Convergence and Rate Analysis of Neural Networks for Sparse Approximation
We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 23; H. 9; S. 1377 - 1389 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.09.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations. |
|---|---|
| AbstractList | We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations.We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations. We present an analysis of the Locally Competitive Algotihm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations. We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations. |
| Author | Romberg, J. Rozell, C. J. Balavoine, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Balavoine fullname: Balavoine, A. email: aurele.balavoine@gatech.edu organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 2 givenname: J. surname: Romberg fullname: Romberg, J. email: jrom@ece.gatech.edu organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA – sequence: 3 givenname: C. J. surname: Rozell fullname: Rozell, C. J. email: crozell@gatech.edu organization: Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26329818$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24199030$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkttrFDEUxoNU7MX-AwoyUIS-7JrbZCYvQlm0FpYVbAXfQiZzUlNnkzGZ6eW_N3vpqn3QvCRwft_Jl5zvEO354AGhVwRPCcHy3dViMb-cUkzolFJMOcbP0AElgk4oq-u93bn6to-OU7rBeQlcCi5foH3KiZSY4QN0MQv-FuI1eAOF9m3xRQ9QnHndPSSXimCLBYxRd3kb7kL8kQobYnHZ65gy1vcx3LulHlzwL9Fzq7sEx9v9CH39-OFq9mky_3x-MTubTwwXcphYEGUp2hIai5uKStK2zMpW0ga4rGTTgOa5YjUQQzDICsBakC3YFhrdVuwIvd_07cdmCa0BP2R_qo_ZR3xQQTv1d8W77-o63CpWEyEFyw1Otw1i-DlCGtTSJQNdpz2EMSlSUsYx4wT_H8WsphWXfIWePEFvwhjzP64pQkUeBcnUmz_N71w_DiQDb7eATkZ3NmpvXPrNCUZlTerM1RvOxJBSBKuMG9ZzyG92Xb5TrWKi1jFRq5iobUyylD6RPnb_p-j1RuQAYCcQlFZMYPYLf3HJRA |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2025_129392 crossref_primary_10_1109_TCYB_2016_2611529 crossref_primary_10_1109_TNNLS_2015_2496658 crossref_primary_10_1109_TNNLS_2016_2575860 crossref_primary_10_1109_TNNLS_2013_2238555 crossref_primary_10_1162_neco_a_01657 crossref_primary_10_1016_j_neucom_2014_10_036 crossref_primary_10_1016_j_neucom_2020_02_100 crossref_primary_10_1109_TNNLS_2022_3153039 crossref_primary_10_1109_TNSE_2021_3114426 crossref_primary_10_1016_j_sigpro_2018_11_017 crossref_primary_10_1016_j_neunet_2017_07_008 crossref_primary_10_1016_j_neucom_2023_126480 crossref_primary_10_1002_int_22564 crossref_primary_10_1016_j_sigpro_2016_06_027 crossref_primary_10_1016_j_neunet_2013_03_012 crossref_primary_10_1016_j_neucom_2024_127939 crossref_primary_10_1109_TNNLS_2013_2292700 crossref_primary_10_3389_fnins_2019_00754 crossref_primary_10_1016_j_sigpro_2019_04_010 crossref_primary_10_1109_ACCESS_2019_2897488 crossref_primary_10_1109_TNNLS_2015_2481006 crossref_primary_10_1016_j_neucom_2016_01_047 crossref_primary_10_1016_j_neunet_2014_09_009 crossref_primary_10_1109_TIT_2015_2460238 crossref_primary_10_1109_TNNLS_2014_2323985 crossref_primary_10_1016_j_neunet_2020_07_037 crossref_primary_10_1109_TNNLS_2016_2532358 crossref_primary_10_1109_TSP_2013_2271482 crossref_primary_10_1109_TNNLS_2018_2884788 crossref_primary_10_1109_TSP_2017_2745468 crossref_primary_10_1109_TNNLS_2020_2990990 crossref_primary_10_3389_fnsys_2014_00141 crossref_primary_10_1109_TNNLS_2016_2645602 crossref_primary_10_1007_s00521_017_2863_5 crossref_primary_10_1007_s12559_017_9495_z crossref_primary_10_1162_NECO_a_00372 crossref_primary_10_1109_TNNLS_2021_3088535 crossref_primary_10_1371_journal_pcbi_1003191 crossref_primary_10_1016_j_neucom_2021_05_002 crossref_primary_10_1162_NECO_a_00590 crossref_primary_10_1109_ACCESS_2020_2981346 crossref_primary_10_1016_j_neucom_2023_126728 crossref_primary_10_1109_TSP_2015_2420535 crossref_primary_10_1109_JETCAS_2012_2214615 crossref_primary_10_1109_TNNLS_2015_2479117 crossref_primary_10_1371_journal_pcbi_1004353 crossref_primary_10_1371_journal_pcbi_1009642 crossref_primary_10_1016_j_neunet_2022_05_022 crossref_primary_10_1109_TNNLS_2013_2244099 |
| Cites_doi | 10.1137/050644641 10.1038/nature04485 10.1007/b139028 10.1016/j.apm.2009.03.014 10.1109/TAC.2004.825641 10.1109/72.883412 10.1155/2007/90727 10.1002/cpa.20042 10.1073/pnas.79.8.2554 10.1109/TCSI.2004.838143 10.1109/TCSI.2004.834493 10.1109/TCSI.2008.920131 10.1007/s10827-006-0003-9 10.1109/TIT.2005.862083 10.1109/JSTSP.2007.910281 10.1016/j.tins.2004.10.007 10.1109/TCSI.2008.925816 10.1109/72.317724 10.1109/TNN.2011.2104979 10.1016/j.jphysparis.2005.09.012 10.1109/DSP-SPE.2011.5739253 10.1109/TNN.2006.879775 10.1162/089976600300014827 10.1109/JSTSP.2007.910971 10.1016/j.neunet.2004.05.006 10.1137/S003614450037906X 10.1109/TNN.2006.881046 10.1109/JPROC.2009.2037655 10.1038/381607a0 10.1109/TIT.2006.871582 10.1016/j.conb.2004.07.007 10.1109/TAC.2008.2012009 10.1109/5.871309 10.1016/j.neunet.2006.07.004 10.1109/TIT.2004.828141 10.1162/neco.2008.03-07-486 10.1002/cpa.20124 10.1073/pnas.0502269102 10.1016/j.dsp.2007.09.013 10.1016/S0042-6989(97)00169-7 10.1109/TIP.2007.909319 10.1109/81.401145 10.1137/S0097539792240406 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012 2012 IEEE 2012 |
| Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012 – notice: 2012 IEEE 2012 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| DOI | 10.1109/TNNLS.2012.2202400 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 2162-2388 |
| EndPage | 1389 |
| ExternalDocumentID | PMC3816963 2729785681 24199030 26329818 10_1109_TNNLS_2012_2202400 6227360 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01-EY019965 – fundername: NEI NIH HHS grantid: R01 EY019965 – fundername: National Eye Institute : NEI grantid: R01 EY019965 || EY |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| ID | FETCH-LOGICAL-c469t-fe6556d5ebf0b7291dd3f9d92be4979bbea4f0bfae1c10e97eeffe9defdebad73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308965800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Tue Sep 30 16:56:43 EDT 2025 Sat Sep 27 22:01:24 EDT 2025 Tue Oct 07 09:40:37 EDT 2025 Sun Nov 09 06:29:53 EST 2025 Mon Jul 21 06:06:40 EDT 2025 Mon Jul 21 09:16:08 EDT 2025 Sat Nov 29 01:39:46 EST 2025 Tue Nov 18 22:11:20 EST 2025 Tue Aug 26 17:19:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Hopfield neural nets Exponential convergence Dictionaries Competitiveness Global optimum global stability locally competitive algorithm Network management Neural network Function approximation Competitive algorithms Convergence speed nonsmooth objective, sparse approximation Convergence rate Signal processing Sparse representation Objective function Numerical convergence Hopfield model Lyapunov function |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-fe6556d5ebf0b7291dd3f9d92be4979bbea4f0bfae1c10e97eeffe9defdebad73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 (aurele.balavoine@gatech.edu; jrom@ece.gatech.edu; crozell@gatech.edu). |
| PMID | 24199030 |
| PQID | 1031262371 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1038274940 pubmed_primary_24199030 proquest_journals_1031262371 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3816963 pascalfrancis_primary_26329818 proquest_miscellaneous_1523403410 crossref_citationtrail_10_1109_TNNLS_2012_2202400 crossref_primary_10_1109_TNNLS_2012_2202400 ieee_primary_6227360 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-09-01 |
| PublicationDateYYYYMMDD | 2012-09-01 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2012 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 lu (ref20) 2008; 55 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref32 ref10 cichocki (ref11) 1993 bacciotti (ref42) 2005 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 liu (ref28) 2011; 22 ref24 ref45 ref23 ref26 ref25 ref41 ref22 ref44 ref21 ref43 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 clarke (ref40) 1987 16495999 - Nature. 2006 Feb 23;439(7079):978-82 15976026 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9446-51 11110125 - Neural Comput. 2000 Nov;12(11):2519-35 18092598 - IEEE Trans Image Process. 2007 Dec;16(12):2992-3004 15312842 - Neural Netw. 2004 Sep;17(7):1003-15 21402513 - IEEE Trans Neural Netw. 2011 Apr;22(4):601-13 17131664 - IEEE Trans Neural Netw. 2006 Nov;17(6):1500-10 17131662 - IEEE Trans Neural Netw. 2006 Nov;17(6):1471-86 18439138 - Neural Comput. 2008 Oct;20(10):2526-63 15321069 - Curr Opin Neurobiol. 2004 Aug;14(4):481-7 17011165 - Neural Netw. 2006 Dec;19(10):1612-23 16310348 - J Physiol Paris. 2004 Jul-Nov;98(4-6):530-9 15541511 - Trends Neurosci. 2004 Dec;27(12):712-9 8637596 - Nature. 1996 Jun 13;381(6583):607-9 18267846 - IEEE Trans Neural Netw. 1994;5(5):719-29 6953413 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 9425546 - Vision Res. 1997 Dec;37(23):3311-25 18249851 - IEEE Trans Neural Netw. 2000;11(6):1251-62 IEEE Trans Neural Netw Learn Syst. 2014 Aug;25(8):1595-6 17053994 - J Comput Neurosci. 2007 Apr;22(2):135-46 |
| References_xml | – ident: ref44 doi: 10.1137/050644641 – ident: ref36 doi: 10.1038/nature04485 – year: 2005 ident: ref42 publication-title: Liapunov Functions and Stability in Control Theory doi: 10.1007/b139028 – ident: ref24 doi: 10.1016/j.apm.2009.03.014 – ident: ref15 doi: 10.1109/TAC.2004.825641 – ident: ref18 doi: 10.1109/72.883412 – ident: ref37 doi: 10.1155/2007/90727 – ident: ref10 doi: 10.1002/cpa.20042 – ident: ref12 doi: 10.1073/pnas.79.8.2554 – ident: ref19 doi: 10.1109/TCSI.2004.838143 – ident: ref25 doi: 10.1109/TCSI.2004.834493 – ident: ref27 doi: 10.1109/TCSI.2008.920131 – ident: ref35 doi: 10.1007/s10827-006-0003-9 – ident: ref6 doi: 10.1109/TIT.2005.862083 – ident: ref9 doi: 10.1109/JSTSP.2007.910281 – ident: ref34 doi: 10.1016/j.tins.2004.10.007 – volume: 55 start-page: 3514 year: 2008 ident: ref20 article-title: Convergence analysis of a class of nonsmooth gradient systems publication-title: IEEE Trans Circuits Syst I Reg Papers doi: 10.1109/TCSI.2008.925816 – year: 1987 ident: ref40 publication-title: Optimization and Nonsmooth Analysis – ident: ref17 doi: 10.1109/72.317724 – volume: 22 start-page: 601 year: 2011 ident: ref28 article-title: Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2104979 – ident: ref38 doi: 10.1016/j.jphysparis.2005.09.012 – ident: ref1 doi: 10.1109/DSP-SPE.2011.5739253 – year: 1993 ident: ref11 publication-title: Neural Networks for Optimization and Signal Processing – ident: ref26 doi: 10.1109/TNN.2006.879775 – ident: ref30 doi: 10.1162/089976600300014827 – ident: ref8 doi: 10.1109/JSTSP.2007.910971 – ident: ref21 doi: 10.1016/j.neunet.2004.05.006 – ident: ref32 doi: 10.1137/S003614450037906X – ident: ref16 doi: 10.1109/TNN.2006.881046 – ident: ref2 doi: 10.1109/JPROC.2009.2037655 – ident: ref4 doi: 10.1038/381607a0 – ident: ref7 doi: 10.1109/TIT.2006.871582 – ident: ref3 doi: 10.1016/j.conb.2004.07.007 – ident: ref29 doi: 10.1109/TAC.2008.2012009 – ident: ref41 doi: 10.1109/5.871309 – ident: ref22 doi: 10.1016/j.neunet.2006.07.004 – ident: ref43 doi: 10.1109/TIT.2004.828141 – ident: ref14 doi: 10.1162/neco.2008.03-07-486 – ident: ref45 doi: 10.1002/cpa.20124 – ident: ref33 doi: 10.1073/pnas.0502269102 – ident: ref13 doi: 10.1016/j.dsp.2007.09.013 – ident: ref5 doi: 10.1016/S0042-6989(97)00169-7 – ident: ref39 doi: 10.1109/TIP.2007.909319 – ident: ref23 doi: 10.1109/81.401145 – ident: ref31 doi: 10.1137/S0097539792240406 – reference: 18439138 - Neural Comput. 2008 Oct;20(10):2526-63 – reference: 15321069 - Curr Opin Neurobiol. 2004 Aug;14(4):481-7 – reference: 15312842 - Neural Netw. 2004 Sep;17(7):1003-15 – reference: 21402513 - IEEE Trans Neural Netw. 2011 Apr;22(4):601-13 – reference: - IEEE Trans Neural Netw Learn Syst. 2014 Aug;25(8):1595-6 – reference: 17131662 - IEEE Trans Neural Netw. 2006 Nov;17(6):1471-86 – reference: 16495999 - Nature. 2006 Feb 23;439(7079):978-82 – reference: 17053994 - J Comput Neurosci. 2007 Apr;22(2):135-46 – reference: 17011165 - Neural Netw. 2006 Dec;19(10):1612-23 – reference: 15976026 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9446-51 – reference: 16310348 - J Physiol Paris. 2004 Jul-Nov;98(4-6):530-9 – reference: 11110125 - Neural Comput. 2000 Nov;12(11):2519-35 – reference: 6953413 - Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 – reference: 18267846 - IEEE Trans Neural Netw. 1994;5(5):719-29 – reference: 18249851 - IEEE Trans Neural Netw. 2000;11(6):1251-62 – reference: 18092598 - IEEE Trans Image Process. 2007 Dec;16(12):2992-3004 – reference: 8637596 - Nature. 1996 Jun 13;381(6583):607-9 – reference: 17131664 - IEEE Trans Neural Netw. 2006 Nov;17(6):1500-10 – reference: 15541511 - Trends Neurosci. 2004 Dec;27(12):712-9 – reference: 9425546 - Vision Res. 1997 Dec;37(23):3311-25 |
| SSID | ssj0000605649 |
| Score | 2.3507845 |
| Snippet | We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation... We present an analysis of the Locally Competitive Algotihm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1377 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial intelligence Computer science; control theory; systems Computer Simulation Connectionism. Neural networks Convergence Dictionaries Exact sciences and technology Exponential convergence global stability Least squares approximation locally competitive algorithm Lyapunov function Lyapunov methods Models, Statistical Neural networks Neural Networks (Computer) nonsmooth objective Optimization Pattern Recognition, Automated - methods Sample Size sparse approximation Studies Theoretical computing |
| Title | Convergence and Rate Analysis of Neural Networks for Sparse Approximation |
| URI | https://ieeexplore.ieee.org/document/6227360 https://www.ncbi.nlm.nih.gov/pubmed/24199030 https://www.proquest.com/docview/1031262371 https://www.proquest.com/docview/1038274940 https://www.proquest.com/docview/1523403410 https://pubmed.ncbi.nlm.nih.gov/PMC3816963 |
| Volume | 23 |
| WOSCitedRecordID | wos000308965800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7S0EMvTdP04TRZVOitdeKnZB1LaGihmNKksDdjSSO6ULwhuxvy8zMjP5otIdCbQWNjz2isb6RvZgA-yBwllpWNi9zmcWFTHbcadUzhbdH6wknj-mYTqq6r-Vz_2IFPUy4MIgbyGZ7wZTjLd0u74a2yU5nRYispQH-ilOpztab9lIRwuQxoN0tlFme5mo85Mok-vazr7xdM5MpOsozLenEHOFq86F_M_Od7S1LoscIMyXZFSvJ9d4uH4Oe_LMp7y9L53v990At4PsBP8bmfL_uwg91L2BtbO4jB0w_g2xmz0UNiJoq2c-InYVIxVjARSy-4qgc9qe5p5CtB4FdcXFGYTGJcp_x20SdFvoJf518uz77GQ9eF2FKovI49yrKUrkTjE0PQO3Uu99rpzGChlTYG24JGfIupTRPUCpl5oh16h6Z1Kn8Nu92yw7cgCm9lnhrvKsw5w7ZqpfSWYiBpfGkURpCOim_sUJKcO2P8aUJokugm2K1huzWD3SL4ON1z1RfkeFT6gLU-SQ4Kj2C2Zd9pnKvXa8IwERyNBm8Gp1413BEjI7io0gjeT8PkjnzG0na43ASZigJ9XSSPyFDwXyQEH0jmTT-H_r7AMCcjUFuzaxLgcuDbI93idygLzkfA9Ds9fPiT38EzVkxPjzuC3fX1Bo_hqb1ZL1bXM_KoeTULHnUHnr8dyA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5KFfTFqvVHtNYVfNO0yWazyT5KsbR4BrEn3FvIZmfpgeRK7078853Z5GJPSsG3wM4dycxu9pvsN98AvNcZaszLNlZZm8WqTU3cGDQxpbeq8cpp6_pmE0VVlbOZ-bYDH8daGEQM5DM84stwlu8W7Zo_lR1rSZutpgT9Xq6UTPtqrfGLSkLIXAe8K1MtY5kVs02VTGKOp1U1uWAqlzySkoW9uAccbV_0NmYG9I1NKXRZYY5ksyQ3-b6_xW0A9F8e5Y2N6XTv_x7pMTwaAKj41M-YJ7CD3VPY2zR3EMNa34fzE-ajh9JMFE3nxHdCpWKjYSIWXrCuB_1T1RPJl4Lgr7i4okSZzFip_Pe8L4t8Bj9OP09PzuKh70LcUrK8ij3qPNcuR-sTS-A7dS7zxhlpUZnCWIuNohHfYNqmCZoCmXtiHHqHtnFF9hx2u0WHL0Eo3-ostd6VmHGNbdlo7VvKgrT1uS0wgnTj-LodRMm5N8bPOiQnialD3GqOWz3ELYIP42-uekmOO6332euj5eDwCA634juOs369IRQTwcEm4PWwrJc198SQBBiLNIJ34zAtSD5laTpcrINNSam-UckdNpT-q4QABNm86OfQ3xsY5mQExdbsGg1YEHx7pJtfBmFwPgSmF-qr2x_5LTw4m36d1JPz6streMhO6slyB7C7ul7jG7jf_lrNl9eHYV39AddKICc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+and+Rate+Analysis+of+Neural+Networks+for+Sparse+Approximation&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Balavoine%2C+A.&rft.au=Romberg%2C+J.&rft.au=Rozell%2C+C.+J.&rft.date=2012-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=23&rft.issue=9&rft.spage=1377&rft.epage=1389&rft_id=info:doi/10.1109%2FTNNLS.2012.2202400&rft_id=info%3Apmid%2F24199030&rft.externalDocID=6227360 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |