HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneou...
Gespeichert in:
| Veröffentlicht in: | Oncotarget Jg. 7; H. 40; S. 65257 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
04.10.2016
|
| Schlagworte: | |
| ISSN: | 1949-2553, 1949-2553 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models. |
|---|---|
| AbstractList | Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models. Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models. |
| Author | Yan, Chenggang Clarence Yan, Gui-Ying You, Zhu-Hong Chen, Xing Zhang, Xu Huang, Yu-An |
| Author_xml | – sequence: 1 givenname: Xing surname: Chen fullname: Chen, Xing organization: School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Chenggang Clarence surname: Yan fullname: Yan, Chenggang Clarence organization: Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China – sequence: 4 givenname: Zhu-Hong surname: You fullname: You, Zhu-Hong organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China – sequence: 5 givenname: Yu-An surname: Huang fullname: Huang, Yu-An organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong, China – sequence: 6 givenname: Gui-Ying surname: Yan fullname: Yan, Gui-Ying organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27533456$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUM1OwzAYi9AQG2MPwAX1yKWj-WsSbtOAbdIYEtq9StOvI2hNStIeeHsKDAlf7INl2b5EI-cdIHSNszmWOSV33hnf6XCAbo4x4fgMTbBiKiWc09E_PUazGN-zAZwJSdQFGhPBKWU8n6DderV5fljcJ2voIPgDOPB9TA5Bt2-JdTUEcAaS2oeksa-7RVrZCDpComP0xurOepe0ASprvuUVOq_1McLsxFO0f3rcL9fp9mW1WS62qWG56tK61NoYnIOoNMa1xHUmhlFlpVmpWC6oVkQSbShXUNGhtcGlEtRgLkrIcjJFt7-xbfAfPcSuaGw0cDzqn_oFlpzJDAvJB-vNydqXDVRFG2yjw2fxdwH5Am2nYiM |
| CitedBy_id | crossref_primary_10_1039_C7RA08894A crossref_primary_10_3390_ijms222111397 crossref_primary_10_3389_fmicb_2023_1170559 crossref_primary_10_1039_C9RA05554A crossref_primary_10_1093_bib_bbac463 crossref_primary_10_1111_jcmm_13336 crossref_primary_10_1007_s00438_020_01702_9 crossref_primary_10_1093_bib_bbac066 crossref_primary_10_1038_s41598_017_02365_0 crossref_primary_10_3390_biomedicines13010136 crossref_primary_10_1038_s41598_017_06201_3 crossref_primary_10_7717_peerj_13848 crossref_primary_10_1038_s41419_017_0003_x crossref_primary_10_3389_fmicb_2023_1179414 crossref_primary_10_1016_j_ygeno_2019_05_021 crossref_primary_10_3389_fgene_2021_742992 crossref_primary_10_1007_s11042_017_5291_8 crossref_primary_10_1109_TCBB_2019_2931546 crossref_primary_10_1016_j_omtn_2019_06_014 crossref_primary_10_7717_peerj_cs_2070 crossref_primary_10_1093_bib_bbaf444 crossref_primary_10_3389_fbioe_2020_00901 crossref_primary_10_1007_s11831_020_09435_z crossref_primary_10_1109_ACCESS_2019_2917611 crossref_primary_10_1177_15578666251372198 crossref_primary_10_1093_bib_bbac571 crossref_primary_10_1111_jcmm_13583 crossref_primary_10_1109_TCBB_2019_2957094 crossref_primary_10_1109_ACCESS_2020_2972068 crossref_primary_10_3389_fgene_2022_978975 crossref_primary_10_1016_j_ymeth_2020_05_010 crossref_primary_10_1186_s12859_020_3409_x crossref_primary_10_1038_srep43792 crossref_primary_10_1109_TCBB_2019_2937774 crossref_primary_10_3390_molecules27144371 crossref_primary_10_1155_2020_6248686 crossref_primary_10_1186_s12859_019_3260_0 crossref_primary_10_3389_fgene_2018_00576 crossref_primary_10_3389_fgene_2021_727744 crossref_primary_10_1016_j_omtn_2019_12_010 crossref_primary_10_1016_j_omtn_2018_10_005 crossref_primary_10_3389_fgene_2019_00385 crossref_primary_10_1186_s12911_020_01320_w crossref_primary_10_1111_jcmm_13799 crossref_primary_10_1111_jcmm_14765 crossref_primary_10_1109_ACCESS_2017_2766758 crossref_primary_10_1007_s10441_018_9325_z crossref_primary_10_1155_2019_2426958 crossref_primary_10_1007_s12021_018_9386_9 crossref_primary_10_1016_j_neucom_2020_09_032 crossref_primary_10_1186_s12859_023_05365_2 crossref_primary_10_1007_s12539_021_00459_y crossref_primary_10_1016_j_mbs_2018_10_004 crossref_primary_10_1093_bib_bbab302 crossref_primary_10_1186_s12918_017_0398_0 crossref_primary_10_3389_fgene_2018_00324 crossref_primary_10_1016_j_compbiomed_2019_05_014 crossref_primary_10_1038_s41598_021_91991_w crossref_primary_10_1186_s12911_021_01616_5 crossref_primary_10_1186_s13059_019_1811_3 crossref_primary_10_1186_s12859_020_03716_x crossref_primary_10_1186_s12859_019_2956_5 crossref_primary_10_1016_j_compbiolchem_2020_107369 crossref_primary_10_1016_j_jmb_2018_05_006 crossref_primary_10_1155_2017_2498957 crossref_primary_10_1016_j_csbj_2020_08_023 crossref_primary_10_3389_fgene_2019_00897 crossref_primary_10_1016_j_compbiomed_2022_105558 crossref_primary_10_1109_TCBB_2021_3127017 crossref_primary_10_1038_srep42809 crossref_primary_10_1371_journal_pcbi_1005912 crossref_primary_10_1109_ACCESS_2021_3096830 crossref_primary_10_18632_oncotarget_17719 crossref_primary_10_1186_s12859_022_04579_0 crossref_primary_10_3389_fbioe_2020_00040 crossref_primary_10_1109_ACCESS_2017_2754409 crossref_primary_10_3390_biom11121835 crossref_primary_10_1186_s12967_018_1722_1 crossref_primary_10_4142_jvs_2019_20_e68 crossref_primary_10_1109_TCBB_2022_3196394 crossref_primary_10_1093_bib_bbac104 crossref_primary_10_1186_s12967_019_2009_x crossref_primary_10_3390_ijms19113410 crossref_primary_10_1109_TCBB_2017_2776280 crossref_primary_10_1038_s41598_017_15235_6 crossref_primary_10_1109_TCBB_2019_2940182 crossref_primary_10_1155_2018_6789089 crossref_primary_10_1093_bib_bbae168 crossref_primary_10_1186_s12967_017_1340_3 crossref_primary_10_1109_TCBB_2023_3335007 crossref_primary_10_1016_j_jbi_2018_05_005 crossref_primary_10_1093_bib_bbac021 crossref_primary_10_1371_journal_pcbi_1007209 crossref_primary_10_1038_s41598_022_20529_5 crossref_primary_10_3389_fgene_2020_00389 crossref_primary_10_2174_0109298673249941231108091326 crossref_primary_10_1007_s12539_021_00458_z crossref_primary_10_1016_j_biosystems_2020_104292 crossref_primary_10_1039_C9RA11043G crossref_primary_10_3390_jpm12060885 crossref_primary_10_1016_j_gpb_2016_12_003 crossref_primary_10_1109_TCBB_2022_3195514 crossref_primary_10_3389_fgene_2018_00303 crossref_primary_10_1093_bib_bbx046 crossref_primary_10_1038_srep46572 crossref_primary_10_1186_s12918_017_0495_0 crossref_primary_10_1111_jcmm_13429 crossref_primary_10_1186_s12967_018_1741_y crossref_primary_10_1093_bib_bbab165 crossref_primary_10_1016_j_ymeth_2023_02_003 crossref_primary_10_12677_HJCB_2022_122003 crossref_primary_10_1016_j_knosys_2019_104963 crossref_primary_10_1038_s41598_017_08127_2 crossref_primary_10_1016_j_jbi_2018_02_013 crossref_primary_10_3389_fgene_2022_825318 crossref_primary_10_1038_srep39812 crossref_primary_10_1186_s12864_018_5273_x crossref_primary_10_1007_s12539_023_00594_8 crossref_primary_10_1016_j_jbi_2017_10_014 crossref_primary_10_12677_HJCB_2021_113005 crossref_primary_10_3389_fphys_2018_00092 crossref_primary_10_1186_s12918_017_0518_x crossref_primary_10_1007_s40484_019_0170_0 crossref_primary_10_1371_journal_pone_0184394 crossref_primary_10_1371_journal_pone_0221764 crossref_primary_10_1089_cmb_2019_0106 crossref_primary_10_1134_S0026893318050151 crossref_primary_10_1007_s00438_018_1438_1 crossref_primary_10_1039_C8RA07519K crossref_primary_10_3390_cells9040881 crossref_primary_10_3390_ijms231911498 crossref_primary_10_1371_journal_pcbi_1006931 crossref_primary_10_1039_C7MB00485K crossref_primary_10_1089_cmb_2021_0149 crossref_primary_10_1111_jcmm_14048 crossref_primary_10_1371_journal_pcbi_1006418 crossref_primary_10_1038_s41598_018_24532_7 crossref_primary_10_1038_srep35350 crossref_primary_10_1371_journal_pcbi_1009655 crossref_primary_10_1038_s41598_018_34180_6 crossref_primary_10_1109_TCBB_2024_3421924 crossref_primary_10_1371_journal_pone_0252971 crossref_primary_10_1109_TCBB_2022_3191972 crossref_primary_10_1038_s41598_017_15716_8 crossref_primary_10_3390_ijms20020421 crossref_primary_10_1089_omi_2024_0047 crossref_primary_10_1016_j_ab_2023_115431 crossref_primary_10_1109_ACCESS_2021_3084148 crossref_primary_10_1155_2021_6652948 crossref_primary_10_1016_j_compbiomed_2024_109068 crossref_primary_10_1186_s12859_019_3290_7 crossref_primary_10_1038_s41598_017_15846_z crossref_primary_10_1186_s12859_019_2640_9 crossref_primary_10_1038_s41598_017_11840_7 crossref_primary_10_1016_j_jbi_2019_103358 crossref_primary_10_1155_2023_2785436 crossref_primary_10_1186_s12859_017_1924_1 crossref_primary_10_1371_journal_pone_0179034 crossref_primary_10_3390_biomedicines13030536 crossref_primary_10_1038_s41598_017_00252_2 crossref_primary_10_1093_bib_bbz159 crossref_primary_10_3389_fgene_2018_00234 crossref_primary_10_12677_HJCB_2022_113005 crossref_primary_10_1007_s12021_018_9373_1 crossref_primary_10_3389_fcell_2021_617569 crossref_primary_10_1093_bib_bbx130 crossref_primary_10_1093_bib_bbz032 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.18632/oncotarget.11251 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| EISSN | 1949-2553 |
| ExternalDocumentID | 27533456 |
| Genre | Journal Article |
| GroupedDBID | --- 53G ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CGR CUY CVF DIK ECM EIF FRJ GX1 HYE KQ8 M48 M~E NPM OK1 PGMZT RPM 7X8 |
| ID | FETCH-LOGICAL-c469t-fbaacc16e7da11f81f07186bda4b94673a9282ac359ed3478c1b973c157be062 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 205 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387281000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-2553 |
| IngestDate | Thu Jul 10 17:13:31 EDT 2025 Thu Jan 02 23:01:32 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 40 |
| Keywords | microRNA microRNA-disease association disease heterogeneous network similarity |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-fbaacc16e7da11f81f07186bda4b94673a9282ac359ed3478c1b973c157be062 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5323153 |
| PMID | 27533456 |
| PQID | 1854801785 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1854801785 pubmed_primary_27533456 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-04 |
| PublicationDateYYYYMMDD | 2016-10-04 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Oncotarget |
| PublicationTitleAlternate | Oncotarget |
| PublicationYear | 2016 |
| SSID | ssj0000547829 |
| Score | 2.5478067 |
| Snippet | Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 65257 |
| SubjectTerms | Computational Biology - methods Computer Simulation Humans MicroRNAs Models, Theoretical Neoplasms - genetics |
| Title | HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27533456 https://www.proquest.com/docview/1854801785 |
| Volume | 7 |
| WOSCitedRecordID | wos000387281000057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaAMrBwiKtcMhKr1ThOfLCgCihlaFShDt0ix4fUgaaX-P08uymdkJBYoiyJ4ueX977n7x0IPaRcsSxhmkhmPckEd0TaNCc5OEsNeER5Y-OwCVEUcjxWw-bAbdmkVW5sYjTUtjbhjLwDfiV0OhEyf5rNSZgaFdjVZoTGLmoxgDJBq8VY_pyxJKFZVRxUBqG6IoCeWUNsSs7STh3aH8R861BIk9PfQWZ0Nr2j_37mMTpsYCburvXiBO246Skq-m_vg5fuI-6HHJgaVMdB3I9jz2o82VT-YYCx-HPyUXRJw95gvd1DPFsEaifcnqFR73X03CfNPAViIAheEV9pbQzlTlhNqZfUA76QvLI6qxQYTKYVBGDasFw5y0B0hlZKMENzUbmEp-dob1pP3SXCsEQvEh44R5MJVmlnOLxCZyZTqfBpG91vpFOCugYOQscllVv5tNHFWsTlbN1Xo0xFqAvO-dUfnr5GBwBdeEyry25Qy8PP6m7RvvlaTZaLu6gHcC2Gg29FOL03 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HGIMDA%3A+Heterogeneous+graph+inference+for+miRNA-disease+association+prediction&rft.jtitle=Oncotarget&rft.au=Chen%2C+Xing&rft.au=Yan%2C+Chenggang+Clarence&rft.au=Zhang%2C+Xu&rft.au=You%2C+Zhu-Hong&rft.date=2016-10-04&rft.issn=1949-2553&rft.eissn=1949-2553&rft.volume=7&rft.issue=40&rft.spage=65257&rft_id=info:doi/10.18632%2Foncotarget.11251&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-2553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-2553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-2553&client=summon |