Clustered Multi-Task Learning for Automatic Radar Target Recognition

Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which ca...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 17; číslo 10; s. 2218
Hlavní autori: Li, Cong, Bao, Weimin, Xu, Luping, Zhang, Hua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 27.09.2017
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms.
AbstractList Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms.
Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms.Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms.
Author Li, Cong
Zhang, Hua
Xu, Luping
Bao, Weimin
AuthorAffiliation School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China; lcongxd@126.com (C.L.); baoweimin@cashq.ac.cn (W.B.); zhanghua@mail.xidian.edu.cn (H.Z.)
AuthorAffiliation_xml – name: School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China; lcongxd@126.com (C.L.); baoweimin@cashq.ac.cn (W.B.); zhanghua@mail.xidian.edu.cn (H.Z.)
Author_xml – sequence: 1
  givenname: Cong
  surname: Li
  fullname: Li, Cong
– sequence: 2
  givenname: Weimin
  surname: Bao
  fullname: Bao, Weimin
– sequence: 3
  givenname: Luping
  surname: Xu
  fullname: Xu, Luping
– sequence: 4
  givenname: Hua
  surname: Zhang
  fullname: Zhang, Hua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28953267$$D View this record in MEDLINE/PubMed
BookMark eNptkltrFDEUgINU7EUf_AMy4Et9GJt7Ji9CWbUWVoSyPodsLmPW2aQmGcF_b9Ztl7aYl4STLx_n5JxTcBRTdAC8RvA9IRJeFCQQxBgNz8AJopj2A8bw6MH5GJyWsoEQE0KGF-AYD5IRzMUJ-LiY5lJddrb7Ok819CtdfnZLp3MMcex8yt3lXNNW12C6G2117lY6j652N86kMYYaUnwJnns9Fffqbj8D3z9_Wi2-9MtvV9eLy2VvKJe1dxqvMbbIQ0qNsANxzEPG8WCsx5bQtZaM4kEQZk1bxEhhDHWEG0kNgoycgeu91ya9Ubc5bHX-o5IO6l8g5VHp3BKdnBLQrz31jAnrqaNOCkiFF7KFsMHD0Fwf9q7beb111rhYs54eSR_fxPBDjem3YlxwzneC8ztBTr9mV6rahmLcNOno0lwUkpRwygjCDX37BN2kOcf2VY3ijHNJuWjUm4cZHVK5b1YD3u0Bk1Mp2fkDgqDaDYI6DEJjL56wJlS9a1YrJkz_efEX7wCzPw
CitedBy_id crossref_primary_10_1155_2020_8859172
crossref_primary_10_3390_s23187955
crossref_primary_10_1155_2020_8893419
crossref_primary_10_3390_s18103535
crossref_primary_10_1155_2022_8465543
crossref_primary_10_3390_s19092008
Cites_doi 10.3390/rs8080683
10.1007/s11222-008-9111-x
10.1109/TAES.2007.357120
10.1109/LGRS.2016.2608578
10.1016/j.neucom.2016.02.059
10.3390/app6010026
10.1109/LGRS.2015.2506659
10.1049/el.2016.3060
10.1145/2538028
10.1016/j.sigpro.2015.12.006
10.1109/JSTARS.2015.2436694
10.1016/j.neucom.2015.06.079
10.1145/1014052.1014067
10.1109/7.937475
10.1016/j.neucom.2015.08.111
10.1109/ICDM.2009.128
10.1109/TPAMI.2015.2452911
10.3390/s17010192
10.1016/j.neucom.2015.06.108
ContentType Journal Article
Copyright Copyright MDPI AG 2017
2017 by the authors. 2017
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s17102218
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_70fbf4f557df4e4e97047f794f52c288
PMC5676668
28953267
10_3390_s17102218
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-ea2b22d1f044c7d83e5f05628cdf2d34ba95428735dcccc3c97cc4e36c94c1053
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414931500060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:37:52 EDT 2025
Tue Nov 04 02:00:55 EST 2025
Sun Nov 09 13:24:41 EST 2025
Sat Nov 29 14:43:05 EST 2025
Wed Feb 19 02:40:57 EST 2025
Sat Nov 29 07:17:35 EST 2025
Tue Nov 18 21:44:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords synthetic aperture radar (SAR)
radar automatic target recognition (RATR)
high-resolution range profile (HRRP)
clustered multi-task learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-ea2b22d1f044c7d83e5f05628cdf2d34ba95428735dcccc3c97cc4e36c94c1053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/70fbf4f557df4e4e97047f794f52c288
PMID 28953267
PQID 1965669467
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_70fbf4f557df4e4e97047f794f52c288
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676668
proquest_miscellaneous_1943645312
proquest_journals_1965669467
pubmed_primary_28953267
crossref_primary_10_3390_s17102218
crossref_citationtrail_10_3390_s17102218
PublicationCentury 2000
PublicationDate 2017-09-27
PublicationDateYYYYMMDD 2017-09-27
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-27
  day: 27
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhao (ref_8) 2001; 37
Pan (ref_1) 2016; 52
Zhou (ref_19) 2016; 38
Zheng (ref_11) 2016; 171
Dong (ref_10) 2015; 8
Huang (ref_5) 2016; 13
Sun (ref_9) 2007; 43
Sun (ref_3) 2016; 99
Guillaume (ref_20) 2010; 20
ref_21
Zhang (ref_14) 2014; 8
Zhou (ref_2) 2016; 126
ref_17
Zhang (ref_13) 2016; 195
ref_16
ref_15
Liu (ref_12) 2016; 195
Zhou (ref_18) 2011; 2011
Wang (ref_4) 2016; 196
ref_7
ref_6
26761733 - IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):266-78
28117689 - Sensors (Basel). 2017 Jan 20;17 (1):null
25328366 - Adv Neural Inf Process Syst. 2011;2011:702-710
References_xml – ident: ref_6
  doi: 10.3390/rs8080683
– volume: 2011
  start-page: 702
  year: 2011
  ident: ref_18
  article-title: Clustered multi-task learning via alternating structure optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 231
  year: 2010
  ident: ref_20
  article-title: Joint covariate selection and joint subspace selection for multiple classification problems
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-008-9111-x
– volume: 43
  start-page: 112
  year: 2007
  ident: ref_9
  article-title: Adaptive boosting for SAR automatic target recognition
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2007.357120
– volume: 99
  start-page: 1777
  year: 2016
  ident: ref_3
  article-title: SAR automatic target recognition based on dictionary learning and joint dynamic sparse representation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2608578
– volume: 196
  start-page: 125
  year: 2016
  ident: ref_4
  article-title: SAR image target recognition via complementary spatial pyramid coding
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.059
– ident: ref_21
  doi: 10.3390/app6010026
– volume: 13
  start-page: 222
  year: 2016
  ident: ref_5
  article-title: SAR target configuration recognition using tensor global and local discriminant embedding
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2506659
– volume: 52
  start-page: 1725
  year: 2016
  ident: ref_1
  article-title: Radar HRRP recognition based on discriminant deep autoencoders with small training data size
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.3060
– volume: 8
  start-page: 1
  year: 2014
  ident: ref_14
  article-title: A regularization approach to learning task relationships in multitask learning
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2538028
– ident: ref_15
– volume: 126
  start-page: 52
  year: 2016
  ident: ref_2
  article-title: Radar target HRRP recognition based on reconstructive and discriminative dictionary learning
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.12.006
– volume: 8
  start-page: 3316
  year: 2015
  ident: ref_10
  article-title: SAR target recognition via joint sparse representation of monogenic signal
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2436694
– volume: 171
  start-page: 515
  year: 2016
  ident: ref_11
  article-title: A multi-task model for simultaneous face identification and facial expression recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.079
– ident: ref_17
  doi: 10.1145/1014052.1014067
– volume: 37
  start-page: 643
  year: 2001
  ident: ref_8
  article-title: Support vector machines for SAR automatic target recognition
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.937475
– volume: 195
  start-page: 104
  year: 2016
  ident: ref_13
  article-title: L2, p-norm and sample constraint based feature selection and classification for AD diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.111
– ident: ref_16
  doi: 10.1109/ICDM.2009.128
– volume: 38
  start-page: 266
  year: 2016
  ident: ref_19
  article-title: Flexible clustered multi-task learning by learning representative tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2452911
– ident: ref_7
  doi: 10.3390/s17010192
– volume: 195
  start-page: 195
  year: 2016
  ident: ref_12
  article-title: HEp-2 cells classification via clustered multi-task learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.108
– reference: 28117689 - Sensors (Basel). 2017 Jan 20;17 (1):null
– reference: 25328366 - Adv Neural Inf Process Syst. 2011;2011:702-710
– reference: 26761733 - IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):266-78
SSID ssj0023338
Score 2.240822
Snippet Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2218
SubjectTerms Algorithms
clustered multi-task learning
high-resolution range profile (HRRP)
radar automatic target recognition (RATR)
synthetic aperture radar (SAR)
Target recognition
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QCHUh4tW1pkEAcuUTd-rJNT1ac4oApVi7S3KH6Viiopm11-f2e83nQXVb2QY-JEo8zY_j6P_Q3AFxlMXisqaKKlRYJiQmZUTvLaRufSBc-LeFD4u764KCaT8kdacOvStsrlmBgHatdaWiM_IOW70YgKwh_e_smoahRlV1MJjafwjMpmU5zryT3hEsi_FmpCAqn9QZfTdMqpvsfKHBSl-h_Cl_9uk1yZd85f_a_FW7CZECc7WoTIa3jimzfwckWH8C2cntzMSTDBOxYP5GbjuvvNkvTqFUNcy47mszaqu7LL2tVTNo47yNnlcv9R27yDn-dn45NvWSqvkFnkxLPM19xw7vIwlNJqVwivAsGhwrrAnZCmLhURKqGcxUvYUlsrvRjZUlqEZWIbNpq28e-BIQ0LvgwIdxSX6HljNGKLYEIhTSjzYgBflz-8skl7nEpg3FTIQcg3Ve-bAXzum94uBDceanRMXusbkEZ2vNFOr6rU5So9RANkUEq7IL30pR5KHXD8CYpbXuBH9pZ-q1LH7ap7pw3gU_8YuxzlUerGt3NqIyl5K3I-gJ1FiPSWIH9ViIjxbb0WPGumrj9prn9FWW810sgli93HzfoALzghC0qM6T3YmE3nfh-e27-z6276Mcb_HS2-EDA
  priority: 102
  providerName: ProQuest
Title Clustered Multi-Task Learning for Automatic Radar Target Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/28953267
https://www.proquest.com/docview/1965669467
https://www.proquest.com/docview/1943645312
https://pubmed.ncbi.nlm.nih.gov/PMC5676668
https://doaj.org/article/70fbf4f557df4e4e97047f794f52c288
Volume 17
WOSCitedRecordID wos000414931500060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeBpTKIA5doGz9q-7i7dAUSW1VVkcopih0bVqxS1AdHfjszThq1aCUu5OCD7UjOjB1_nzz-BuCdjK6oFCU00dIjQXExd6ogeW2nC1nHwE26KPxZTyZmsbDTvVRfFBPWygO3hjvRw-iijErpOsogg9VDqSPOoqi45yZd8x1quyNTHdUSyLxaHSGBpP5kXdBGyimzx97uk0T6b0KWfwdI7u04Fw_hQQcV2Wk7xEdwKzSP4f6egOAT-HB-vSWlg1CzdJM2n1frH6zTTP3GEJCy0-1mmWRZ2ayqqxWbp9BvNtsFDi2bp_DlYjw__5h3eRFyj2R2k4eKO87rIg6l9Lo2IqhIOMb4OvJaSFdZRUxIqNrjI7zV3ssgRt5Kj3hKPIOjZtmEF8CQP8VgI-IUxSW6zDmNoAAtbqSLtjAZvN_Zq_SdaDjlrrgukTyQacvetBm87bv-bJUybup0RkbvO5C4dapAl5edy8t_uTyD453Lym7FrUtSRhyNLP73M3jTN-NaoQOQqgnLLfWRdOoqCp7B89bD_UiQeCqEsvi2PvD9wVAPW5qr70mPW400kkDz8n982yu4xwk40LmXPoajzWobXsNd_2tztV4N4LZe6FSaAdw5G0-ms0Ga-Fhe_h5j3fTT5fTrH5TTCEY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQlY8H4ECgwIJDZW43lk7AVCpaVq1RChKkjZuZ5XqajsEicgfopv5F4_0gRV7LrAS894NLaP75zjmTkX4LUMJs4VJTTR0qJAMSEyKiZ7baNj6YLnSb1ReKhHo2QyST-vwe9uLwwtq-xiYh2oXWnpH_kmOd8NBpQQ_v3Z94iyRtHsapdCo4HFgf_1EyVb9W5_B9_vG853P46396I2q0BkUQrOIp9zw7mLQ19Kq10ivArEAhLrAndCmjxVpCOEchYPYVNtrfRiYFNpkY0IbPcKXMU4rkns6cm5wBOo9xr3IiHS_mYV0_DNKZ_I0phXpwa4iM_-vSxzaZzbvf2_PaE7cKtl1Gyr-QTuwpov7sHNJZ_F-7CzfTonQwjvWL3hOBrn1TfWWsseM-TtbGs-K2v3WnaYu3zKxvUKeXbYra8qiwfw5VJu4yGsF2XhHwNDmRl8GpDOKS4R2cZo5E7BhESakMZJD952Lzizrbc6pfg4zVBjERayBRZ68GpR9awxFLmo0gdCyaICeYDXJ8rpcdaGlEz3sQMyKKVdkF76VPelDhhfg-KWJ9jIRoeTrA1MVXYOkh68XBRjSKF5orzw5ZzqSJqcFjHvwaMGkoueoD5XyPjxar0C1pWurpYUJ19r23I10KiVkyf_7tYLuL43_jTMhvujg6dwgxOLoklAvQHrs-ncP4Nr9sfspJo-r789BkeXDeU_8D1t8g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE48P0RKLAgkLhYifcjax8QKg0RUUsUVUEqJ-Nd75aKyi5xAuKv8euYcWyToIpbD_hor621_Tz7nnf2DcAL6U2YKipooqVFgWJ8YFRI9tpGhzLzjkfVQuEDPZlER0fxdAt-NWthKK2yiYlVoM4KS__Ie-R8NxhQQfier9MipsPRm7NvAVWQopnWppzGCiL77ucPlG_l6_EQ3_VLzkfvZnvvg7rCQGBRFi4Cl3LDeRb6vpRWZ5FwyhMjiGzmeSakSWNFmkKozOImbKytlU4MbCwtMhOB170E20jJJe_A9nT8YfqplXsC1d_Ky0iIuN8rQxrMOVUXWRsBq0IB57Hbv5M010a90Y3_-XndhOs112a7q4_jFmy5_DZcW3NgvAPDvdMlWUW4jFVLkYNZWn5ltensMUNGz3aXi6LytWWHaZbO2azKnWeHTeZVkd-FjxdyG_egkxe5ewAMBah3sUeip7hEzBujkVV54yNpfBxGXXjVvOzE1q7rVPzjNEH1RbhIWlx04Xnb9GxlNXJeo7eEmLYBuYNXO4r5cVIHm0T3sQPSK6UzL510se5L7THyesUtj_AiOw1mkjpklckfwHThWXsYgw3NIKW5K5bURtK0tQh5F-6v4Nn2BJW7Qi2AZ-sN4G50dfNIfvKlMjRXA40qOnr47249hSuI4ORgPNl_BFc50SuaHdQ70FnMl-4xXLbfFyfl_En9ITL4fNFY_g0uunhB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustered+Multi-Task+Learning+for+Automatic+Radar+Target+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Cong&rft.au=Bao%2C+Weimin&rft.au=Xu%2C+Luping&rft.au=Zhang%2C+Hua&rft.date=2017-09-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=17&rft.issue=10&rft_id=info:doi/10.3390%2Fs17102218&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon