−1) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO₂) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.
AbstractList Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0-30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20-30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha-1 ·yr-1 ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2 ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0-30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20-30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha-1 ·yr-1 ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2 ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.
Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0-30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20-30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha ·yr ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.
Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high‐quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta‐analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta‐analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha⁻¹·yr⁻¹) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO₂) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision‐support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.
Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high‐quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta‐analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta‐analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks ( P  < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha −1 ·yr −1 ) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO 2 ) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision‐support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.
Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high-quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta-analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta-analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha−1·yr−1) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO₂) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision-support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.
Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high‐quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta‐analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta‐analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha−1·yr−1) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision‐support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.
Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric carbon (C) in the soil. Cover cropping is a key practice to increase system net primary productivity (NPP) and increase the quantity of high‐quality plant residues available for integration into soil organic matter (SOM). Cover crop management and local environmental conditions, however, influence the magnitude of soil C stock change. Here, we used a comprehensive meta‐analysis approach to quantify the effect of cover crops on soil C stocks from the 0–30 cm soil depth in temperate climates and to identify key management and ecological factors that impact variation in this response. A total of 40 publications with 181 observations were included in the meta‐analysis representing six countries across three different continents. Overall, cover crops had a strong positive effect on soil C stocks (P < 0.0001) leading to a 12% increase, averaging 1.11 Mg C/ha more soil C relative to a no cover crop control. The strongest predictors of SOC response to cover cropping were planting and termination date (i.e., growing window), annual cover crop biomass production, and soil clay content. Cover crops planted as continuous cover or autumn planted and terminated led to 20–30% greater total soil C stocks relative to other cover crop growing windows. Likewise, high annual cover crop biomass production (>7 Mg·ha−1·yr−1) resulted in 30% higher total soil C stocks than lower levels of biomass production. Managing for greater NPP by improving synchronization in cover crop growing windows and climate will enhance the capacity of this practice to drawdown carbon dioxide (CO2) from the atmosphere across agroecosystems. The integration of growing window (potentially as a proxy for biomass growth), climate, and soil factors in decision‐support tools are relevant for improving the quantification of soil C stock change under cover crops, particularly with the expansion of terrestrial soil C markets.
Author Paustian, Keith
Schipanski, Meagan E.
McClelland, Shelby C.
Author_xml – sequence: 1
  givenname: Shelby C.
  surname: McClelland
  fullname: McClelland, Shelby C.
– sequence: 2
  givenname: Keith
  surname: Paustian
  fullname: Paustian, Keith
– sequence: 3
  givenname: Meagan E.
  surname: Schipanski
  fullname: Schipanski, Meagan E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33320994$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rHDEMhk1JaT5ayB9oMOSSy2xs-WPHxxDSppDSHpLz4HXk4O2MPbFnWvLv42W3KYSW-iJhP3pl6T0kezFFJOSYswVnDM7RjguAZfuGHHAjTKNUC3s1Z4o3bKn5PjksZc3qAYB3ZF8IAcwYeUDuvtpoH3DAONHkqUs_MVOX01hoiHTCYcRsJ6SuD0ONm1vfzxhdTUsKPU35wcbgqLN5lSItU3I_ynvy1tu-4IddPCK3n65uL6-bm2-fv1xe3DROLlnbCMe9ZCvfSq1AGu-NYTWVRjmLoLy0AuujQ84kV1xqL1ZGW98iKm2tOCJnW9kxp8cZy9QNoTjsexsxzaUDpbhRzGj1f7R-SIMBsUFPX6HrNOdY56iCnBuQoHmlTnbUvBrwvhtzXVB-6n6v9k_Hus1SMvoXhLNu41pXXes2rlV08Qp1YbJTSHHKNvR_K2i2Bb9Cj0__FO6uLr7v-I9bfl39yS88LFkdGbR4Bu-ar2k
CitedBy_id crossref_primary_10_1002_jeq2_70058
crossref_primary_10_1016_j_compag_2025_110924
crossref_primary_10_1002_saj2_70008
crossref_primary_10_1029_2024EF005698
crossref_primary_10_1080_00380768_2024_2360022
crossref_primary_10_5194_soil_9_1_2023
crossref_primary_10_1016_j_agrformet_2023_109812
crossref_primary_10_3389_fagro_2024_1446404
crossref_primary_10_1002_agj2_21209
crossref_primary_10_1002_ecs2_70397
crossref_primary_10_3389_fsufs_2025_1527898
crossref_primary_10_3390_agronomy14122835
crossref_primary_10_1139_cjss_2024_0024
crossref_primary_10_2489_jswc_2021_0920A
crossref_primary_10_2489_jswc_2023_00132
crossref_primary_10_1007_s11104_022_05438_w
crossref_primary_10_1002_jeq2_70046
crossref_primary_10_3390_plants12162966
crossref_primary_10_3390_agronomy14061229
crossref_primary_10_1016_j_foreco_2024_122107
crossref_primary_10_1038_s41893_023_01131_7
crossref_primary_10_1111_ejss_70012
crossref_primary_10_1016_j_soilbio_2024_109616
crossref_primary_10_1016_j_agee_2023_108393
crossref_primary_10_1016_j_still_2024_106419
crossref_primary_10_1111_sum_13064
crossref_primary_10_1016_j_fcr_2023_109076
crossref_primary_10_1016_j_soilbio_2023_109110
crossref_primary_10_3389_fagro_2022_844166
crossref_primary_10_1007_s10705_022_10253_x
crossref_primary_10_1016_j_geoderma_2024_116808
crossref_primary_10_1002_agj2_21185
crossref_primary_10_1007_s42729_023_01192_9
crossref_primary_10_1002_saj2_20566
crossref_primary_10_1016_j_scitotenv_2023_168010
crossref_primary_10_1007_s13165_024_00466_5
crossref_primary_10_1016_j_still_2024_106020
crossref_primary_10_1002_agj2_21340
crossref_primary_10_1016_j_agee_2025_109858
crossref_primary_10_1002_saj2_20683
crossref_primary_10_1016_j_still_2025_106469
crossref_primary_10_3389_fsufs_2023_1067506
crossref_primary_10_1002_agg2_20454
crossref_primary_10_1016_j_tifs_2024_104477
crossref_primary_10_1111_gcb_70133
crossref_primary_10_1111_gcb_17372
crossref_primary_10_1016_j_soilbio_2025_109888
crossref_primary_10_1080_14735903_2023_2211484
crossref_primary_10_1038_s41598_025_08419_y
crossref_primary_10_1088_1748_9326_ad35d8
crossref_primary_10_1038_s41597_024_02996_9
crossref_primary_10_1002_cft2_70051
crossref_primary_10_1002_ecs2_4459
crossref_primary_10_1016_j_scitotenv_2021_150632
crossref_primary_10_1111_gcb_17012
crossref_primary_10_1016_j_fcr_2025_109860
crossref_primary_10_1088_1748_9326_adc3ae
crossref_primary_10_1002_jeq2_70026
crossref_primary_10_1002_saj2_20730
crossref_primary_10_1038_s41598_025_98916_x
crossref_primary_10_1094_PBIOMES_09_24_0086_R
crossref_primary_10_1002_saj2_20739
crossref_primary_10_1016_j_eja_2024_127114
crossref_primary_10_1002_agj2_21634
crossref_primary_10_1080_17583004_2023_2268071
crossref_primary_10_1016_j_jhydrol_2024_130710
crossref_primary_10_1016_j_scitotenv_2022_159990
crossref_primary_10_1016_j_agsy_2023_103663
crossref_primary_10_1016_j_geoderma_2022_115855
crossref_primary_10_1016_j_scitotenv_2023_164961
crossref_primary_10_1016_j_atech_2025_101201
crossref_primary_10_1016_j_scitotenv_2023_162300
crossref_primary_10_1007_s13593_023_00912_w
crossref_primary_10_1007_s11104_023_06175_4
crossref_primary_10_1016_j_scitotenv_2024_170854
crossref_primary_10_1002_eap_2278
crossref_primary_10_3390_horticulturae11040396
crossref_primary_10_1007_s43994_024_00177_3
crossref_primary_10_1002_agj2_70013
crossref_primary_10_1016_j_agee_2024_108985
crossref_primary_10_1002_jeq2_20390
crossref_primary_10_1029_2025EF006009
crossref_primary_10_3390_su15086517
crossref_primary_10_1002_saj2_20747
crossref_primary_10_1088_1748_9326_ac8609
crossref_primary_10_1016_j_rse_2024_114594
crossref_primary_10_1111_1365_2745_14199
crossref_primary_10_1088_1748_9326_acd708
crossref_primary_10_1016_j_agsy_2022_103415
crossref_primary_10_1111_sum_12903
crossref_primary_10_1007_s43621_024_00662_z
crossref_primary_10_1016_j_geoderma_2023_116719
crossref_primary_10_1080_14735903_2024_2335106
crossref_primary_10_1002_eap_2784
crossref_primary_10_3390_su14138067
crossref_primary_10_1029_2022EF003142
crossref_primary_10_1016_j_agee_2023_108599
crossref_primary_10_1016_j_catena_2024_108491
crossref_primary_10_1016_j_jenvman_2024_123104
crossref_primary_10_1111_nph_19951
crossref_primary_10_1093_plcell_koac303
crossref_primary_10_1590_0034_737x202370040009
crossref_primary_10_1088_2515_7620_acd6dc
crossref_primary_10_1016_j_eja_2024_127140
crossref_primary_10_1146_annurev_ecolsys_102320_085332
crossref_primary_10_3389_fenrg_2022_837883
crossref_primary_10_1016_j_jhazmat_2024_135028
crossref_primary_10_1016_j_scitotenv_2024_176819
crossref_primary_10_1111_gcb_16296
crossref_primary_10_1016_j_apsoil_2023_105160
crossref_primary_10_1016_j_catena_2023_107346
crossref_primary_10_1016_j_ecoleng_2023_107175
crossref_primary_10_1111_ejss_13472
crossref_primary_10_1016_j_scitotenv_2023_168330
crossref_primary_10_1002_csc2_20920
crossref_primary_10_1080_13504509_2024_2393809
crossref_primary_10_1002_saj2_20761
crossref_primary_10_1007_s10533_022_00942_8
crossref_primary_10_1016_j_jrurstud_2025_103861
crossref_primary_10_1016_j_still_2024_106348
crossref_primary_10_1016_j_ecolind_2021_108414
crossref_primary_10_1002_agg2_20496
crossref_primary_10_1002_agj2_21661
crossref_primary_10_1016_j_soilbio_2025_109726
crossref_primary_10_1016_j_agsy_2021_103151
crossref_primary_10_1002_jpln_202200437
crossref_primary_10_1007_s11104_023_06086_4
crossref_primary_10_1134_S1064229325601441
crossref_primary_10_1002_ldr_5092
crossref_primary_10_1038_s41558_025_02337_7
crossref_primary_10_1016_j_agee_2025_109926
crossref_primary_10_1016_j_fcr_2024_109343
crossref_primary_10_1002_saj2_20378
crossref_primary_10_1016_j_agee_2023_108497
crossref_primary_10_1016_j_scitotenv_2022_154316
crossref_primary_10_1073_pnas_2217481120
crossref_primary_10_1002_ael2_20080
crossref_primary_10_1016_j_soilbio_2022_108708
crossref_primary_10_1111_afe_12663
crossref_primary_10_1016_j_agee_2025_109668
crossref_primary_10_1002_saj2_70032
crossref_primary_10_1016_j_geodrs_2024_e00885
crossref_primary_10_1002_ael2_20114
crossref_primary_10_1016_j_agee_2025_109817
crossref_primary_10_1038_s41598_023_41307_x
crossref_primary_10_3390_agriculture15060581
crossref_primary_10_1111_gcb_16632
crossref_primary_10_1016_j_jenvman_2024_123253
crossref_primary_10_1017_S1742170523000492
crossref_primary_10_1038_s41558_025_02349_3
crossref_primary_10_1016_j_jenvman_2024_122284
crossref_primary_10_1073_pnas_2112108118
Cites_doi 10.2307/3565121
10.2134/agronj15.0182
10.1371/journal.pone.0097351
10.1002/sim.1482
10.1371/journal.pmed.1000097
10.2489/jswc.69.6.471
10.3390/agriculture7050042
10.1046/j.1354-1013.2002.00486.x
10.1111/gcbb.12428
10.2134/agronj1994.00021962008600060025x
10.1002/eap.1648
10.2136/sssaj2001.653771x
10.1111/gcb.12982
10.1023/A:1016125726789
10.1002/eap.2278
10.2489/jswc.72.3.226
10.4081/ija.2016.753
10.5424/sjar/2014124-5818
10.1016/j.agee.2014.10.024
10.4141/cjss96-046
10.1111/gcb.14762
10.1016/j.agee.2019.04.032
10.1016/j.agee.2016.12.016
10.1007/s10021-006-9010-y
10.2134/agronj2008.0103
10.1525/bio.2010.60.9.7
10.21273/HORTSCI.32.1.21
10.18637/jss.v036.i03
10.18637/jss.v067.i01
10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V
10.20982/tqmp.12.3.p154
10.3389/fmicb.2019.01146
10.1016/S0038-0717(00)00084-5
10.1016/j.jclinepi.2005.08.017
10.1016/S0065-2504(01)32013-5
10.1007/BF02390179
10.1016/j.agee.2016.03.021
10.1016/j.still.2016.08.022
10.1002/joc.5086
10.2136/sssaj2001.652431x
10.2134/agronj2011.0330
10.1111/gcb.12113
10.1348/000711010X522687
10.1002/eap.1473
10.1016/j.still.2012.07.009
10.1016/j.agee.2016.12.011
10.2136/sssaj2005.0095
10.1111/j.2041-210X.2010.00056.x
10.2134/agronj2005.0322a
10.1038/ngeo2520
10.1016/j.ecolind.2013.04.011
10.1080/10440046.2011.627991
10.1038/nmicrobiol.2017.105
10.1098/rstb.2007.2169
10.1038/s41893-020-0491-z
10.1890/13-0616.1
10.1016/j.geoderma.2018.07.026
10.1016/j.agee.2011.12.003
10.1101/603696
10.20982/tqmp.11.1.p037
10.1016/S0167-1987(01)00244-6
10.1016/j.agee.2018.01.016
10.1016/j.scitotenv.2013.07.023
10.1007/s13593-016-0410-x
10.1111/gcb.14482
10.2134/jeq2004.1010
10.2134/agronj2016.03.0174
10.17221/223/2012-PSE
10.2136/sssaj1997.03615995006100010022x
10.1088/1748-9326/aaf933
10.1016/j.agsy.2013.11.004
10.1016/S0038-0717(00)00179-6
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.1097/00010694-193107000-00003
10.2134/agronj2008.0052
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.2136/sssaj2009.0346
10.1111/gcb.14644
10.1023/A:1006271331703
10.2134/agronj2013.0089
10.1126/science.1060391
ContentType Journal Article
Copyright 2020 by the Ecological Society of America
2020 by the Ecological Society of America.
Copyright Ecological Society of America Apr 2021
Copyright_xml – notice: 2020 by the Ecological Society of America
– notice: 2020 by the Ecological Society of America.
– notice: Copyright Ecological Society of America Apr 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U7
8FD
C1K
FR3
M7N
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1002/eap.2278
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA
CrossRef

Entomology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
Agriculture
EISSN 1939-5582
EndPage 19
ExternalDocumentID 33320994
10_1002_eap_2278
EAP2278
27029226
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Meta-Analysis
Journal Article
GrantInformation_xml – fundername: United States Department of Agriculture National Institute for Food and Agriculture
  funderid: 2016‐51106‐25712
GroupedDBID ---
-ET
-~X
..I
0R~
1OC
2AX
33P
4.4
42X
53G
5GY
85S
8WZ
A6W
AAESR
AAHBH
AAHKG
AAHQN
AAIHA
AAIKC
AAISJ
AAKGQ
AAMMB
AAMNL
AAMNW
AANLZ
AAXRX
AAYCA
AAZKR
ABBHK
ABCUV
ABEFU
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFS
ACHIC
ACNCT
ACPOU
ACSTJ
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADNWM
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFFPM
AFGKR
AFWVQ
AFXHP
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ANHSF
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CBGCD
CS3
CUYZI
DCZOG
DEVKO
DRFUL
DRSTM
DU5
EBS
ECGQY
F5P
HGLYW
H~9
IAO
IEA
IGH
IOF
IPSME
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MV1
MXFUL
MXSTM
NXSMM
O9-
P2P
P2W
ROL
RSZ
SA0
SUPJJ
TN5
UKR
V62
WBKPD
WH7
WOHZO
WXSBR
XSW
YV5
YYM
YYP
Z0I
ZCA
ZO4
ZZTAW
~02
~KM
.-4
1OB
29G
AAHHS
AASGY
AAYJJ
ABYAD
ACCFJ
ACTWD
ACUBG
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AHXOZ
AI.
AIDAL
AILXY
AIWBW
AJBDE
AQVQM
AS~
DDYGU
DOOOF
EJD
EQZMY
FVMVE
GTFYD
HGD
HQ2
HTVGU
HVGLF
IAG
IEP
ITC
JSODD
MVM
NHB
P0-
PALCI
RJQFR
SAMSI
VH1
VOH
VQA
XIH
Y6R
YXE
ZCG
AAYXX
ABAWQ
ABSQW
ACHJO
AGUYK
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U7
8FD
C1K
FR3
M7N
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4708-3c1f40bf8465249ff990465495cae25f4a3ef84ce10415146f3b96af8ee56aa3
IEDL.DBID DRFUL
ISICitedReferencesCount 170
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624947000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-0761
IngestDate Fri Sep 05 17:27:18 EDT 2025
Thu Oct 02 07:08:16 EDT 2025
Wed Aug 13 04:49:25 EDT 2025
Wed Feb 19 02:29:03 EST 2025
Tue Nov 18 21:42:14 EST 2025
Sat Nov 29 03:26:45 EST 2025
Wed Jan 22 16:29:20 EST 2025
Thu Jul 03 21:54:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords diversity
net primary productivity
negative emissions technology
cover crop
meta-analysis
soil organic carbon
agroecosystem
Language English
License 2020 by the Ecological Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4708-3c1f40bf8465249ff990465495cae25f4a3ef84ce10415146f3b96af8ee56aa3
Notes Corresponding Editor: Jason P. Kaye.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1661-9858
0000-0002-1827-3029
0000-0001-5262-5596
PMID 33320994
PQID 2511924261
PQPubID 2048294
PageCount 19
ParticipantIDs proquest_miscellaneous_2551950965
proquest_miscellaneous_2470629235
proquest_journals_2511924261
pubmed_primary_33320994
crossref_primary_10_1002_eap_2278
crossref_citationtrail_10_1002_eap_2278
wiley_primary_10_1002_eap_2278_EAP2278
jstor_primary_27029226
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Ecological applications
PublicationTitleAlternate Ecol Appl
PublicationYear 2021
Publisher John Wiley and Sons, Inc
Ecological Society of America
Publisher_xml – name: John Wiley and Sons, Inc
– name: Ecological Society of America
References 2006; 70
2017; 7
2017; 2
2000; 48
2016; 108
2019; 10
2013; 126
2019; 14
2014; 69
1994; 24
2014; 24
2016; 225
1965; 15
2008; 100
1999; 80
2019; 281
2017; 9
2017; 236
1996; 76
2017; 237
2010; 60
2013; 19
2017; 72
2004; 33
2013; 59
2001; 294
2020; 3
2017; 37
2000
1999; 18
2000; 10
2018; 258
2019; 25
2011; 64
1984
2017; 165
2014; 9
2010; 74
2014; 12
2014; 125
2018; 28
1997; 61
2011; 2
2010; 36
2010
2017; 27
2013; 105
2015; 200
2015; 11
2002; 8
2006; 59
1953; 5
2006
2002
2012; 36
2012; 104
2007; 10
2012; 148
2015; 8
2008; 363
1931; 32
2016; 12
1994; 86
2001; 65
2017; 109
2017; 59
2002; 63
2002; 241
1997; 32
2013; 34
2020
2000; 32
2015; 21
2017; 12
2019
2018
2005; 97
2009; 101
2019; 333
2017
2016
2009; 6
2014
2013
2014; 466
2003; 22
2001; 32
e_1_2_7_3_1
Hedges L. V. (e_1_2_7_30_1) 2014
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Paustian K. (e_1_2_7_62_1) 2017
R Core Team (e_1_2_7_69_1) 2013
Fischer G. (e_1_2_7_21_1) 2000
Baker J. S. (e_1_2_7_5_1) 2010
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_94_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_96_1
e_1_2_7_35_1
e_1_2_7_56_1
Hothorn T. (e_1_2_7_32_1) 2016
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_39_1
Morra L. (e_1_2_7_58_1) 2017; 12
Hox J. (e_1_2_7_34_1) 2010
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
National Academies of Sciences and Medicine (e_1_2_7_60_1) 2018
e_1_2_7_84_1
Rosenthal R. (e_1_2_7_71_1) 1984
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_91_1
Raudenbush S. W. (e_1_2_7_70_1) 2002
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_51_1
e_1_2_7_93_1
Broadbent F. (e_1_2_7_11_1) 1953
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 69
  start-page: 471
  year: 2014
  end-page: 482
  article-title: Do cover crops increase or decrease nitrous oxide emissions? A meta‐analysis
  publication-title: Journal of Soil and Water Conservation
– volume: 27
  start-page: 662
  year: 2017
  end-page: 668
  article-title: Grassland management impacts on soil carbon stocks: a new synthesis
  publication-title: Ecological Applications
– volume: 76
  start-page: 387
  year: 1996
  end-page: 393
  article-title: Water‐stable aggregation and organic matter in four soils under conventional and zero tillage
  publication-title: Canadian Journal of Soil Science
– volume: 225
  start-page: 93
  year: 2016
  end-page: 103
  article-title: Scaling‐up: cover crops differentially influence soil carbon in agricultural fields with diverse topography
  publication-title: Agriculture Ecosystems & Environment
– volume: 5
  start-page: 153
  year: 1953
  end-page: 183
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
– volume: 33
  start-page: 1010
  year: 2004
  end-page: 1016
  article-title: Cover cropping to reduce nitrate loss through subsurface drainage in the northern US Corn Belt
  publication-title: Journal of Environmental Quality
– volume: 294
  start-page: 843
  year: 2001
  end-page: 845
  article-title: Diversity and productivity in a long‐term grassland experiment
  publication-title: Science
– volume: 74
  start-page: 1201
  year: 2010
  end-page: 1210
  article-title: Tracing root vs. residue carbon into soils from conventional and alternative cropping systems
  publication-title: Soil Science Society of America Journal
– volume: 12
  start-page: 1000
  year: 2014
  end-page: 1007
  article-title: The short term influence of aboveground biomass cover crops on C sequestration and beta‐glucosidase in a vineyard ground under semiarid conditions
  publication-title: Spanish Journal of Agricultural Research
– year: 2018
– volume: 25
  start-page: 2530
  year: 2019
  end-page: 2543
  article-title: A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity
  publication-title: Global Change Biology
– volume: 59
  start-page: 22
  year: 2013
  end-page: 28
  article-title: Environmental advantages of binary mixtures of and over individual pure stands
  publication-title: Plant Soil and Environment
– year: 2014
– volume: 32
  start-page: 2099
  year: 2000
  end-page: 2103
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no‐tillage agriculture
  publication-title: Soil Biology and Biochemistry
– volume: 126
  start-page: 276
  year: 2013
  end-page: 283
  article-title: Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA
  publication-title: Soil & Tillage Research
– volume: 7
  start-page: 42
  year: 2017
  article-title: Overview of organic cover crop‐based no‐tillage technique in Europe: Farmers’ practices and research challenges
  publication-title: Agriculture
– volume: 9
  start-page: 1252
  year: 2017
  end-page: 1263
  article-title: Cover crop root contributions to soil carbon in a no‐till corn bioenergy cropping system
  publication-title: Global Change Biology Bioenergy
– volume: 70
  start-page: 1168
  year: 2006
  end-page: 1177
  article-title: Examining changes in soil organic carbon with oat and rye cover crops using terrain covariates
  publication-title: Soil Science Society of America Journal
– volume: 11
  start-page: 37
  year: 2015
  end-page: 50
  article-title: A practical tutorial on conducting meta‐analysis in R
  publication-title: Quantitative Methods for Psychology
– volume: 3
  start-page: 391
  year: 2020
  end-page: 398
  article-title: The role of soil carbon in natural climate solutions
  publication-title: Nature Sustainability
– volume: 32
  start-page: 199
  year: 2001
  end-page: 247
  article-title: Meta‐analysis in ecology
  publication-title: Advances in Ecological Research
– volume: 109
  start-page: 259
  year: 2017
  end-page: 271
  article-title: Achieving diverse cover crop mixtures: Effects of planting date and seeding rate
  publication-title: Agronomy Journal
– volume: 101
  start-page: 345
  year: 2009
  end-page: 351
  article-title: Cover crops and organic mulch to improve tomato yields and soil fertility
  publication-title: Agronomy Journal
– volume: 65
  start-page: 431
  year: 2001
  end-page: 441
  article-title: Carbon balance of the Breton classical plots over half a century
  publication-title: Soil Science Society of America Journal
– volume: 237
  start-page: 121
  year: 2017
  end-page: 133
  article-title: Managing the trade off between nitrogen supply and retention with cover crop mixtures
  publication-title: Agriculture Ecosystems & Environment
– volume: 363
  start-page: 543
  year: 2008
  end-page: 555
  article-title: The role of conservation agriculture in sustainable agriculture
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 241
  start-page: 155
  year: 2002
  end-page: 176
  article-title: Stabilization mechanisms of soil organic matter: implications for C‐saturation of soils
  publication-title: Plant and Soil
– volume: 10
  start-page: 1146
  year: 2019
  article-title: Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward
  publication-title: Frontiers in Microbiology
– volume: 24
  start-page: 53
  year: 1994
  end-page: 65
  article-title: Methane emissions associated with a green manure amendment to flooded rice in California
  publication-title: Biogeochemistry
– volume: 105
  start-page: 1658
  year: 2013
  end-page: 1664
  article-title: Apparent red clover nitrogen credit to corn: evaluating cover crop introduction
  publication-title: Agronomy Journal
– volume: 72
  start-page: 226
  year: 2017
  end-page: 239
  article-title: Corn yield response to winter cover crops: An updated meta‐analysis
  publication-title: Journal of Soil and Water Conservation
– year: 2019
– volume: 466
  start-page: 164
  year: 2014
  end-page: 174
  article-title: Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems?
  publication-title: Science of the Total Environment
– volume: 48
  start-page: 147
  year: 2000
  end-page: 163
  article-title: Management options for reducing CO2 emissions from agricultural soils
  publication-title: Biogeochemistry
– volume: 236
  start-page: 243
  year: 2017
  end-page: 255
  article-title: Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France
  publication-title: Agriculture, Ecosystems & Environment
– volume: 28
  start-page: 249
  year: 2018
  end-page: 261
  article-title: Crop rotations for increased soil carbon: perenniality as a guiding principle
  publication-title: Ecological Applications
– volume: 104
  start-page: 684
  year: 2012
  end-page: 698
  article-title: Winter cover crop seeding rate and variety affects during eight years of organic vegetables: I. Cover crop biomass production
  publication-title: Agronomy Journal
– volume: 21
  start-page: 3200
  year: 2015
  end-page: 3209
  article-title: Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept
  publication-title: Global Change Biology
– volume: 61
  start-page: 145
  year: 1997
  end-page: 152
  article-title: Winter cover crop effects on soil organic carbon and carbohydrate in soil
  publication-title: Soil Science Society of America Journal
– volume: 15
  start-page: 229
  year: 1965
  end-page: 236
  article-title: The carbon‐organic matter factor in various soil types
  publication-title: Oikos
– volume: 333
  start-page: 149
  year: 2019
  end-page: 162
  article-title: Soil organic carbon storage as a key function of soils‐a review of drivers and indicators at various scales
  publication-title: Geoderma
– volume: 8
  start-page: 345
  year: 2002
  end-page: 360
  article-title: Soil carbon stocks and land use change: a meta analysis
  publication-title: Global Change Biology
– volume: 60
  start-page: 698
  year: 2010
  end-page: 707
  article-title: Opportunities and constraints for forest climate mitigation
  publication-title: BioScience
– volume: 24
  start-page: 560
  year: 2014
  end-page: 570
  article-title: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta‐analysis
  publication-title: Ecological Applications
– volume: 281
  start-page: 81
  year: 2019
  end-page: 91
  article-title: Effect of species identity and diversity on biomass production and its stability in cover crop mixtures
  publication-title: Agriculture, Ecosystems & Environment
– volume: 148
  start-page: 72
  year: 2012
  end-page: 82
  article-title: Assessment of the quality of meta‐analysis in agronomy
  publication-title: Agriculture, Ecosystems & Environment
– volume: 8
  start-page: 776
  year: 2015
  article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss
  publication-title: Nature Geoscience
– volume: 100
  start-page: 1703
  year: 2008
  end-page: 1710
  article-title: Use of manure, compost, and cover crops to supplant crop residue carbon in corn stover removed cropping systems
  publication-title: Agronomy Journal
– volume: 80
  start-page: 1150
  year: 1999
  end-page: 1156
  article-title: The meta‐analysis of response ratios in experimental ecology
  publication-title: Ecology
– volume: 97
  start-page: 322
  year: 2005
  end-page: 332
  article-title: Evaluating cover crops for benefits, costs and performance within cropping system niches
  publication-title: Agronomy Journal
– volume: 258
  start-page: 14
  year: 2018
  end-page: 22
  article-title: Intensifying rotations increases soil carbon, fungi, and aggregation in semi‐arid agroecosystems
  publication-title: Agriculture, Ecosystems & Environment
– year: 2000
– volume: 37
  start-page: 4
  year: 2017
  article-title: Using cover crops to mitigate and adapt to climate change. A review
  publication-title: Agronomy for Sustainable Development
– volume: 32
  start-page: e33
  year: 1931
  article-title: The carbon‐organic matter factor in forest soil humus
  publication-title: Soil Science
– volume: 2
  start-page: 17105
  year: 2017
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nature Microbiology
– volume: 63
  start-page: 167
  year: 2002
  end-page: 179
  article-title: Long‐term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA
  publication-title: Soil & Tillage Research
– volume: 6
  year: 2009
  article-title: Preferred reporting items for systematic reviews and meta‐analyses: the PRISMA statement
  publication-title: PLoS Med
– volume: 25
  start-page: 12
  year: 2019
  end-page: 24
  article-title: Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry
  publication-title: Global Change Biology
– volume: 25
  start-page: 3753
  year: 2019
  end-page: 3766
  article-title: Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils
  publication-title: Global Change Biology
– year: 2016
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  article-title: Worldclim 2: New 1‐km spatial resolution climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 65
  start-page: 771
  year: 2001
  end-page: 779
  article-title: Short‐term dynamics of root‐and shoot‐derived carbon from a leguminous green manure
  publication-title: Soil Science Society of America Journal
– volume: 64
  start-page: 1
  year: 2011
  end-page: 19
  article-title: Testing overall and moderator effects in random effects meta‐regression
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 36
  start-page: 1
  year: 2010
  end-page: 48
  article-title: Conducting meta‐analyses in R with the metafor package
  publication-title: Journal of Statistical Software
– year: 2010
– volume: 36
  start-page: 423
  year: 2012
  end-page: 439
  article-title: Cover crops in mono‐ and biculture for accumulation of biomass and soil organic carbon
  publication-title: Journal of Sustainable Agriculture
– volume: 165
  start-page: 247
  year: 2017
  end-page: 257
  article-title: Total and permanganate‐oxidizable organic carbon in the corn rooting zone of US Coastal Plain soils as affected by forage radish cover crops and N fertilizer
  publication-title: Soil and Tillage Research
– volume: 2
  start-page: 1
  year: 2011
  end-page: 10
  article-title: Getting started with meta‐analysis
  publication-title: Methods in Ecology and Evolution
– volume: 18
  start-page: 2693
  year: 1999
  end-page: 2708
  article-title: Explaining heterogeneity in meta‐analysis: a comparison of methods
  publication-title: Statistics in medicine
– year: 1984
– volume: 22
  start-page: 2693
  year: 2003
  end-page: 2710
  article-title: Improved tests for a random effects meta‐regression with a single covariate
  publication-title: Statistics in Medicine
– volume: 32
  start-page: 21
  year: 1997
  end-page: 28
  article-title: Winter cover crops for sustainable agricultural systems: Influence on soil properties, water quality, and crop yields
  publication-title: HortScience
– volume: 125
  start-page: 12
  year: 2014
  end-page: 22
  article-title: A framework for evaluating ecosystem services provided by cover crops in agroecosystems
  publication-title: Agricultural Systems
– volume: 34
  start-page: 31
  year: 2013
  end-page: 40
  article-title: Soil property, CO2 emission and aridity index as agroecological indicators to assess the mineralization of cover crop green manure in a Mediterranean environment
  publication-title: Ecological Indicators
– volume: 59
  start-page: 341
  year: 2017
  end-page: 359
– year: 2002
– volume: 10
  start-page: 59
  year: 2007
  end-page: 74
  article-title: Land‐use intensity effects on soil organic carbon accumulation rates and mechanisms
  publication-title: Ecosystems
– year: 2006
– year: 2020
– volume: 200
  start-page: 33
  year: 2015
  end-page: 41
  article-title: Carbon sequestration in agricultural soils via cultivation of cover crops—a meta‐analysis
  publication-title: Agriculture, Ecosystems & Environment
– volume: 86
  start-page: 1065
  year: 1994
  end-page: 1070
  article-title: Seeding rate and kill date effects on hairy vetch cereal rye cover crop mixtures for corn production
  publication-title: Agronomy Journal
– volume: 108
  start-page: 39
  year: 2016
  end-page: 52
  article-title: Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures
  publication-title: Agronomy Journal
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecological Applications
– year: 2017
– volume: 14
  year: 2019
  article-title: Corrigendum: Satellite detection of cover crops and their effects on crop yield in the Midwestern United States (2018 Environ. Res. Let. 13 064033)
  publication-title: Environmental Research Letters
– volume: 32
  start-page: 1485
  year: 2000
  end-page: 1498
  article-title: Review of mechanisms and quantification of priming effects
  publication-title: Soil Biology and Biochemistry
– volume: 9
  year: 2014
  article-title: Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services
  publication-title: PLoS ONE
– volume: 12
  start-page: 154
  year: 2016
  end-page: 174
  article-title: Fitting three‐level meta‐analytic models in R: A step‐by‐step tutorial
  publication-title: Quantitative Methods for Psychology
– volume: 12
  start-page: 40
  year: 2017
  end-page: 46
  article-title: Introduction of sorghum (L.) Moench green manure in rotations of head salads and baby leaf crops under greenhouse
  publication-title: Italian Journal of Agronomy
– volume: 59
  start-page: 342
  year: 2006
  end-page: 353
  article-title: A systematic review identifies a lack of standardization in methods for handling missing variance data
  publication-title: Journal of Clinical Epidemiology
– year: 2013
– ident: e_1_2_7_33_1
  doi: 10.2307/3565121
– ident: e_1_2_7_20_1
  doi: 10.2134/agronj15.0182
– ident: e_1_2_7_80_1
  doi: 10.1371/journal.pone.0097351
– ident: e_1_2_7_87_1
– ident: e_1_2_7_44_1
  doi: 10.1002/sim.1482
– ident: e_1_2_7_57_1
  doi: 10.1371/journal.pmed.1000097
– ident: e_1_2_7_7_1
  doi: 10.2489/jswc.69.6.471
– ident: e_1_2_7_89_1
  doi: 10.3390/agriculture7050042
– volume-title: Negative emissions technologies and reliable sequestration: a research agenda
  year: 2018
  ident: e_1_2_7_60_1
– ident: e_1_2_7_26_1
  doi: 10.1046/j.1354-1013.2002.00486.x
– ident: e_1_2_7_4_1
  doi: 10.1111/gcbb.12428
– ident: e_1_2_7_14_1
  doi: 10.2134/agronj1994.00021962008600060025x
– ident: e_1_2_7_43_1
  doi: 10.1002/eap.1648
– ident: e_1_2_7_68_1
  doi: 10.2136/sssaj2001.653771x
– ident: e_1_2_7_13_1
  doi: 10.1111/gcb.12982
– ident: e_1_2_7_78_1
  doi: 10.1023/A:1016125726789
– volume-title: Global agro‐ecological zones assessment: methodology and results
  year: 2000
  ident: e_1_2_7_21_1
– ident: e_1_2_7_55_1
  doi: 10.1002/eap.2278
– ident: e_1_2_7_54_1
  doi: 10.2489/jswc.72.3.226
– volume: 12
  start-page: 40
  year: 2017
  ident: e_1_2_7_58_1
  article-title: Introduction of sorghum Sorghum bicolor (L.) Moench green manure in rotations of head salads and baby leaf crops under greenhouse
  publication-title: Italian Journal of Agronomy
  doi: 10.4081/ija.2016.753
– ident: e_1_2_7_64_1
  doi: 10.5424/sjar/2014124-5818
– ident: e_1_2_7_66_1
  doi: 10.1016/j.agee.2014.10.024
– ident: e_1_2_7_22_1
  doi: 10.4141/cjss96-046
– ident: e_1_2_7_84_1
  doi: 10.1111/gcb.14762
– ident: e_1_2_7_93_1
  doi: 10.1016/j.agee.2019.04.032
– ident: e_1_2_7_94_1
  doi: 10.1016/j.agee.2016.12.016
– ident: e_1_2_7_25_1
  doi: 10.1007/s10021-006-9010-y
– ident: e_1_2_7_91_1
  doi: 10.2134/agronj2008.0103
– volume-title: Statistical methods for meta‐analysis
  year: 2014
  ident: e_1_2_7_30_1
– ident: e_1_2_7_38_1
  doi: 10.1525/bio.2010.60.9.7
– ident: e_1_2_7_73_1
  doi: 10.21273/HORTSCI.32.1.21
– ident: e_1_2_7_88_1
  doi: 10.18637/jss.v036.i03
– ident: e_1_2_7_8_1
  doi: 10.18637/jss.v067.i01
– ident: e_1_2_7_85_1
  doi: 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V
– ident: e_1_2_7_3_1
  doi: 10.20982/tqmp.12.3.p154
– volume-title: Multivariate multilevel regression models. Multilevel analysis: techniques and applications
  year: 2010
  ident: e_1_2_7_34_1
– ident: e_1_2_7_40_1
  doi: 10.3389/fmicb.2019.01146
– ident: e_1_2_7_48_1
  doi: 10.1016/S0038-0717(00)00084-5
– volume-title: R: A language and environment for statistical computing
  year: 2013
  ident: e_1_2_7_69_1
– ident: e_1_2_7_95_1
  doi: 10.1016/j.jclinepi.2005.08.017
– ident: e_1_2_7_27_1
  doi: 10.1016/S0065-2504(01)32013-5
– ident: e_1_2_7_50_1
  doi: 10.1007/BF02390179
– ident: e_1_2_7_49_1
  doi: 10.1016/j.agee.2016.03.021
– ident: e_1_2_7_90_1
  doi: 10.1016/j.still.2016.08.022
– ident: e_1_2_7_19_1
  doi: 10.1002/joc.5086
– start-page: 153
  volume-title: Advances in agronomy
  year: 1953
  ident: e_1_2_7_11_1
– ident: e_1_2_7_37_1
  doi: 10.2136/sssaj2001.652431x
– ident: e_1_2_7_10_1
  doi: 10.2134/agronj2011.0330
– ident: e_1_2_7_17_1
  doi: 10.1111/gcb.12113
– ident: e_1_2_7_36_1
  doi: 10.1348/000711010X522687
– start-page: 341
  volume-title: Precision conservation: geospatial techniques for agricultural and natural resources conservation
  year: 2017
  ident: e_1_2_7_62_1
– ident: e_1_2_7_15_1
  doi: 10.1002/eap.1473
– ident: e_1_2_7_35_1
  doi: 10.1016/j.still.2012.07.009
– ident: e_1_2_7_12_1
  doi: 10.1016/j.agee.2016.12.011
– ident: e_1_2_7_41_1
  doi: 10.2136/sssaj2005.0095
– volume-title: Meta‐analytic procedures for social research
  year: 1984
  ident: e_1_2_7_71_1
– ident: e_1_2_7_28_1
  doi: 10.1111/j.2041-210X.2010.00056.x
– ident: e_1_2_7_81_1
  doi: 10.2134/agronj2005.0322a
– ident: e_1_2_7_16_1
  doi: 10.1038/ngeo2520
– ident: e_1_2_7_53_1
  doi: 10.1016/j.ecolind.2013.04.011
– ident: e_1_2_7_92_1
  doi: 10.1080/10440046.2011.627991
– ident: e_1_2_7_51_1
  doi: 10.1038/nmicrobiol.2017.105
– ident: e_1_2_7_67_1
– ident: e_1_2_7_31_1
  doi: 10.1098/rstb.2007.2169
– ident: e_1_2_7_9_1
  doi: 10.1038/s41893-020-0491-z
– ident: e_1_2_7_56_1
  doi: 10.1890/13-0616.1
– ident: e_1_2_7_96_1
  doi: 10.1016/j.geoderma.2018.07.026
– ident: e_1_2_7_65_1
  doi: 10.1016/j.agee.2011.12.003
– ident: e_1_2_7_6_1
  doi: 10.1101/603696
– ident: e_1_2_7_18_1
  doi: 10.20982/tqmp.11.1.p037
– ident: e_1_2_7_74_1
  doi: 10.1016/S0167-1987(01)00244-6
– ident: e_1_2_7_72_1
  doi: 10.1016/j.agee.2018.01.016
– ident: e_1_2_7_75_1
  doi: 10.1016/j.scitotenv.2013.07.023
– ident: e_1_2_7_42_1
  doi: 10.1007/s13593-016-0410-x
– volume-title: Hierarchical linear models: Applications and data analysis methods
  year: 2002
  ident: e_1_2_7_70_1
– ident: e_1_2_7_82_1
  doi: 10.1111/gcb.14482
– ident: e_1_2_7_83_1
  doi: 10.2134/jeq2004.1010
– ident: e_1_2_7_59_1
  doi: 10.2134/agronj2016.03.0174
– ident: e_1_2_7_46_1
  doi: 10.17221/223/2012-PSE
– volume-title: Package ‘multcomp’. Simultaneous inference in general parametric models
  year: 2016
  ident: e_1_2_7_32_1
– ident: e_1_2_7_47_1
  doi: 10.2136/sssaj1997.03615995006100010022x
– ident: e_1_2_7_77_1
  doi: 10.1088/1748-9326/aaf933
– ident: e_1_2_7_76_1
  doi: 10.1016/j.agsy.2013.11.004
– ident: e_1_2_7_79_1
  doi: 10.1016/S0038-0717(00)00179-6
– ident: e_1_2_7_29_1
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– ident: e_1_2_7_52_1
  doi: 10.1097/00010694-193107000-00003
– ident: e_1_2_7_61_1
– ident: e_1_2_7_23_1
  doi: 10.2134/agronj2008.0052
– ident: e_1_2_7_39_1
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– volume-title: Agricultural and Applied Economics Association Policy Issues 7(April 2010): 5
  year: 2010
  ident: e_1_2_7_5_1
– ident: e_1_2_7_45_1
  doi: 10.2136/sssaj2009.0346
– ident: e_1_2_7_2_1
  doi: 10.1111/gcb.14644
– ident: e_1_2_7_63_1
  doi: 10.1023/A:1006271331703
– ident: e_1_2_7_24_1
  doi: 10.2134/agronj2013.0089
– ident: e_1_2_7_86_1
  doi: 10.1126/science.1060391
SSID ssj0000222
Score 2.6621675
SecondaryResourceType review_article
Snippet Increasing the quantity and quality of plant biomass production in space and time can improve the capacity of agroecosystems to capture and store atmospheric...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Agricultural ecosystems
Agricultural practices
Agriculture
agroecosystem
agroecosystems
autumn
Biomass
biomass production
Carbon
Carbon dioxide
carbon sinks
clay fraction
Clay soils
Climate
cover crop
Cover crops
Crop management
Crop Production
Crops
Crops, Agricultural
diversity
Drawdown
Environmental conditions
Environmental management
Integration
Meta-analysis
negative emissions technology
Net Primary Productivity
Organic carbon
Organic matter
phytomass
Plant biomass
Soil
Soil depth
soil organic carbon
Soil organic matter
space and time
Synchronism
Synchronization
Subtitle a meta-analysis
Title Management of cover crops in temperate climates influences soil organic carbon stocks
URI https://www.jstor.org/stable/27029226
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feap.2278
https://www.ncbi.nlm.nih.gov/pubmed/33320994
https://www.proquest.com/docview/2511924261
https://www.proquest.com/docview/2470629235
https://www.proquest.com/docview/2551950965
Volume 31
WOSCitedRecordID wos000624947000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1939-5582
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000222
  issn: 1051-0761
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED_WdIO9dH-zueuKBmN78projx3trWwJeyiljA7yZiRFomGpXeK00Ld9hH3GfpLe2YpDoRuDPVlYJyNLd9KddPc7gPdZcI7nLk-1zVQqQxikVg5c6jMu7SxT0tgmUPgoPz4eTaf6JHpVUixMiw_RHbiRZDTrNQm4sfXBBjTUm4tPFMe5Bdsc2Vb1YPvr98mPo8063N4hoAKBBjNa62vo2QE_WLe9sxm1_oj3aZp3Fddm55k8-Z8-P4WdqG-yw5ZBnsEDXz6HR20GymssjV0s9cebkDdsEGW-fgFnGw8ZVgXmyOeTUeKvms1LRtBWhMvsmVvMz0lxxbcx70nN6mq-YG3iKMecWdqqZPj77mf9mRl27lfm5tdvE3FRXsLpZHz65Vsa8zOkTuZ0rOqGQQ5sQBVGoRUXAu5sBM-mlTOeqyCN8Fjp_JBwAHBJDsLqzISR9yozRvShV1alfw3MKK2DkV6ZGRqcXujAhc39jOfKh1kWEvi4nqfCRexySqGxKFrUZV7gyBY0sgm86ygvWryOe2j6zVR3BBSTp1EPTWBvPfdFFOW6IBtMkyIzxG931SiEdLNiSl9dIg2OR4afEOovNIqAfAhsJ4FXLV91HRBCUAizTOBDwz5_7HoxPjyh5-6_Er6Bx5y8cBpfoz3orZaX_i08dFereb3ch618OtqPgnML280b5g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDQQv428hY4CREDxla2M7mcfTBK2GKNWEirS3yHFtUdElU9Mh8cZH4DPySXYXO6kmDYTEU6z4HDn2nX1n3_0O4FXqjEkyk8WqSGUsnOvHheib2KaJKGapFLpoAoXH2WRycHqqTjbgbRsL4_EhugM3koxmvSYBpwPp_TVqqNXnexTIeQO2BHIRsvfW-8-jL-P1QuwvEVCDQIsZzfUWe7af7Ldtr-xG3iHxOlXzqubabD2ju__V6XuwHTROduRZ5D5s2PIB3PI5KH9gaWhCqTdcB71hgyD19UP4uvaRYZVjhrw-GaX-qtm8ZARuRcjMlpnF_IxUV3wbMp_UrK7mC-ZTRxlm9LKoSob_b77Vh0yzM7vSv3_-0gEZ5RFMR8Ppu-M4ZGiIjcjoYNUMnOgXDpUYiXacc7i3EUCbkkbbRDqhucVKYweEBICLsuOFSrU7sFamWvMebJZVaZ8A01Ipp4WVeoYmp-XKJbzI7CzJpHWz1EXwpp2o3AT0ckqiscg97nKS48jmNLIRvOwozz1ixzU0vWauOwKKylOoiUaw205-HoS5zskKU6TKDPDbXTWKId2t6NJWF0iD45HiJ7j8C40kKB-C24ngsWesrgOccwpiFhG8bvjnj13Ph0cn9Nz5V8IXcPt4-mmcjz9MPj6FOwn55DSeR7uwuVpe2Gdw03xfzevl8yA_lxsCHu4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDiZe-N8RGGAkBE9hbWInMzxNrBWIqqrQkPYWOY6tVeuSqumQeOMj8Bn3SXYXO6kmDYTEU6L4Ejm2z_6dffc7gDeJ1TpKdRrKPBEht3YQ5nygQ5NEPC8SwVXeBApP0un04OREzrbgYxsL4_ghug030oxmviYFN8vC7m9YQ41avqdAzluwzSmHTA-2j76Nv082E7E7REAEgRYzmust9-wg2m_fvbYaOYfEm6DmdeTaLD3j-_9V6QdwzyNOduiGyEPYMuUjuONyUP7Eu5H2d_3RJugNX_BaXz-G042PDKss0-T1ySj1V83mJSNyK2JmNkwv5ucEXfGpz3xSs7qaL5hLHaWZVqu8Khn-vz6rPzDFzs1aXf76rTwzyhM4Ho-OP30OfYaGUPOUNlb10PJBbhHECLTjrMW1jQjapNDKRMJyFRss1GZITAA4Kds4l4myB8aIRKm4D72yKs1TYEpIaRU3QhVocppY2ijOU1NEqTC2SGwA79qOyrRnL6ckGovM8S5HGbZsRi0bwOtOcukYO26Q6Td93QlQVJ5EJBrAXtv5mVfmOiMrTBKUGeK3u2JUQzpbUaWpLlAG2yPBT8TiLzKCqHyIbieAXTewugrEcUxBzDyAt834-WPVs9HhjK7P_lXwFezMjsbZ5Mv063O4G5FLTuN4tAe99erCvIDb-sd6Xq9eevW5AnnvHmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Management+of+cover+crops+in+temperate+climates+influences+soil+organic+carbon+stocks%3A+a+meta%E2%80%90analysis&rft.jtitle=Ecological+applications&rft.au=McClelland%2C+Shelby+C&rft.au=Paustian%2C+Keith&rft.au=Schipanski%2C+Meagan+E&rft.date=2021-04-01&rft.pub=Ecological+Society+of+America&rft.issn=1051-0761&rft.eissn=1939-5582&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1002%2Feap.2278&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon