Research on marine flexible biological target detection based on improved YOLOv8 algorithm
To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biologica...
Uloženo v:
| Vydáno v: | PeerJ. Computer science Ročník 10; s. e2271 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
PeerJ. Ltd
22.08.2024
PeerJ Inc |
| Témata: | |
| ISSN: | 2376-5992, 2376-5992 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images’ foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model’s proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model’s feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes’ quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection. |
|---|---|
| AbstractList | To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images’ foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model’s proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model’s feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes’ quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection. To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection.To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces an algorithm tailored for detecting marine flexible biological targets. Initially, we compiled a dataset comprising marine flexible biological subjects and developed a Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, supplemented with a boundary detection enhancement module, to refine underwater image quality and accentuate the distinction between the images' foregrounds and backgrounds. This enhancement mitigates the issue of foreground-background similarity encountered in detecting marine flexible biological entities. Moreover, the proposed adaptation incorporates a Deformable Convolutional Network (DCN) network module in lieu of the C2f module within the YOLOv8n algorithm framework, thereby augmenting the model's proficiency in capturing geometric transformations and concentrating on pivotal areas. The Neck network module is enhanced with the RepBi-PAN architecture, bolstering its capability to amalgamate and emphasize essential characteristics of flexible biological targets. To advance the model's feature information processing efficiency, we integrated the SimAM attention mechanism. Finally, to diminish the adverse effects of inferior-quality labels within the dataset, we advocate the use of WIoU (Wise-IoU) as a bounding box loss function, which serves to refine the anchor boxes' quality assessment. Simulation experiments show that, in comparison to the conventional YOLOv8n algorithm, our method markedly elevates the precision of marine flexible biological target detection. |
| ArticleNumber | e2271 |
| Audience | Academic |
| Author | Li, Peng Tian, Yu Lin, Baohang Liu, Yanwen |
| Author_xml | – sequence: 1 givenname: Yu surname: Tian fullname: Tian, Yu – sequence: 2 givenname: Yanwen surname: Liu fullname: Liu, Yanwen – sequence: 3 givenname: Baohang surname: Lin fullname: Lin, Baohang – sequence: 4 givenname: Peng orcidid: 0000-0002-8424-1367 surname: Li fullname: Li, Peng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39314686$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks1r3DAQxU1JadI0x16LoZf24K1kWZZ1KiH0Y2FhIW0P7UWMpbFXi2xtJW9I__vK2aRkS6SDhtHvPWbgvcxORj9ilr2mZCEEFR92iGFb6LgoS0GfZWclE3XBpSxPHtWn2UWMW0II5TQd-SI7ZZLRqm7qs-zXNUaEoDe5H_MBgh0x7xze2tZh3lrvfG81uHyC0OOUG5xQTzaxLUQ0s8gOu-BvUv1zvVrfNDm43gc7bYZX2fMOXMSL-_c8-_H50_err8Vq_WV5dbkqdCUILZiRkgMvQQBwaUxrNOeScs6QlxUyqJu27BrWEkkNZekDJAHBhS6ZxLTJebY8-BoPW7ULNq3xR3mw6q7hQ68gTFY7VKaqOoLAGi6hamUpUWpjhGyrlrUN6OT18eC127cDGo3jFMAdmR7_jHajen-jKK2orClJDu_uHYL_vcc4qcFGjc7BiH4fFaOkETUXrEno2wPaQ5rNjp1PlnrG1WVDmSAVq2dq8QSVrsHB6pSHzqb-keD9kSAxE95OPexjVMtv18fsm8f7_lv0ISAJYAdABx9jwE5pO8GcgDSFdYoSNSdR3SVR6ajmJCZV8Z_qwfhp_i8Jq-Ao |
| CitedBy_id | crossref_primary_10_3390_plants13233329 |
| Cites_doi | 10.1109/CVPR.2014.81 10.1109/ACCESS.2019.2932130 10.1109/CVPR.2009.5206515 10.7717/peerj-cs.1262 10.1109/TIP.2017.2663846 10.1109/ACCESS.2017.2753796 10.1364/OE.480816 10.1016/j.compag.2020.105339 10.3788/LOP57.060002 10.3390/app13042746 10.3390/jmse11050995 10.13382/j.jemi.B2205968 10.3390/electronics12132756 10.3390/jmse10030310 10.7717/peerj-cs.1314 10.1109/JPROC.2023.3238524 10.3390/app12188972 10.1371/journal.pone.0259283 10.7717/peerj-cs.888 10.1007/978-3-319-73603-7_37 10.1016/j.procs.2022.01.135 10.3390/s23167190 10.1016/j.compbiomed.2022.105444 10.3390/s23167086 10.1109/ICCV.2017.89 10.1109/TIP.2019.2955241 10.48550/arXiv.2304.08069 10.1080/03772063.2021.1946438 10.7717/peerj-cs.402 10.1007/978-3-030-00776-8_62 10.1007/s10462-021-10025-z 10.3390/fire6080291 10.3390/s23177436 |
| ContentType | Journal Article |
| Copyright | 2024 Tian et al. COPYRIGHT 2024 PeerJ. Ltd. 2024 Tian et al. 2024 Tian et al. |
| Copyright_xml | – notice: 2024 Tian et al. – notice: COPYRIGHT 2024 PeerJ. Ltd. – notice: 2024 Tian et al. 2024 Tian et al. |
| DBID | AAYXX CITATION NPM ISR 7X8 5PM DOA |
| DOI | 10.7717/peerj-cs.2271 |
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac PMC11419610 A813704368 39314686 10_7717_peerj_cs_2271 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: State Key Laboratory of Robotics Technology and Systems grantid: SKLRS-2023-KF-17 |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM 3V. H13 M0N NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c4701-3d995a52a7aa59ddbdc5591553e524e3a68b2f83b091d13155a90a757c239e393 |
| IEDL.DBID | DOA |
| ISSN | 2376-5992 |
| IngestDate | Fri Oct 03 12:41:33 EDT 2025 Tue Nov 04 02:04:56 EST 2025 Fri Sep 05 07:14:49 EDT 2025 Tue Nov 11 10:54:11 EST 2025 Tue Nov 04 18:18:32 EST 2025 Thu Nov 13 16:11:39 EST 2025 Thu Jan 02 22:37:01 EST 2025 Tue Nov 18 22:29:51 EST 2025 Sat Nov 29 06:22:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Marine flexible biological targets Improved YOLOv8 CLAHE Target detection |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2024 Tian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4701-3d995a52a7aa59ddbdc5591553e524e3a68b2f83b091d13155a90a757c239e393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8424-1367 |
| OpenAccessLink | https://doaj.org/article/d44f0ea3859a4b929e9cdd79b4b3b8ac |
| PMID | 39314686 |
| PQID | 3108765738 |
| PQPubID | 23479 |
| PageCount | e2271 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d44f0ea3859a4b929e9cdd79b4b3b8ac pubmedcentral_primary_oai_pubmedcentral_nih_gov_11419610 proquest_miscellaneous_3108765738 gale_infotracmisc_A813704368 gale_infotracacademiconefile_A813704368 gale_incontextgauss_ISR_A813704368 pubmed_primary_39314686 crossref_citationtrail_10_7717_peerj_cs_2271 crossref_primary_10_7717_peerj_cs_2271 |
| PublicationCentury | 2000 |
| PublicationDate | 20240822 |
| PublicationDateYYYYMMDD | 2024-08-22 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240822 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2024 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Chen (10.7717/peerj-cs.2271/ref-3) 2023a; 12 Liu (10.7717/peerj-cs.2271/ref-17) 2023; 37 Wang (10.7717/peerj-cs.2271/ref-29) 2023; 23 Guan (10.7717/peerj-cs.2271/ref-8) 2022; 145 Lv (10.7717/peerj-cs.2271/ref-18) 2023 Shafiq (10.7717/peerj-cs.2271/ref-25) 2022; 12 Girshick (10.7717/peerj-cs.2271/ref-7) 2014; 2014 Wei (10.7717/peerj-cs.2271/ref-34) 2023; 9 Jiang (10.7717/peerj-cs.2271/ref-11) 2022; 199 Zhang (10.7717/peerj-cs.2271/ref-37) 2022 Wu (10.7717/peerj-cs.2271/ref-35) 2021; 16 Tang (10.7717/peerj-cs.2271/ref-27) 2023; 31 Dai (10.7717/peerj-cs.2271/ref-5) 2017 Rashid (10.7717/peerj-cs.2271/ref-22) 2022; 8 Cao (10.7717/peerj-cs.2271/ref-1) 2020; 172 Liu (10.7717/peerj-cs.2271/ref-16) 2023; 9 He (10.7717/peerj-cs.2271/ref-9) 2020; 33 Ting (10.7717/peerj-cs.2271/ref-28) 2023; 10 Wang (10.7717/peerj-cs.2271/ref-32) 2023; 13 Oh (10.7717/peerj-cs.2271/ref-20) 2023; 23 Dong (10.7717/peerj-cs.2271/ref-6) 2022; 41 Chen (10.7717/peerj-cs.2271/ref-4) 2023b; 11 Wang (10.7717/peerj-cs.2271/ref-33) 2017; 5 Li (10.7717/peerj-cs.2271/ref-14) 2023; 23 Song (10.7717/peerj-cs.2271/ref-26) 2018; 1164 Peng (10.7717/peerj-cs.2271/ref-21) 2017; 26 Zhang (10.7717/peerj-cs.2271/ref-36) 2023; 6 Nguyen (10.7717/peerj-cs.2271/ref-19) 2023; 69 Lei (10.7717/peerj-cs.2271/ref-12) 2022; 10 Wang (10.7717/peerj-cs.2271/ref-30) 2023; 23 Wang (10.7717/peerj-cs.2271/ref-31) 2019; 7 Li (10.7717/peerj-cs.2271/ref-13) 2019; 29 Zou (10.7717/peerj-cs.2271/ref-38) 2023; 111 Raveendran (10.7717/peerj-cs.2271/ref-23) 2021; 54 Sabri (10.7717/peerj-cs.2271/ref-24) 2021; 7 Lin (10.7717/peerj-cs.2271/ref-15) 2020; 57 Huang (10.7717/peerj-cs.2271/ref-10) 2018; 10704 Chen (10.7717/peerj-cs.2271/ref-2) 2023 |
| References_xml | – volume: 2014 start-page: 580 year: 2014 ident: 10.7717/peerj-cs.2271/ref-7 article-title: Rich feature hierarchies for accurate object detection and semantic segmentation publication-title: IEEE Computer Society doi: 10.1109/CVPR.2014.81 – volume: 7 year: 2019 ident: 10.7717/peerj-cs.2271/ref-31 article-title: An experimental-based review of image enhancement and image restoration methods for underwater imaging publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932130 – volume: 33 start-page: 2341 issue: 12 year: 2020 ident: 10.7717/peerj-cs.2271/ref-9 article-title: Single image haze removal using dark channel prior publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/CVPR.2009.5206515 – volume: 9 start-page: e1262 year: 2023 ident: 10.7717/peerj-cs.2271/ref-16 article-title: A multitask model for realtime fish detection and segmentation based on YOLOv5 publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.1262 – volume: 26 start-page: 1579 issue: 4 year: 2017 ident: 10.7717/peerj-cs.2271/ref-21 article-title: Underwater image restoration based on image blurriness and light absorption publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2017.2663846 – volume: 5 start-page: 18941 year: 2017 ident: 10.7717/peerj-cs.2271/ref-33 article-title: Underwater image restoration via maximum attenuation identification publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2753796 – volume: 31 start-page: 2628 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2271/ref-27 article-title: A visual defect detection for optics lens based on the YOLOv5-C3CA-SPPF network model publication-title: Optics Express doi: 10.1364/OE.480816 – volume: 172 start-page: 105339 issue: 4 year: 2020 ident: 10.7717/peerj-cs.2271/ref-1 article-title: Real-time robust detector for underwater live crabs based on deep learning publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105339 – volume: 57 start-page: 060002 issue: 6 year: 2020 ident: 10.7717/peerj-cs.2271/ref-15 article-title: Review on key technologies of target exploration in underwater optical images publication-title: Laser & Optoelectronics Progress doi: 10.3788/LOP57.060002 – volume: 13 start-page: 2746 issue: 4 year: 2023 ident: 10.7717/peerj-cs.2271/ref-32 article-title: Underwater object detection method based on improved faster RCNN publication-title: Application Science doi: 10.3390/app13042746 – volume: 11 start-page: 995 issue: 5 year: 2023b ident: 10.7717/peerj-cs.2271/ref-4 article-title: Underwater-YCC: underwater target detection optimization algorithm based on YOLOv7 publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse11050995 – volume: 37 start-page: 1 issue: 5 year: 2023 ident: 10.7717/peerj-cs.2271/ref-17 article-title: DCN-YOLOv5 underwater target detection based on SimAM attention mechanism [J/OL] publication-title: Journal of Chongqing Technology and Business University (Natural Science Edition) doi: 10.13382/j.jemi.B2205968 – volume: 12 start-page: 2756 issue: 13 year: 2023a ident: 10.7717/peerj-cs.2271/ref-3 article-title: Underwater target detection algorithm based on feature fusion enhancement publication-title: Electronics doi: 10.3390/electronics12132756 – volume: 10 start-page: 310 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2271/ref-12 article-title: Underwater target detection algorithm based on improved YOLOv5 publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse10030310 – volume: 9 start-page: e1314 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2271/ref-34 article-title: A novel algorithm for small object detection based on YOLOv4 publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.1314 – volume: 111 start-page: 257 issue: 3 year: 2023 ident: 10.7717/peerj-cs.2271/ref-38 article-title: Object detection in 20 years: a survey publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2023.3238524 – start-page: 6510 year: 2022 ident: 10.7717/peerj-cs.2271/ref-37 article-title: An improved SimAM based CNN for facial expression recognition – volume: 12 start-page: 8972 issue: 18 year: 2022 ident: 10.7717/peerj-cs.2271/ref-25 article-title: Deep residual learning for image recognition: a survey publication-title: Applied Sciences doi: 10.3390/app12188972 – volume: 16 start-page: e0259283 issue: 10 year: 2021 ident: 10.7717/peerj-cs.2271/ref-35 article-title: Application of local fully convolutional neural network combined with YOLOv5 algorithm in small target detection of remote sensing image publication-title: PLOS ONE doi: 10.1371/journal.pone.0259283 – volume: 8 start-page: e888 issue: 9 year: 2022 ident: 10.7717/peerj-cs.2271/ref-22 article-title: A hybrid mask RCNN-based tool to localize dental cavities from real-time mixed photographic images publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.888 – volume: 10704 start-page: 453 issue: 13 year: 2018 ident: 10.7717/peerj-cs.2271/ref-10 article-title: Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition publication-title: MultiMedia Modeling doi: 10.1007/978-3-319-73603-7_37 – volume: 10 start-page: 19 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2271/ref-28 article-title: Underwater image enhancement based on IMSRCR and CLAHE-WGIF publication-title: Instrumentation doi: 10.1016/j.procs.2022.01.135 – volume: 41 start-page: 60 issue: 5 year: 2022 ident: 10.7717/peerj-cs.2271/ref-6 article-title: Review of underwater image target detection data sets and detection algorithms publication-title: Journal of Marine Technology – volume: 23 start-page: 7190 issue: 16 year: 2023 ident: 10.7717/peerj-cs.2271/ref-30 article-title: UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios publication-title: Sensors doi: 10.3390/s23167190 – volume: 145 start-page: 105444 year: 2022 ident: 10.7717/peerj-cs.2271/ref-8 article-title: Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105444 – volume: 23 start-page: 7086 issue: 16 year: 2023 ident: 10.7717/peerj-cs.2271/ref-14 article-title: ADFireNet: an anchor-free smoke and fire detection network based on deformable convolution publication-title: Sensors doi: 10.3390/s23167086 – start-page: 764 year: 2017 ident: 10.7717/peerj-cs.2271/ref-5 article-title: Deformable convolutional networks doi: 10.1109/ICCV.2017.89 – volume: 199 start-page: 1066 issue: 11 year: 2022 ident: 10.7717/peerj-cs.2271/ref-11 article-title: A review of yolo algorithm developments publication-title: Procedia Computer Science doi: 10.1016/j.procs.2022.01.135 – volume: 29 start-page: 4376 year: 2019 ident: 10.7717/peerj-cs.2271/ref-13 article-title: An underwater image enhancement benchmark dataset and beyond publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2019.2955241 – year: 2023 ident: 10.7717/peerj-cs.2271/ref-18 article-title: DETRs beat YOLOs on real-time object detection publication-title: ArXiv preprint doi: 10.48550/arXiv.2304.08069 – volume: 69 start-page: 4196 issue: 7 year: 2023 ident: 10.7717/peerj-cs.2271/ref-19 article-title: Efficient keyword spotting system using deformable convolutional network publication-title: IETE Journal of Research doi: 10.1080/03772063.2021.1946438 – volume: 7 start-page: e402 issue: 11 year: 2021 ident: 10.7717/peerj-cs.2271/ref-24 article-title: Low-cost intelligent surveillance system based on fast CNN publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.402 – volume: 1164 start-page: 678 year: 2018 ident: 10.7717/peerj-cs.2271/ref-26 article-title: A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration publication-title: Advances in Multimedia Information Processing, PT1. 2019 doi: 10.1007/978-3-030-00776-8_62 – volume-title: Underwater target detection method based on the deep learning research year: 2023 ident: 10.7717/peerj-cs.2271/ref-2 – volume: 54 start-page: 5413 issue: 7 year: 2021 ident: 10.7717/peerj-cs.2271/ref-23 article-title: Underwater image enhancement: a comprehensive review, recent trends, challenges and applications publication-title: Artificial Intelligence Review doi: 10.1007/s10462-021-10025-z – volume: 6 start-page: 291 issue: 8 year: 2023 ident: 10.7717/peerj-cs.2271/ref-36 article-title: An efficient forest fire target detection model based on improved YOLOv5 publication-title: Fire-Switzerland doi: 10.3390/fire6080291 – volume: 23 start-page: 7436 issue: 17 year: 2023 ident: 10.7717/peerj-cs.2271/ref-20 article-title: One-stage brake light status detection based on YOLOv8 publication-title: Sensors doi: 10.3390/s23177436 – volume: 23 start-page: 7190 issue: 16 year: 2023 ident: 10.7717/peerj-cs.2271/ref-29 article-title: UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios publication-title: Sensors doi: 10.3390/s23167190 |
| SSID | ssj0001511119 |
| Score | 2.2931433 |
| Snippet | To address the challenge of suboptimal object detection outcomes stemming from the deformability of marine flexible biological entities, this study introduces... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e2271 |
| SubjectTerms | Algorithms Algorithms and Analysis of Algorithms Artificial Intelligence CLAHE Computer Vision Data Mining and Machine Learning Improved YOLOv8 Marine flexible biological targets Neural Networks Target detection |
| Title | Research on marine flexible biological target detection based on improved YOLOv8 algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39314686 https://www.proquest.com/docview/3108765738 https://pubmed.ncbi.nlm.nih.gov/PMC11419610 https://doaj.org/article/d44f0ea3859a4b929e9cdd79b4b3b8ac |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (Proquest) customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg8MAL3x8dozIIwQthTRzX9uOGOjGxddEAqduL5a9snbpkato98rdzl6RVI4R44cWKcpco9p19d9Hd7wh5b4PiaY51W4KHKGUujtTQ-yiA7cqlEDaxdaHwkRiP5WSiso1WX5gT1sADNwu361N4VTBMcmVSC8Y8KOe9UDa1zErj8PQFr2cjmGrqg_EoUA2opoCQZfcmhPlV5KrPSSLijhGqsfr_PJE3TFI3XXLD_hw8Jg9bx5HuNR_8hNwJxVPyaNWUgbZ79Bk5X-XS0bKg1waL-2iOqJd2FmgDuYRyoU0KOPVhUSdjFRTtmceHpvV_Brg-Ozk6uZXUzC7K-XRxef2c_DwY_fjyNWobKEQuFYM4Yl4pbnhihDFceW-9gwACOwUFnqSBmaG0SS6ZBafBxwwIRg2M4MIlTAWm2AuyVZRFeEWosMqKgc39MB-mA2uUM1JJFnsuAxep7JFPqxXVrkUXxyYXMw1RBgpA1wLQrtIogB75sGa_aWA1_sa4j-JZMyEadn0DdES3OqL_pSM98g6FqxHvosCEmguzrCp9-P1U78mYiRqGv0c-tkx5CV_uTFufAPNHiKwO506HEzak65DfrnRIIwmz2IpQLisNrjQYHy4Y8LxsdGo9MVhtrIIb9ojsaFtn5l1KMb2s8cAhpIVzNB5s_4-1ek0eJOC34W_zJNkhW4v5Mrwh993tYlrN--SumMg-ubc_Gmen_XrPwfhNRDAe_xrBmPFzoGeHx9nZb-nhN6I |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+marine+flexible+biological+target+detection+based+on+improved+YOLOv8+algorithm&rft.jtitle=PeerJ.+Computer+science&rft.au=Tian%2C+Yu&rft.au=Liu%2C+Yanwen&rft.au=Lin%2C+Baohang&rft.au=Li%2C+Peng&rft.date=2024-08-22&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2271&rft_id=info:doi/10.7717%2Fpeerj-cs.2271&rft.externalDBID=ISR&rft.externalDocID=A813704368 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |