Research on marine flexible biological target detection based on improved YOLOv8 algorithm

To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biologica...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PeerJ. Computer science Ročník 10; s. e2271
Hlavní autoři: Tian, Yu, Liu, Yanwen, Lin, Baohang, Li, Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States PeerJ. Ltd 22.08.2024
PeerJ Inc
Témata:
ISSN:2376-5992, 2376-5992
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images’ foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model’s proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model’s feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes’ quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.
AbstractList To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images’ foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model’s proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model’s feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes’ quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.
To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.
ArticleNumber e2271
Audience Academic
Author Li, Peng
Tian, Yu
Lin, Baohang
Liu, Yanwen
Author_xml – sequence: 1
  givenname: Yu
  surname: Tian
  fullname: Tian, Yu
– sequence: 2
  givenname: Yanwen
  surname: Liu
  fullname: Liu, Yanwen
– sequence: 3
  givenname: Baohang
  surname: Lin
  fullname: Lin, Baohang
– sequence: 4
  givenname: Peng
  orcidid: 0000-0002-8424-1367
  surname: Li
  fullname: Li, Peng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39314686$$D View this record in MEDLINE/PubMed
BookMark eNptks1r3DAQxU1JadI0x16LoZf24K1kWZZ1KiH0Y2FhIW0P7UWMpbFXi2xtJW9I__vK2aRkS6SDhtHvPWbgvcxORj9ilr2mZCEEFR92iGFb6LgoS0GfZWclE3XBpSxPHtWn2UWMW0II5TQd-SI7ZZLRqm7qs-zXNUaEoDe5H_MBgh0x7xze2tZh3lrvfG81uHyC0OOUG5xQTzaxLUQ0s8gOu-BvUv1zvVrfNDm43gc7bYZX2fMOXMSL-_c8-_H50_err8Vq_WV5dbkqdCUILZiRkgMvQQBwaUxrNOeScs6QlxUyqJu27BrWEkkNZekDJAHBhS6ZxLTJebY8-BoPW7ULNq3xR3mw6q7hQ68gTFY7VKaqOoLAGi6hamUpUWpjhGyrlrUN6OT18eC127cDGo3jFMAdmR7_jHajen-jKK2orClJDu_uHYL_vcc4qcFGjc7BiH4fFaOkETUXrEno2wPaQ5rNjp1PlnrG1WVDmSAVq2dq8QSVrsHB6pSHzqb-keD9kSAxE95OPexjVMtv18fsm8f7_lv0ISAJYAdABx9jwE5pO8GcgDSFdYoSNSdR3SVR6ajmJCZV8Z_qwfhp_i8Jq-Ao
CitedBy_id crossref_primary_10_3390_plants13233329
Cites_doi 10.1109/CVPR.2014.81
10.1109/ACCESS.2019.2932130
10.1109/CVPR.2009.5206515
10.7717/peerj-cs.1262
10.1109/TIP.2017.2663846
10.1109/ACCESS.2017.2753796
10.1364/OE.480816
10.1016/j.compag.2020.105339
10.3788/LOP57.060002
10.3390/app13042746
10.3390/jmse11050995
10.13382/j.jemi.B2205968
10.3390/electronics12132756
10.3390/jmse10030310
10.7717/peerj-cs.1314
10.1109/JPROC.2023.3238524
10.3390/app12188972
10.1371/journal.pone.0259283
10.7717/peerj-cs.888
10.1007/978-3-319-73603-7_37
10.1016/j.procs.2022.01.135
10.3390/s23167190
10.1016/j.compbiomed.2022.105444
10.3390/s23167086
10.1109/ICCV.2017.89
10.1109/TIP.2019.2955241
10.48550/arXiv.2304.08069
10.1080/03772063.2021.1946438
10.7717/peerj-cs.402
10.1007/978-3-030-00776-8_62
10.1007/s10462-021-10025-z
10.3390/fire6080291
10.3390/s23177436
ContentType Journal Article
Copyright 2024 Tian et al.
COPYRIGHT 2024 PeerJ. Ltd.
2024 Tian et al. 2024 Tian et al.
Copyright_xml – notice: 2024 Tian et al.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
– notice: 2024 Tian et al. 2024 Tian et al.
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.7717/peerj-cs.2271
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac
PMC11419610
A813704368
39314686
10_7717_peerj_cs_2271
Genre Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Robotics Technology and Systems
  grantid: SKLRS-2023-KF-17
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
H13
M0N
NPM
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4701-3d995a52a7aa59ddbdc5591553e524e3a68b2f83b091d13155a90a757c239e393
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Fri Oct 03 12:41:33 EDT 2025
Tue Nov 04 02:04:56 EST 2025
Fri Sep 05 07:14:49 EDT 2025
Tue Nov 11 10:54:11 EST 2025
Tue Nov 04 18:18:32 EST 2025
Thu Nov 13 16:11:39 EST 2025
Thu Jan 02 22:37:01 EST 2025
Tue Nov 18 22:29:51 EST 2025
Sat Nov 29 06:22:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Marine flexible biological targets
Improved YOLOv8
CLAHE
Target detection
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Tian et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4701-3d995a52a7aa59ddbdc5591553e524e3a68b2f83b091d13155a90a757c239e393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8424-1367
OpenAccessLink https://doaj.org/article/d44f0ea3859a4b929e9cdd79b4b3b8ac
PMID 39314686
PQID 3108765738
PQPubID 23479
PageCount e2271
ParticipantIDs doaj_primary_oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11419610
proquest_miscellaneous_3108765738
gale_infotracmisc_A813704368
gale_infotracacademiconefile_A813704368
gale_incontextgauss_ISR_A813704368
pubmed_primary_39314686
crossref_citationtrail_10_7717_peerj_cs_2271
crossref_primary_10_7717_peerj_cs_2271
PublicationCentury 2000
PublicationDate 20240822
PublicationDateYYYYMMDD 2024-08-22
PublicationDate_xml – month: 8
  year: 2024
  text: 20240822
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Chen (10.7717/peerj-cs.2271/ref-3) 2023a; 12
Liu (10.7717/peerj-cs.2271/ref-17) 2023; 37
Wang (10.7717/peerj-cs.2271/ref-29) 2023; 23
Guan (10.7717/peerj-cs.2271/ref-8) 2022; 145
Lv (10.7717/peerj-cs.2271/ref-18) 2023
Shafiq (10.7717/peerj-cs.2271/ref-25) 2022; 12
Girshick (10.7717/peerj-cs.2271/ref-7) 2014; 2014
Wei (10.7717/peerj-cs.2271/ref-34) 2023; 9
Jiang (10.7717/peerj-cs.2271/ref-11) 2022; 199
Zhang (10.7717/peerj-cs.2271/ref-37) 2022
Wu (10.7717/peerj-cs.2271/ref-35) 2021; 16
Tang (10.7717/peerj-cs.2271/ref-27) 2023; 31
Dai (10.7717/peerj-cs.2271/ref-5) 2017
Rashid (10.7717/peerj-cs.2271/ref-22) 2022; 8
Cao (10.7717/peerj-cs.2271/ref-1) 2020; 172
Liu (10.7717/peerj-cs.2271/ref-16) 2023; 9
He (10.7717/peerj-cs.2271/ref-9) 2020; 33
Ting (10.7717/peerj-cs.2271/ref-28) 2023; 10
Wang (10.7717/peerj-cs.2271/ref-32) 2023; 13
Oh (10.7717/peerj-cs.2271/ref-20) 2023; 23
Dong (10.7717/peerj-cs.2271/ref-6) 2022; 41
Chen (10.7717/peerj-cs.2271/ref-4) 2023b; 11
Wang (10.7717/peerj-cs.2271/ref-33) 2017; 5
Li (10.7717/peerj-cs.2271/ref-14) 2023; 23
Song (10.7717/peerj-cs.2271/ref-26) 2018; 1164
Peng (10.7717/peerj-cs.2271/ref-21) 2017; 26
Zhang (10.7717/peerj-cs.2271/ref-36) 2023; 6
Nguyen (10.7717/peerj-cs.2271/ref-19) 2023; 69
Lei (10.7717/peerj-cs.2271/ref-12) 2022; 10
Wang (10.7717/peerj-cs.2271/ref-30) 2023; 23
Wang (10.7717/peerj-cs.2271/ref-31) 2019; 7
Li (10.7717/peerj-cs.2271/ref-13) 2019; 29
Zou (10.7717/peerj-cs.2271/ref-38) 2023; 111
Raveendran (10.7717/peerj-cs.2271/ref-23) 2021; 54
Sabri (10.7717/peerj-cs.2271/ref-24) 2021; 7
Lin (10.7717/peerj-cs.2271/ref-15) 2020; 57
Huang (10.7717/peerj-cs.2271/ref-10) 2018; 10704
Chen (10.7717/peerj-cs.2271/ref-2) 2023
References_xml – volume: 2014
  start-page: 580
  year: 2014
  ident: 10.7717/peerj-cs.2271/ref-7
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: IEEE Computer Society
  doi: 10.1109/CVPR.2014.81
– volume: 7
  year: 2019
  ident: 10.7717/peerj-cs.2271/ref-31
  article-title: An experimental-based review of image enhancement and image restoration methods for underwater imaging
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932130
– volume: 33
  start-page: 2341
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.2271/ref-9
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/CVPR.2009.5206515
– volume: 9
  start-page: e1262
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-16
  article-title: A multitask model for realtime fish detection and segmentation based on YOLOv5
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.1262
– volume: 26
  start-page: 1579
  issue: 4
  year: 2017
  ident: 10.7717/peerj-cs.2271/ref-21
  article-title: Underwater image restoration based on image blurriness and light absorption
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2017.2663846
– volume: 5
  start-page: 18941
  year: 2017
  ident: 10.7717/peerj-cs.2271/ref-33
  article-title: Underwater image restoration via maximum attenuation identification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2753796
– volume: 31
  start-page: 2628
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-27
  article-title: A visual defect detection for optics lens based on the YOLOv5-C3CA-SPPF network model
  publication-title: Optics Express
  doi: 10.1364/OE.480816
– volume: 172
  start-page: 105339
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.2271/ref-1
  article-title: Real-time robust detector for underwater live crabs based on deep learning
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105339
– volume: 57
  start-page: 060002
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.2271/ref-15
  article-title: Review on key technologies of target exploration in underwater optical images
  publication-title: Laser & Optoelectronics Progress
  doi: 10.3788/LOP57.060002
– volume: 13
  start-page: 2746
  issue: 4
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-32
  article-title: Underwater object detection method based on improved faster RCNN
  publication-title: Application Science
  doi: 10.3390/app13042746
– volume: 11
  start-page: 995
  issue: 5
  year: 2023b
  ident: 10.7717/peerj-cs.2271/ref-4
  article-title: Underwater-YCC: underwater target detection optimization algorithm based on YOLOv7
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse11050995
– volume: 37
  start-page: 1
  issue: 5
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-17
  article-title: DCN-YOLOv5 underwater target detection based on SimAM attention mechanism [J/OL]
  publication-title: Journal of Chongqing Technology and Business University (Natural Science Edition)
  doi: 10.13382/j.jemi.B2205968
– volume: 12
  start-page: 2756
  issue: 13
  year: 2023a
  ident: 10.7717/peerj-cs.2271/ref-3
  article-title: Underwater target detection algorithm based on feature fusion enhancement
  publication-title: Electronics
  doi: 10.3390/electronics12132756
– volume: 10
  start-page: 310
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2271/ref-12
  article-title: Underwater target detection algorithm based on improved YOLOv5
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse10030310
– volume: 9
  start-page: e1314
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-34
  article-title: A novel algorithm for small object detection based on YOLOv4
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.1314
– volume: 111
  start-page: 257
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-38
  article-title: Object detection in 20 years: a survey
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2023.3238524
– start-page: 6510
  year: 2022
  ident: 10.7717/peerj-cs.2271/ref-37
  article-title: An improved SimAM based CNN for facial expression recognition
– volume: 12
  start-page: 8972
  issue: 18
  year: 2022
  ident: 10.7717/peerj-cs.2271/ref-25
  article-title: Deep residual learning for image recognition: a survey
  publication-title: Applied Sciences
  doi: 10.3390/app12188972
– volume: 16
  start-page: e0259283
  issue: 10
  year: 2021
  ident: 10.7717/peerj-cs.2271/ref-35
  article-title: Application of local fully convolutional neural network combined with YOLOv5 algorithm in small target detection of remote sensing image
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0259283
– volume: 8
  start-page: e888
  issue: 9
  year: 2022
  ident: 10.7717/peerj-cs.2271/ref-22
  article-title: A hybrid mask RCNN-based tool to localize dental cavities from real-time mixed photographic images
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.888
– volume: 10704
  start-page: 453
  issue: 13
  year: 2018
  ident: 10.7717/peerj-cs.2271/ref-10
  article-title: Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition
  publication-title: MultiMedia Modeling
  doi: 10.1007/978-3-319-73603-7_37
– volume: 10
  start-page: 19
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-28
  article-title: Underwater image enhancement based on IMSRCR and CLAHE-WGIF
  publication-title: Instrumentation
  doi: 10.1016/j.procs.2022.01.135
– volume: 41
  start-page: 60
  issue: 5
  year: 2022
  ident: 10.7717/peerj-cs.2271/ref-6
  article-title: Review of underwater image target detection data sets and detection algorithms
  publication-title: Journal of Marine Technology
– volume: 23
  start-page: 7190
  issue: 16
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-30
  article-title: UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios
  publication-title: Sensors
  doi: 10.3390/s23167190
– volume: 145
  start-page: 105444
  year: 2022
  ident: 10.7717/peerj-cs.2271/ref-8
  article-title: Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105444
– volume: 23
  start-page: 7086
  issue: 16
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-14
  article-title: ADFireNet: an anchor-free smoke and fire detection network based on deformable convolution
  publication-title: Sensors
  doi: 10.3390/s23167086
– start-page: 764
  year: 2017
  ident: 10.7717/peerj-cs.2271/ref-5
  article-title: Deformable convolutional networks
  doi: 10.1109/ICCV.2017.89
– volume: 199
  start-page: 1066
  issue: 11
  year: 2022
  ident: 10.7717/peerj-cs.2271/ref-11
  article-title: A review of yolo algorithm developments
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.01.135
– volume: 29
  start-page: 4376
  year: 2019
  ident: 10.7717/peerj-cs.2271/ref-13
  article-title: An underwater image enhancement benchmark dataset and beyond
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2019.2955241
– year: 2023
  ident: 10.7717/peerj-cs.2271/ref-18
  article-title: DETRs beat YOLOs on real-time object detection
  publication-title: ArXiv preprint
  doi: 10.48550/arXiv.2304.08069
– volume: 69
  start-page: 4196
  issue: 7
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-19
  article-title: Efficient keyword spotting system using deformable convolutional network
  publication-title: IETE Journal of Research
  doi: 10.1080/03772063.2021.1946438
– volume: 7
  start-page: e402
  issue: 11
  year: 2021
  ident: 10.7717/peerj-cs.2271/ref-24
  article-title: Low-cost intelligent surveillance system based on fast CNN
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.402
– volume: 1164
  start-page: 678
  year: 2018
  ident: 10.7717/peerj-cs.2271/ref-26
  article-title: A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration
  publication-title: Advances in Multimedia Information Processing, PT1. 2019
  doi: 10.1007/978-3-030-00776-8_62
– volume-title: Underwater target detection method based on the deep learning research
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-2
– volume: 54
  start-page: 5413
  issue: 7
  year: 2021
  ident: 10.7717/peerj-cs.2271/ref-23
  article-title: Underwater image enhancement: a comprehensive review, recent trends, challenges and applications
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-021-10025-z
– volume: 6
  start-page: 291
  issue: 8
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-36
  article-title: An efficient forest fire target detection model based on improved YOLOv5
  publication-title: Fire-Switzerland
  doi: 10.3390/fire6080291
– volume: 23
  start-page: 7436
  issue: 17
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-20
  article-title: One-stage brake light status detection based on YOLOv8
  publication-title: Sensors
  doi: 10.3390/s23177436
– volume: 23
  start-page: 7190
  issue: 16
  year: 2023
  ident: 10.7717/peerj-cs.2271/ref-29
  article-title: UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios
  publication-title: Sensors
  doi: 10.3390/s23167190
SSID ssj0001511119
Score 2.2931433
Snippet To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2271
SubjectTerms Algorithms
Algorithms and Analysis of Algorithms
Artificial Intelligence
CLAHE
Computer Vision
Data Mining and Machine Learning
Improved YOLOv8
Marine flexible biological targets
Neural Networks
Target detection
Title Research on marine flexible biological target detection based on improved YOLOv8 algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/39314686
https://www.proquest.com/docview/3108765738
https://pubmed.ncbi.nlm.nih.gov/PMC11419610
https://doaj.org/article/d44f0ea3859a4b929e9cdd79b4b3b8ac
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (Proquest)
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg8MAL3x8dozIIwQthTRzX9uOGOjGxddEAqduL5a9snbpkato98rdzl6RVI4R44cWKcpco9p19d9Hd7wh5b4PiaY51W4KHKGUujtTQ-yiA7cqlEDaxdaHwkRiP5WSiso1WX5gT1sADNwu361N4VTBMcmVSC8Y8KOe9UDa1zErj8PQFr2cjmGrqg_EoUA2opoCQZfcmhPlV5KrPSSLijhGqsfr_PJE3TFI3XXLD_hw8Jg9bx5HuNR_8hNwJxVPyaNWUgbZ79Bk5X-XS0bKg1waL-2iOqJd2FmgDuYRyoU0KOPVhUSdjFRTtmceHpvV_Brg-Ozk6uZXUzC7K-XRxef2c_DwY_fjyNWobKEQuFYM4Yl4pbnhihDFceW-9gwACOwUFnqSBmaG0SS6ZBafBxwwIRg2M4MIlTAWm2AuyVZRFeEWosMqKgc39MB-mA2uUM1JJFnsuAxep7JFPqxXVrkUXxyYXMw1RBgpA1wLQrtIogB75sGa_aWA1_sa4j-JZMyEadn0DdES3OqL_pSM98g6FqxHvosCEmguzrCp9-P1U78mYiRqGv0c-tkx5CV_uTFufAPNHiKwO506HEzak65DfrnRIIwmz2IpQLisNrjQYHy4Y8LxsdGo9MVhtrIIb9ojsaFtn5l1KMb2s8cAhpIVzNB5s_4-1ek0eJOC34W_zJNkhW4v5Mrwh993tYlrN--SumMg-ubc_Gmen_XrPwfhNRDAe_xrBmPFzoGeHx9nZb-nhN6I
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+marine+flexible+biological+target+detection+based+on+improved+YOLOv8+algorithm&rft.jtitle=PeerJ.+Computer+science&rft.au=Tian%2C+Yu&rft.au=Liu%2C+Yanwen&rft.au=Lin%2C+Baohang&rft.au=Li%2C+Peng&rft.date=2024-08-22&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2271&rft_id=info:doi/10.7717%2Fpeerj-cs.2271&rft.externalDBID=ISR&rft.externalDocID=A813704368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon