Convergence and Rate Analysis of Neural Networks for Sparse Approximation

We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 23; H. 9; S. 1377 - 1389
Hauptverfasser: Balavoine, A., Romberg, J., Rozell, C. J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.09.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations.
AbstractList We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations.We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations.
We present an analysis of the Locally Competitive Algotihm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations.
We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations.
Author Romberg, J.
Rozell, C. J.
Balavoine, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Balavoine
  fullname: Balavoine, A.
  email: aurele.balavoine@gatech.edu
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 2
  givenname: J.
  surname: Romberg
  fullname: Romberg, J.
  email: jrom@ece.gatech.edu
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 3
  givenname: C. J.
  surname: Rozell
  fullname: Rozell, C. J.
  email: crozell@gatech.edu
  organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26329818$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24199030$$D View this record in MEDLINE/PubMed
BookMark eNqFkttrFDEUxoNU7MX-AwoyUIS-7JrbZCYvQlm0FpYVbAXfQiZzUlNnkzGZ6eW_N3vpqn3QvCRwft_Jl5zvEO354AGhVwRPCcHy3dViMb-cUkzolFJMOcbP0AElgk4oq-u93bn6to-OU7rBeQlcCi5foH3KiZSY4QN0MQv-FuI1eAOF9m3xRQ9QnHndPSSXimCLBYxRd3kb7kL8kQobYnHZ65gy1vcx3LulHlzwL9Fzq7sEx9v9CH39-OFq9mky_3x-MTubTwwXcphYEGUp2hIai5uKStK2zMpW0ga4rGTTgOa5YjUQQzDICsBakC3YFhrdVuwIvd_07cdmCa0BP2R_qo_ZR3xQQTv1d8W77-o63CpWEyEFyw1Otw1i-DlCGtTSJQNdpz2EMSlSUsYx4wT_H8WsphWXfIWePEFvwhjzP64pQkUeBcnUmz_N71w_DiQDb7eATkZ3NmpvXPrNCUZlTerM1RvOxJBSBKuMG9ZzyG92Xb5TrWKi1jFRq5iobUyylD6RPnb_p-j1RuQAYCcQlFZMYPYLf3HJRA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_neucom_2025_129392
crossref_primary_10_1109_TCYB_2016_2611529
crossref_primary_10_1109_TNNLS_2015_2496658
crossref_primary_10_1109_TNNLS_2016_2575860
crossref_primary_10_1109_TNNLS_2013_2238555
crossref_primary_10_1162_neco_a_01657
crossref_primary_10_1016_j_neucom_2014_10_036
crossref_primary_10_1016_j_neucom_2020_02_100
crossref_primary_10_1109_TNNLS_2022_3153039
crossref_primary_10_1109_TNSE_2021_3114426
crossref_primary_10_1016_j_sigpro_2018_11_017
crossref_primary_10_1016_j_neunet_2017_07_008
crossref_primary_10_1016_j_neucom_2023_126480
crossref_primary_10_1002_int_22564
crossref_primary_10_1016_j_sigpro_2016_06_027
crossref_primary_10_1016_j_neunet_2013_03_012
crossref_primary_10_1016_j_neucom_2024_127939
crossref_primary_10_1109_TNNLS_2013_2292700
crossref_primary_10_3389_fnins_2019_00754
crossref_primary_10_1016_j_sigpro_2019_04_010
crossref_primary_10_1109_ACCESS_2019_2897488
crossref_primary_10_1109_TNNLS_2015_2481006
crossref_primary_10_1016_j_neucom_2016_01_047
crossref_primary_10_1016_j_neunet_2014_09_009
crossref_primary_10_1109_TIT_2015_2460238
crossref_primary_10_1109_TNNLS_2014_2323985
crossref_primary_10_1016_j_neunet_2020_07_037
crossref_primary_10_1109_TNNLS_2016_2532358
crossref_primary_10_1109_TSP_2013_2271482
crossref_primary_10_1109_TNNLS_2018_2884788
crossref_primary_10_1109_TSP_2017_2745468
crossref_primary_10_1109_TNNLS_2020_2990990
crossref_primary_10_3389_fnsys_2014_00141
crossref_primary_10_1109_TNNLS_2016_2645602
crossref_primary_10_1007_s00521_017_2863_5
crossref_primary_10_1007_s12559_017_9495_z
crossref_primary_10_1162_NECO_a_00372
crossref_primary_10_1109_TNNLS_2021_3088535
crossref_primary_10_1371_journal_pcbi_1003191
crossref_primary_10_1016_j_neucom_2021_05_002
crossref_primary_10_1162_NECO_a_00590
crossref_primary_10_1109_ACCESS_2020_2981346
crossref_primary_10_1016_j_neucom_2023_126728
crossref_primary_10_1109_TSP_2015_2420535
crossref_primary_10_1109_JETCAS_2012_2214615
crossref_primary_10_1109_TNNLS_2015_2479117
crossref_primary_10_1371_journal_pcbi_1004353
crossref_primary_10_1371_journal_pcbi_1009642
crossref_primary_10_1016_j_neunet_2022_05_022
crossref_primary_10_1109_TNNLS_2013_2244099
Cites_doi 10.1137/050644641
10.1038/nature04485
10.1007/b139028
10.1016/j.apm.2009.03.014
10.1109/TAC.2004.825641
10.1109/72.883412
10.1155/2007/90727
10.1002/cpa.20042
10.1073/pnas.79.8.2554
10.1109/TCSI.2004.838143
10.1109/TCSI.2004.834493
10.1109/TCSI.2008.920131
10.1007/s10827-006-0003-9
10.1109/TIT.2005.862083
10.1109/JSTSP.2007.910281
10.1016/j.tins.2004.10.007
10.1109/TCSI.2008.925816
10.1109/72.317724
10.1109/TNN.2011.2104979
10.1016/j.jphysparis.2005.09.012
10.1109/DSP-SPE.2011.5739253
10.1109/TNN.2006.879775
10.1162/089976600300014827
10.1109/JSTSP.2007.910971
10.1016/j.neunet.2004.05.006
10.1137/S003614450037906X
10.1109/TNN.2006.881046
10.1109/JPROC.2009.2037655
10.1038/381607a0
10.1109/TIT.2006.871582
10.1016/j.conb.2004.07.007
10.1109/TAC.2008.2012009
10.1109/5.871309
10.1016/j.neunet.2006.07.004
10.1109/TIT.2004.828141
10.1162/neco.2008.03-07-486
10.1002/cpa.20124
10.1073/pnas.0502269102
10.1016/j.dsp.2007.09.013
10.1016/S0042-6989(97)00169-7
10.1109/TIP.2007.909319
10.1109/81.401145
10.1137/S0097539792240406
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012
2012 IEEE 2012
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012
– notice: 2012 IEEE 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TNNLS.2012.2202400
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 2162-2388
EndPage 1389
ExternalDocumentID PMC3816963
2729785681
24199030
26329818
10_1109_TNNLS_2012_2202400
6227360
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01-EY019965
– fundername: NEI NIH HHS
  grantid: R01 EY019965
– fundername: National Eye Institute : NEI
  grantid: R01 EY019965 || EY
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c469t-fe6556d5ebf0b7291dd3f9d92be4979bbea4f0bfae1c10e97eeffe9defdebad73
IEDL.DBID RIE
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308965800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Tue Sep 30 16:56:43 EDT 2025
Sat Sep 27 22:01:24 EDT 2025
Tue Oct 07 09:40:37 EDT 2025
Sun Nov 09 06:29:53 EST 2025
Mon Jul 21 06:06:40 EDT 2025
Mon Jul 21 09:16:08 EDT 2025
Sat Nov 29 01:39:46 EST 2025
Tue Nov 18 22:11:20 EST 2025
Tue Aug 26 17:19:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords Hopfield neural nets
Exponential convergence
Dictionaries
Competitiveness
Global optimum
global stability
locally competitive algorithm
Network management
Neural network
Function approximation
Competitive algorithms
Convergence speed
nonsmooth objective, sparse approximation
Convergence rate
Signal processing
Sparse representation
Objective function
Numerical convergence
Hopfield model
Lyapunov function
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-fe6556d5ebf0b7291dd3f9d92be4979bbea4f0bfae1c10e97eeffe9defdebad73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
(aurele.balavoine@gatech.edu; jrom@ece.gatech.edu; crozell@gatech.edu).
PMID 24199030
PQID 1031262371
PQPubID 85436
PageCount 13
ParticipantIDs proquest_miscellaneous_1038274940
pubmed_primary_24199030
proquest_journals_1031262371
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3816963
pascalfrancis_primary_26329818
proquest_miscellaneous_1523403410
crossref_citationtrail_10_1109_TNNLS_2012_2202400
crossref_primary_10_1109_TNNLS_2012_2202400
ieee_primary_6227360
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
lu (ref20) 2008; 55
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref32
ref10
cichocki (ref11) 1993
bacciotti (ref42) 2005
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
liu (ref28) 2011; 22
ref24
ref45
ref23
ref26
ref25
ref41
ref22
ref44
ref21
ref43
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
clarke (ref40) 1987
16495999 - Nature. 2006 Feb 23;439(7079):978-82
15976026 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9446-51
11110125 - Neural Comput. 2000 Nov;12(11):2519-35
18092598 - IEEE Trans Image Process. 2007 Dec;16(12):2992-3004
15312842 - Neural Netw. 2004 Sep;17(7):1003-15
21402513 - IEEE Trans Neural Netw. 2011 Apr;22(4):601-13
17131664 - IEEE Trans Neural Netw. 2006 Nov;17(6):1500-10
17131662 - IEEE Trans Neural Netw. 2006 Nov;17(6):1471-86
18439138 - Neural Comput. 2008 Oct;20(10):2526-63
15321069 - Curr Opin Neurobiol. 2004 Aug;14(4):481-7
17011165 - Neural Netw. 2006 Dec;19(10):1612-23
16310348 - J Physiol Paris. 2004 Jul-Nov;98(4-6):530-9
15541511 - Trends Neurosci. 2004 Dec;27(12):712-9
8637596 - Nature. 1996 Jun 13;381(6583):607-9
18267846 - IEEE Trans Neural Netw. 1994;5(5):719-29
6953413 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8
9425546 - Vision Res. 1997 Dec;37(23):3311-25
18249851 - IEEE Trans Neural Netw. 2000;11(6):1251-62
IEEE Trans Neural Netw Learn Syst. 2014 Aug;25(8):1595-6
17053994 - J Comput Neurosci. 2007 Apr;22(2):135-46
References_xml – ident: ref44
  doi: 10.1137/050644641
– ident: ref36
  doi: 10.1038/nature04485
– year: 2005
  ident: ref42
  publication-title: Liapunov Functions and Stability in Control Theory
  doi: 10.1007/b139028
– ident: ref24
  doi: 10.1016/j.apm.2009.03.014
– ident: ref15
  doi: 10.1109/TAC.2004.825641
– ident: ref18
  doi: 10.1109/72.883412
– ident: ref37
  doi: 10.1155/2007/90727
– ident: ref10
  doi: 10.1002/cpa.20042
– ident: ref12
  doi: 10.1073/pnas.79.8.2554
– ident: ref19
  doi: 10.1109/TCSI.2004.838143
– ident: ref25
  doi: 10.1109/TCSI.2004.834493
– ident: ref27
  doi: 10.1109/TCSI.2008.920131
– ident: ref35
  doi: 10.1007/s10827-006-0003-9
– ident: ref6
  doi: 10.1109/TIT.2005.862083
– ident: ref9
  doi: 10.1109/JSTSP.2007.910281
– ident: ref34
  doi: 10.1016/j.tins.2004.10.007
– volume: 55
  start-page: 3514
  year: 2008
  ident: ref20
  article-title: Convergence analysis of a class of nonsmooth gradient systems
  publication-title: IEEE Trans Circuits Syst I Reg Papers
  doi: 10.1109/TCSI.2008.925816
– year: 1987
  ident: ref40
  publication-title: Optimization and Nonsmooth Analysis
– ident: ref17
  doi: 10.1109/72.317724
– volume: 22
  start-page: 601
  year: 2011
  ident: ref28
  article-title: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2104979
– ident: ref38
  doi: 10.1016/j.jphysparis.2005.09.012
– ident: ref1
  doi: 10.1109/DSP-SPE.2011.5739253
– year: 1993
  ident: ref11
  publication-title: Neural Networks for Optimization and Signal Processing
– ident: ref26
  doi: 10.1109/TNN.2006.879775
– ident: ref30
  doi: 10.1162/089976600300014827
– ident: ref8
  doi: 10.1109/JSTSP.2007.910971
– ident: ref21
  doi: 10.1016/j.neunet.2004.05.006
– ident: ref32
  doi: 10.1137/S003614450037906X
– ident: ref16
  doi: 10.1109/TNN.2006.881046
– ident: ref2
  doi: 10.1109/JPROC.2009.2037655
– ident: ref4
  doi: 10.1038/381607a0
– ident: ref7
  doi: 10.1109/TIT.2006.871582
– ident: ref3
  doi: 10.1016/j.conb.2004.07.007
– ident: ref29
  doi: 10.1109/TAC.2008.2012009
– ident: ref41
  doi: 10.1109/5.871309
– ident: ref22
  doi: 10.1016/j.neunet.2006.07.004
– ident: ref43
  doi: 10.1109/TIT.2004.828141
– ident: ref14
  doi: 10.1162/neco.2008.03-07-486
– ident: ref45
  doi: 10.1002/cpa.20124
– ident: ref33
  doi: 10.1073/pnas.0502269102
– ident: ref13
  doi: 10.1016/j.dsp.2007.09.013
– ident: ref5
  doi: 10.1016/S0042-6989(97)00169-7
– ident: ref39
  doi: 10.1109/TIP.2007.909319
– ident: ref23
  doi: 10.1109/81.401145
– ident: ref31
  doi: 10.1137/S0097539792240406
– reference: 18439138 - Neural Comput. 2008 Oct;20(10):2526-63
– reference: 15321069 - Curr Opin Neurobiol. 2004 Aug;14(4):481-7
– reference: 15312842 - Neural Netw. 2004 Sep;17(7):1003-15
– reference: 21402513 - IEEE Trans Neural Netw. 2011 Apr;22(4):601-13
– reference: - IEEE Trans Neural Netw Learn Syst. 2014 Aug;25(8):1595-6
– reference: 17131662 - IEEE Trans Neural Netw. 2006 Nov;17(6):1471-86
– reference: 16495999 - Nature. 2006 Feb 23;439(7079):978-82
– reference: 17053994 - J Comput Neurosci. 2007 Apr;22(2):135-46
– reference: 17011165 - Neural Netw. 2006 Dec;19(10):1612-23
– reference: 15976026 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9446-51
– reference: 16310348 - J Physiol Paris. 2004 Jul-Nov;98(4-6):530-9
– reference: 11110125 - Neural Comput. 2000 Nov;12(11):2519-35
– reference: 6953413 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8
– reference: 18267846 - IEEE Trans Neural Netw. 1994;5(5):719-29
– reference: 18249851 - IEEE Trans Neural Netw. 2000;11(6):1251-62
– reference: 18092598 - IEEE Trans Image Process. 2007 Dec;16(12):2992-3004
– reference: 8637596 - Nature. 1996 Jun 13;381(6583):607-9
– reference: 17131664 - IEEE Trans Neural Netw. 2006 Nov;17(6):1500-10
– reference: 15541511 - Trends Neurosci. 2004 Dec;27(12):712-9
– reference: 9425546 - Vision Res. 1997 Dec;37(23):3311-25
SSID ssj0000605649
Score 2.3507845
Snippet We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation...
We present an analysis of the Locally Competitive Algotihm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1377
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer Simulation
Connectionism. Neural networks
Convergence
Dictionaries
Exact sciences and technology
Exponential convergence
global stability
Least squares approximation
locally competitive algorithm
Lyapunov function
Lyapunov methods
Models, Statistical
Neural networks
Neural Networks (Computer)
nonsmooth objective
Optimization
Pattern Recognition, Automated - methods
Sample Size
sparse approximation
Studies
Theoretical computing
Title Convergence and Rate Analysis of Neural Networks for Sparse Approximation
URI https://ieeexplore.ieee.org/document/6227360
https://www.ncbi.nlm.nih.gov/pubmed/24199030
https://www.proquest.com/docview/1031262371
https://www.proquest.com/docview/1038274940
https://www.proquest.com/docview/1523403410
https://pubmed.ncbi.nlm.nih.gov/PMC3816963
Volume 23
WOSCitedRecordID wos000308965800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7S0EMvTdP04TRZVOitdeKnZB1LaGihmNKksDdjSSO6ULwhuxvy8zMjP5otIdCbQWNjz2isb6RvZgA-yBwllpWNi9zmcWFTHbcadUzhbdH6wknj-mYTqq6r-Vz_2IFPUy4MIgbyGZ7wZTjLd0u74a2yU5nRYispQH-ilOpztab9lIRwuQxoN0tlFme5mo85Mok-vazr7xdM5MpOsozLenEHOFq86F_M_Od7S1LoscIMyXZFSvJ9d4uH4Oe_LMp7y9L53v990At4PsBP8bmfL_uwg91L2BtbO4jB0w_g2xmz0UNiJoq2c-InYVIxVjARSy-4qgc9qe5p5CtB4FdcXFGYTGJcp_x20SdFvoJf518uz77GQ9eF2FKovI49yrKUrkTjE0PQO3Uu99rpzGChlTYG24JGfIupTRPUCpl5oh16h6Z1Kn8Nu92yw7cgCm9lnhrvKsw5w7ZqpfSWYiBpfGkURpCOim_sUJKcO2P8aUJokugm2K1huzWD3SL4ON1z1RfkeFT6gLU-SQ4Kj2C2Zd9pnKvXa8IwERyNBm8Gp1413BEjI7io0gjeT8PkjnzG0na43ASZigJ9XSSPyFDwXyQEH0jmTT-H_r7AMCcjUFuzaxLgcuDbI93idygLzkfA9Ds9fPiT38EzVkxPjzuC3fX1Bo_hqb1ZL1bXM_KoeTULHnUHnr8dyA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5KFfTFqvVHtNYVfNO0yWazyT5KsbR4BrEn3FvIZmfpgeRK7078853Z5GJPSsG3wM4dycxu9pvsN98AvNcZaszLNlZZm8WqTU3cGDQxpbeq8cpp6_pmE0VVlbOZ-bYDH8daGEQM5DM84stwlu8W7Zo_lR1rSZutpgT9Xq6UTPtqrfGLSkLIXAe8K1MtY5kVs02VTGKOp1U1uWAqlzySkoW9uAccbV_0NmYG9I1NKXRZYY5ksyQ3-b6_xW0A9F8e5Y2N6XTv_x7pMTwaAKj41M-YJ7CD3VPY2zR3EMNa34fzE-ajh9JMFE3nxHdCpWKjYSIWXrCuB_1T1RPJl4Lgr7i4okSZzFip_Pe8L4t8Bj9OP09PzuKh70LcUrK8ij3qPNcuR-sTS-A7dS7zxhlpUZnCWIuNohHfYNqmCZoCmXtiHHqHtnFF9hx2u0WHL0Eo3-ostd6VmHGNbdlo7VvKgrT1uS0wgnTj-LodRMm5N8bPOiQnialD3GqOWz3ELYIP42-uekmOO6332euj5eDwCA634juOs369IRQTwcEm4PWwrJc198SQBBiLNIJ34zAtSD5laTpcrINNSam-UckdNpT-q4QABNm86OfQ3xsY5mQExdbsGg1YEHx7pJtfBmFwPgSmF-qr2x_5LTw4m36d1JPz6streMhO6slyB7C7ul7jG7jf_lrNl9eHYV39AddKICc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+and+Rate+Analysis+of+Neural+Networks+for+Sparse+Approximation&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Balavoine%2C+A.&rft.au=Romberg%2C+J.&rft.au=Rozell%2C+C.+J.&rft.date=2012-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=23&rft.issue=9&rft.spage=1377&rft.epage=1389&rft_id=info:doi/10.1109%2FTNNLS.2012.2202400&rft_id=info%3Apmid%2F24199030&rft.externalDocID=6227360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon