HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction

Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget Jg. 7; H. 40; S. 65257
Hauptverfasser: Chen, Xing, Yan, Chenggang Clarence, Zhang, Xu, You, Zhu-Hong, Huang, Yu-An, Yan, Gui-Ying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 04.10.2016
Schlagworte:
ISSN:1949-2553, 1949-2553
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.
AbstractList Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.
Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.
Author Yan, Chenggang Clarence
Yan, Gui-Ying
You, Zhu-Hong
Chen, Xing
Zhang, Xu
Huang, Yu-An
Author_xml – sequence: 1
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
  organization: School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Chenggang Clarence
  surname: Yan
  fullname: Yan, Chenggang Clarence
  organization: Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  organization: School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China
– sequence: 4
  givenname: Zhu-Hong
  surname: You
  fullname: You, Zhu-Hong
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
– sequence: 5
  givenname: Yu-An
  surname: Huang
  fullname: Huang, Yu-An
  organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
– sequence: 6
  givenname: Gui-Ying
  surname: Yan
  fullname: Yan, Gui-Ying
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27533456$$D View this record in MEDLINE/PubMed
BookMark eNpNUM1OwzAYi9AQG2MPwAX1yKWj-WsSbtOAbdIYEtq9StOvI2hNStIeeHsKDAlf7INl2b5EI-cdIHSNszmWOSV33hnf6XCAbo4x4fgMTbBiKiWc09E_PUazGN-zAZwJSdQFGhPBKWU8n6DderV5fljcJ2voIPgDOPB9TA5Bt2-JdTUEcAaS2oeksa-7RVrZCDpComP0xurOepe0ASprvuUVOq_1McLsxFO0f3rcL9fp9mW1WS62qWG56tK61NoYnIOoNMa1xHUmhlFlpVmpWC6oVkQSbShXUNGhtcGlEtRgLkrIcjJFt7-xbfAfPcSuaGw0cDzqn_oFlpzJDAvJB-vNydqXDVRFG2yjw2fxdwH5Am2nYiM
CitedBy_id crossref_primary_10_1039_C7RA08894A
crossref_primary_10_3390_ijms222111397
crossref_primary_10_3389_fmicb_2023_1170559
crossref_primary_10_1039_C9RA05554A
crossref_primary_10_1093_bib_bbac463
crossref_primary_10_1111_jcmm_13336
crossref_primary_10_1007_s00438_020_01702_9
crossref_primary_10_1093_bib_bbac066
crossref_primary_10_1038_s41598_017_02365_0
crossref_primary_10_3390_biomedicines13010136
crossref_primary_10_1038_s41598_017_06201_3
crossref_primary_10_7717_peerj_13848
crossref_primary_10_1038_s41419_017_0003_x
crossref_primary_10_3389_fmicb_2023_1179414
crossref_primary_10_1016_j_ygeno_2019_05_021
crossref_primary_10_3389_fgene_2021_742992
crossref_primary_10_1007_s11042_017_5291_8
crossref_primary_10_1109_TCBB_2019_2931546
crossref_primary_10_1016_j_omtn_2019_06_014
crossref_primary_10_7717_peerj_cs_2070
crossref_primary_10_1093_bib_bbaf444
crossref_primary_10_3389_fbioe_2020_00901
crossref_primary_10_1007_s11831_020_09435_z
crossref_primary_10_1109_ACCESS_2019_2917611
crossref_primary_10_1177_15578666251372198
crossref_primary_10_1093_bib_bbac571
crossref_primary_10_1111_jcmm_13583
crossref_primary_10_1109_TCBB_2019_2957094
crossref_primary_10_1109_ACCESS_2020_2972068
crossref_primary_10_3389_fgene_2022_978975
crossref_primary_10_1016_j_ymeth_2020_05_010
crossref_primary_10_1186_s12859_020_3409_x
crossref_primary_10_1038_srep43792
crossref_primary_10_1109_TCBB_2019_2937774
crossref_primary_10_3390_molecules27144371
crossref_primary_10_1155_2020_6248686
crossref_primary_10_1186_s12859_019_3260_0
crossref_primary_10_3389_fgene_2018_00576
crossref_primary_10_3389_fgene_2021_727744
crossref_primary_10_1016_j_omtn_2019_12_010
crossref_primary_10_1016_j_omtn_2018_10_005
crossref_primary_10_3389_fgene_2019_00385
crossref_primary_10_1186_s12911_020_01320_w
crossref_primary_10_1111_jcmm_13799
crossref_primary_10_1111_jcmm_14765
crossref_primary_10_1109_ACCESS_2017_2766758
crossref_primary_10_1007_s10441_018_9325_z
crossref_primary_10_1155_2019_2426958
crossref_primary_10_1007_s12021_018_9386_9
crossref_primary_10_1016_j_neucom_2020_09_032
crossref_primary_10_1186_s12859_023_05365_2
crossref_primary_10_1007_s12539_021_00459_y
crossref_primary_10_1016_j_mbs_2018_10_004
crossref_primary_10_1093_bib_bbab302
crossref_primary_10_1186_s12918_017_0398_0
crossref_primary_10_3389_fgene_2018_00324
crossref_primary_10_1016_j_compbiomed_2019_05_014
crossref_primary_10_1038_s41598_021_91991_w
crossref_primary_10_1186_s12911_021_01616_5
crossref_primary_10_1186_s13059_019_1811_3
crossref_primary_10_1186_s12859_020_03716_x
crossref_primary_10_1186_s12859_019_2956_5
crossref_primary_10_1016_j_compbiolchem_2020_107369
crossref_primary_10_1016_j_jmb_2018_05_006
crossref_primary_10_1155_2017_2498957
crossref_primary_10_1016_j_csbj_2020_08_023
crossref_primary_10_3389_fgene_2019_00897
crossref_primary_10_1016_j_compbiomed_2022_105558
crossref_primary_10_1109_TCBB_2021_3127017
crossref_primary_10_1038_srep42809
crossref_primary_10_1371_journal_pcbi_1005912
crossref_primary_10_1109_ACCESS_2021_3096830
crossref_primary_10_18632_oncotarget_17719
crossref_primary_10_1186_s12859_022_04579_0
crossref_primary_10_3389_fbioe_2020_00040
crossref_primary_10_1109_ACCESS_2017_2754409
crossref_primary_10_3390_biom11121835
crossref_primary_10_1186_s12967_018_1722_1
crossref_primary_10_4142_jvs_2019_20_e68
crossref_primary_10_1109_TCBB_2022_3196394
crossref_primary_10_1093_bib_bbac104
crossref_primary_10_1186_s12967_019_2009_x
crossref_primary_10_3390_ijms19113410
crossref_primary_10_1109_TCBB_2017_2776280
crossref_primary_10_1038_s41598_017_15235_6
crossref_primary_10_1109_TCBB_2019_2940182
crossref_primary_10_1155_2018_6789089
crossref_primary_10_1093_bib_bbae168
crossref_primary_10_1186_s12967_017_1340_3
crossref_primary_10_1109_TCBB_2023_3335007
crossref_primary_10_1016_j_jbi_2018_05_005
crossref_primary_10_1093_bib_bbac021
crossref_primary_10_1371_journal_pcbi_1007209
crossref_primary_10_1038_s41598_022_20529_5
crossref_primary_10_3389_fgene_2020_00389
crossref_primary_10_2174_0109298673249941231108091326
crossref_primary_10_1007_s12539_021_00458_z
crossref_primary_10_1016_j_biosystems_2020_104292
crossref_primary_10_1039_C9RA11043G
crossref_primary_10_3390_jpm12060885
crossref_primary_10_1016_j_gpb_2016_12_003
crossref_primary_10_1109_TCBB_2022_3195514
crossref_primary_10_3389_fgene_2018_00303
crossref_primary_10_1093_bib_bbx046
crossref_primary_10_1038_srep46572
crossref_primary_10_1186_s12918_017_0495_0
crossref_primary_10_1111_jcmm_13429
crossref_primary_10_1186_s12967_018_1741_y
crossref_primary_10_1093_bib_bbab165
crossref_primary_10_1016_j_ymeth_2023_02_003
crossref_primary_10_12677_HJCB_2022_122003
crossref_primary_10_1016_j_knosys_2019_104963
crossref_primary_10_1038_s41598_017_08127_2
crossref_primary_10_1016_j_jbi_2018_02_013
crossref_primary_10_3389_fgene_2022_825318
crossref_primary_10_1038_srep39812
crossref_primary_10_1186_s12864_018_5273_x
crossref_primary_10_1007_s12539_023_00594_8
crossref_primary_10_1016_j_jbi_2017_10_014
crossref_primary_10_12677_HJCB_2021_113005
crossref_primary_10_3389_fphys_2018_00092
crossref_primary_10_1186_s12918_017_0518_x
crossref_primary_10_1007_s40484_019_0170_0
crossref_primary_10_1371_journal_pone_0184394
crossref_primary_10_1371_journal_pone_0221764
crossref_primary_10_1089_cmb_2019_0106
crossref_primary_10_1134_S0026893318050151
crossref_primary_10_1007_s00438_018_1438_1
crossref_primary_10_1039_C8RA07519K
crossref_primary_10_3390_cells9040881
crossref_primary_10_3390_ijms231911498
crossref_primary_10_1371_journal_pcbi_1006931
crossref_primary_10_1039_C7MB00485K
crossref_primary_10_1089_cmb_2021_0149
crossref_primary_10_1111_jcmm_14048
crossref_primary_10_1371_journal_pcbi_1006418
crossref_primary_10_1038_s41598_018_24532_7
crossref_primary_10_1038_srep35350
crossref_primary_10_1371_journal_pcbi_1009655
crossref_primary_10_1038_s41598_018_34180_6
crossref_primary_10_1109_TCBB_2024_3421924
crossref_primary_10_1371_journal_pone_0252971
crossref_primary_10_1109_TCBB_2022_3191972
crossref_primary_10_1038_s41598_017_15716_8
crossref_primary_10_3390_ijms20020421
crossref_primary_10_1089_omi_2024_0047
crossref_primary_10_1016_j_ab_2023_115431
crossref_primary_10_1109_ACCESS_2021_3084148
crossref_primary_10_1155_2021_6652948
crossref_primary_10_1016_j_compbiomed_2024_109068
crossref_primary_10_1186_s12859_019_3290_7
crossref_primary_10_1038_s41598_017_15846_z
crossref_primary_10_1186_s12859_019_2640_9
crossref_primary_10_1038_s41598_017_11840_7
crossref_primary_10_1016_j_jbi_2019_103358
crossref_primary_10_1155_2023_2785436
crossref_primary_10_1186_s12859_017_1924_1
crossref_primary_10_1371_journal_pone_0179034
crossref_primary_10_3390_biomedicines13030536
crossref_primary_10_1038_s41598_017_00252_2
crossref_primary_10_1093_bib_bbz159
crossref_primary_10_3389_fgene_2018_00234
crossref_primary_10_12677_HJCB_2022_113005
crossref_primary_10_1007_s12021_018_9373_1
crossref_primary_10_3389_fcell_2021_617569
crossref_primary_10_1093_bib_bbx130
crossref_primary_10_1093_bib_bbz032
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.18632/oncotarget.11251
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1949-2553
ExternalDocumentID 27533456
Genre Journal Article
GroupedDBID ---
53G
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CGR
CUY
CVF
DIK
ECM
EIF
FRJ
GX1
HYE
KQ8
M48
M~E
NPM
OK1
PGMZT
RPM
7X8
ID FETCH-LOGICAL-c469t-fbaacc16e7da11f81f07186bda4b94673a9282ac359ed3478c1b973c157be062
IEDL.DBID 7X8
ISICitedReferencesCount 205
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387281000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-2553
IngestDate Thu Jul 10 17:13:31 EDT 2025
Thu Jan 02 23:01:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 40
Keywords microRNA
microRNA-disease association
disease
heterogeneous network
similarity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-fbaacc16e7da11f81f07186bda4b94673a9282ac359ed3478c1b973c157be062
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5323153
PMID 27533456
PQID 1854801785
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1854801785
pubmed_primary_27533456
PublicationCentury 2000
PublicationDate 2016-10-04
PublicationDateYYYYMMDD 2016-10-04
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Oncotarget
PublicationTitleAlternate Oncotarget
PublicationYear 2016
SSID ssj0000547829
Score 2.5478067
Snippet Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 65257
SubjectTerms Computational Biology - methods
Computer Simulation
Humans
MicroRNAs
Models, Theoretical
Neoplasms - genetics
Title HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/27533456
https://www.proquest.com/docview/1854801785
Volume 7
WOSCitedRecordID wos000387281000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaAMrBwiKtcMhKr1ThOfLCgCihlaFShDt0ix4fUgaaX-P08uymdkJBYoiyJ4ueX977n7x0IPaRcsSxhmkhmPckEd0TaNCc5OEsNeER5Y-OwCVEUcjxWw-bAbdmkVW5sYjTUtjbhjLwDfiV0OhEyf5rNSZgaFdjVZoTGLmoxgDJBq8VY_pyxJKFZVRxUBqG6IoCeWUNsSs7STh3aH8R861BIk9PfQWZ0Nr2j_37mMTpsYCburvXiBO246Skq-m_vg5fuI-6HHJgaVMdB3I9jz2o82VT-YYCx-HPyUXRJw95gvd1DPFsEaifcnqFR73X03CfNPAViIAheEV9pbQzlTlhNqZfUA76QvLI6qxQYTKYVBGDasFw5y0B0hlZKMENzUbmEp-dob1pP3SXCsEQvEh44R5MJVmlnOLxCZyZTqfBpG91vpFOCugYOQscllVv5tNHFWsTlbN1Xo0xFqAvO-dUfnr5GBwBdeEyry25Qy8PP6m7RvvlaTZaLu6gHcC2Gg29FOL03
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HGIMDA%3A+Heterogeneous+graph+inference+for+miRNA-disease+association+prediction&rft.jtitle=Oncotarget&rft.au=Chen%2C+Xing&rft.au=Yan%2C+Chenggang+Clarence&rft.au=Zhang%2C+Xu&rft.au=You%2C+Zhu-Hong&rft.date=2016-10-04&rft.issn=1949-2553&rft.eissn=1949-2553&rft.volume=7&rft.issue=40&rft.spage=65257&rft_id=info:doi/10.18632%2Foncotarget.11251&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon