Trans-cVAE-GAN: Transformer-Based cVAE-GAN for High-Fidelity EEG Signal Generation
Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spe...
Uložené v:
| Vydané v: | Bioengineering (Basel) Ročník 12; číslo 10; s. 1028 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
26.09.2025
|
| Predmet: | |
| ISSN: | 2306-5354, 2306-5354 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder–generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets—SEED, SEED-FRA, and SEED-GER—demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain–computer interface applications. |
|---|---|
| AbstractList | Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder–generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets—SEED, SEED-FRA, and SEED-GER—demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain–computer interface applications. Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder-generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets-SEED, SEED-FRA, and SEED-GER-demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain-computer interface applications.Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder-generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets-SEED, SEED-FRA, and SEED-GER-demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain-computer interface applications. |
| Audience | Academic |
| Author | Sun, Hongyu Li, Yansheng Dong, Ruixin Hao, Xudong Yao, Yiduo Wang, Xiao |
| Author_xml | – sequence: 1 givenname: Yiduo surname: Yao fullname: Yao, Yiduo – sequence: 2 givenname: Xiao surname: Wang fullname: Wang, Xiao – sequence: 3 givenname: Xudong surname: Hao fullname: Hao, Xudong – sequence: 4 givenname: Hongyu surname: Sun fullname: Sun, Hongyu – sequence: 5 givenname: Ruixin surname: Dong fullname: Dong, Ruixin – sequence: 6 givenname: Yansheng orcidid: 0000-0001-6365-0447 surname: Li fullname: Li, Yansheng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41155027$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1P3DAQhqOKqlDKX0CReukl1J-J3dsWLQsSaqWW9hqN43HqVdamdvbAv8fsAv0Q8mHs14_f0XjmbXUQYsCqOqXkjHNNPhofMYw-ICYfRsoooYSpV9UR46RtJJfi4K_9YXWS85oQQjmTrBVvqkNBqZSEdUfVt5sEITfDz8WyWS2-fKp3ZxfTBlPzGTLa-umuLmp96cdfzYW3OPn5rl4uV_V3PwaY6hUGTDD7GN5Vrx1MGU8e43H142J5c37ZXH9dXZ0vrptBtHpuUDrtBkBNpCXKGGddZwhlShiliGYAVghHmKYMqHHOgeTWCikIWj1Y4MfV1d7XRlj3t8lvIN31EXy_E2Iae0izHybsDe1aaxwqo0FQxUEzbCWjYgDGndLF68Pe6zbF31vMc7_xecBpgoBxm3vO2lZIprgo6Pv_0HXcpvIFO0oqTjrK_lAjlPw-uDgnGB5M-4VqmegE71Shzl6gyrK48UNpuvNF_-fB6WPyrdmgfa76qaEFaPfAkGLOCd0zQkn_MDz9y8PD7wGTArZc |
| Cites_doi | 10.1088/1741-2552/ac5c8d 10.3390/ijms25126678 10.1080/10447318.2023.2250605 10.1088/1741-2552/abb580 10.1109/SMC53654.2022.9945517 10.1609/aaai.v37i7.26031 10.1109/TNSRE.2022.3145515 10.1109/CBS55922.2023.10115388 10.1109/TNSRE.2020.3006180 10.1109/TNSRE.2023.3266810 10.1007/s40747-021-00336-7 10.1016/j.ins.2024.121198 10.1109/ACCESS.2021.3065969 10.1007/s11571-024-10134-9 10.1109/TNNLS.2020.3016666 10.1109/NER.2013.6695876 10.1109/IJCNN.2018.8489727 10.3390/a16020118 10.3389/fninf.2024.1459970 10.1109/TAFFC.2024.3371540 10.1016/j.aei.2024.102522 10.1109/SMC.2019.8914492 10.3390/s25103178 10.1080/02699930903274322 10.1109/TAMD.2015.2431497 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
| DOI | 10.3390/bioengineering12101028 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2306-5354 |
| ExternalDocumentID | oai_doaj_org_article_b176dbfe8b9a4183a92e65214ca23f89 A862474378 41155027 10_3390_bioengineering12101028 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c469t-e5f9fcae905d08bbfdf7b01284b88092aad44f02912a1bfffa53dd4540ed9cda3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001601788600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2306-5354 |
| IngestDate | Mon Nov 03 22:05:58 EST 2025 Wed Oct 29 18:26:52 EDT 2025 Tue Oct 28 21:33:53 EDT 2025 Wed Nov 12 17:02:23 EST 2025 Tue Nov 11 03:52:00 EST 2025 Mon Nov 03 01:53:44 EST 2025 Sat Nov 29 07:23:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | generative adversarial network conditional variational autoencoder transformer generative modeling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-e5f9fcae905d08bbfdf7b01284b88092aad44f02912a1bfffa53dd4540ed9cda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6365-0447 |
| OpenAccessLink | https://doaj.org/article/b176dbfe8b9a4183a92e65214ca23f89 |
| PMID | 41155027 |
| PQID | 3265830712 |
| PQPubID | 2055440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b176dbfe8b9a4183a92e65214ca23f89 proquest_miscellaneous_3266452834 proquest_journals_3265830712 gale_infotracmisc_A862474378 gale_infotracacademiconefile_A862474378 pubmed_primary_41155027 crossref_primary_10_3390_bioengineering12101028 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-26 |
| PublicationDateYYYYMMDD | 2025-09-26 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Bioengineering (Basel) |
| PublicationTitleAlternate | Bioengineering (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xu (ref_16) 2022; 30 Schaefer (ref_31) 2010; 24 Yin (ref_9) 2021; 9 ref_14 ref_13 ref_12 ref_10 ref_32 Cai (ref_1) 2024; 680 ref_19 ref_18 ref_17 Liu (ref_30) 2022; 19 Zheng (ref_29) 2015; 7 Luo (ref_11) 2020; 17 Chen (ref_2) 2024; 15 ref_25 Fahimi (ref_24) 2020; 32 ref_23 ref_22 Panwar (ref_26) 2020; 28 ref_20 Fan (ref_3) 2024; 61 Tian (ref_21) 2023; 31 ref_28 ref_27 Xue (ref_5) 2024; 40 Zhang (ref_15) 2022; 8 ref_8 Pan (ref_7) 2024; 18 ref_4 ref_6 |
| References_xml | – volume: 19 start-page: 026012 year: 2022 ident: ref_30 article-title: Identifying similarities and differences in emotion recognition with EEG and eye movements among Chinese, German, and French People publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac5c8d – ident: ref_4 doi: 10.3390/ijms25126678 – ident: ref_32 – volume: 40 start-page: 6268 year: 2024 ident: ref_5 article-title: VRNPT: A neuropsychological test tool for diagnosing mild cognitive impairment using virtual reality and EEG signals publication-title: Int. J. Hum.-Comput. Interact. doi: 10.1080/10447318.2023.2250605 – volume: 17 start-page: 056021 year: 2020 ident: ref_11 article-title: Data augmentation for enhancing EEG-based emotion recognition with deep generative models publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abb580 – ident: ref_19 doi: 10.1109/SMC53654.2022.9945517 – ident: ref_20 doi: 10.1609/aaai.v37i7.26031 – volume: 30 start-page: 251 year: 2022 ident: ref_16 article-title: BWGAN-GP: An EEG data generation method for class imbalance problem in RSVP tasks publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3145515 – ident: ref_12 doi: 10.1109/CBS55922.2023.10115388 – volume: 28 start-page: 1720 year: 2020 ident: ref_26 article-title: Modeling EEG data distribution with a Wasserstein generative adversarial network to predict RSVP events publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3006180 – volume: 31 start-page: 2018 year: 2023 ident: ref_21 article-title: Dual-encoder VAE-GAN with spatiotemporal features for emotional EEG data augmentation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3266810 – volume: 8 start-page: 3059 year: 2022 ident: ref_15 article-title: EEG data augmentation for emotion recognition with a multiple generator conditional Wasserstein GAN publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00336-7 – volume: 680 start-page: 121198 year: 2024 ident: ref_1 article-title: EEG emotion recognition using EEG-SWTNS neural network through EEG spectral image publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.121198 – volume: 9 start-page: 57351 year: 2021 ident: ref_9 article-title: Multi-attention generative adversarial network for multivariate time series prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3065969 – volume: 18 start-page: 2925 year: 2024 ident: ref_7 article-title: Short-length SSVEP data extension by a novel generative adversarial networks based framework publication-title: Cogn. Neurodynamics doi: 10.1007/s11571-024-10134-9 – volume: 32 start-page: 4039 year: 2020 ident: ref_24 article-title: Generative adversarial networks-based data augmentation for brain–computer interface publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3016666 – ident: ref_28 doi: 10.1109/NER.2013.6695876 – ident: ref_23 doi: 10.1109/IJCNN.2018.8489727 – ident: ref_25 – ident: ref_27 – ident: ref_10 – ident: ref_14 doi: 10.3390/a16020118 – ident: ref_13 – ident: ref_18 doi: 10.3389/fninf.2024.1459970 – volume: 15 start-page: 1739 year: 2024 ident: ref_2 article-title: GDDN: Graph domain disentanglement network for generalizable EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2024.3371540 – ident: ref_17 – volume: 61 start-page: 102522 year: 2024 ident: ref_3 article-title: Light-weight residual convolution-based capsule network for EEG emotion recognition publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102522 – ident: ref_22 – ident: ref_8 doi: 10.1109/SMC.2019.8914492 – ident: ref_6 doi: 10.3390/s25103178 – volume: 24 start-page: 1153 year: 2010 ident: ref_31 article-title: Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers publication-title: Cogn. Emot. doi: 10.1080/02699930903274322 – volume: 7 start-page: 162 year: 2015 ident: ref_29 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 |
| SSID | ssj0001325264 |
| Score | 2.304449 |
| Snippet | Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling.... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 1028 |
| SubjectTerms | Ablation Affective computing Biochips Brain Comparative analysis Computer applications conditional variational autoencoder Conditioning Control stability Controllability Design EEG Electric transformers Electroencephalography Emotion recognition Emotions Fourier transforms generative adversarial network Generative adversarial networks generative modeling Human-computer interface Implants Labels Liquors Machine learning Measurement techniques Neural networks Neurophysiology Oscillations Realism Semantics Signal generation Time series transformer Waveforms Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Lb9MwGLdg4wAHxpuwDQUJiZPVxLGTmAtqp3ScqmkMtJvl59RLM9KOv5_vS5yWAuLC1Y_Yzvf24_cR8r7wma1yVlFZGE65cRnoQZ7R4LwRFS9LGUyfbKJaLOrra3kRN9zW8VrlqBN7Re1ai3vkE3AzRA0MmbNPt98pZo3C09WYQuM-OUSkMuDzw1mzuLjc7bIUTIDJH54GFxDfT8yy9TukP4TPQhO7Z5V68P4_VfRvjmdvgOZH_zv1J-RxdD3T6cArT8k9v3pGHv0CSPicXPami9pv04aeTxcf06vRr_UdnYHBc-lYl0JpirdE6ByRssCZT5vmPP2yvMFBBjRrJPoL8nXeXJ19pjHrArUQKm-oF0EGq73MhMtqY4ILlenNmAFZl0xrx3nImMyZzk0IQYvCOQTy805ap4uX5GDVrvxrkjrJIPi20CkwLgRDrHhjYBQhRbBMJ2Qy_nV1O4BrKAhKkE7q73RKyAyJs22N4Nh9QdvdqChryuRV6UzwtZGag8rSkvkS3BRuNStCLRPyAUmrUIQ3nbY6vkSASSMYlprioxnwrCoY7mSvJYie3a8eCa6i6K_VjtoJebetxp54nW3l27u-DR4o1wVPyKuBqbZL4jlGjax68--PH5OHDFMR4wFZeUIONt2dPyUP7I_Nct29jXLwExy9EBY priority: 102 providerName: ProQuest |
| Title | Trans-cVAE-GAN: Transformer-Based cVAE-GAN for High-Fidelity EEG Signal Generation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41155027 https://www.proquest.com/docview/3265830712 https://www.proquest.com/docview/3266452834 https://doaj.org/article/b176dbfe8b9a4183a92e65214ca23f89 |
| Volume | 12 |
| WOSCitedRecordID | wos001601788600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7P dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M7S dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: PIMPY dateStart: 20140301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxJvAUgUJiZPVxLHjmFuL0oUDVbS7oHKy_ES9tKjb5chvZ8ZJSwtIXLj44LHleMb2zMTjbwh5XYXCyZJJqirLKbe-gHOQFzT6YIXkda2iTckm5HzeLBaqO0j1hTFhPTxwz7ixLWXtbQyNVYbD-jOKhRp0DneGVbFJT_cKqQ6cqfR3pWICVH3_JLgCv35sl-vwC-EPYbNQtR5powTa_-fR_JvBmRTP7D65N1iM-aT_0gfkRlg9JHcPcAQfkfOkcaj7PGnp2WT-Nr_cmaNhQ6egp3y-o-VQm2NwB50hwBXY4HnbnuUXy684SA9CjbJ6TD7N2st37-mQLIE68HC3NIioojNBFcIXjbXRR2mT9rGwRRUzxnMeC6ZKZkobYzSi8h7x94JXzpvqCTlZrVfhGcm9YuAzO-gUGReCIcS7tTCKUCI6ZjIy3jFNf-sxMTT4Eshm_Xc2Z2SKvN23RkzrVAGS1oOk9b8knZE3KBmNO2-7Mc4MDwjgoxHDSk_wrQsYRBKGOz1qCTvGHZN3stXDjr3SYMaKBg68kmXk1Z6MPTEKbRXW16kN3gM3Fc_I035N7KfES3T2mHz-P6b6gtxhmGcYb7_qU3Ky3VyHl-S2-75dXm1G5KZcNCNya9rOu_NRWvgjjFntUnmB5Y8W6N2Hj92XnyKiCDw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4EChgJxGkVe71-LBJCKSRt1DaKIEXlZPZZ5ZKUJAXxp_iNzPiREEDceuDqXe_a3s_fzOzjG4DnsQtNFvGMyVgLJrQNkQdFyLx1OslEmkqvy2QT2XCYn5zI0Rb8aM7C0LbKhhNLorYzQ3PkHXQzkhwBGfE3Z18YZY2i1dUmhUYFiwP3_RuGbIvXg3c4vi847_fGb_dZnVWAGQwFl8wlXnqjnAwTG-Zae-szXdK0RixLrpQVwodcRlxF2nuvkthaEqpzVhqrYmz3EmwLBHvYgu3R4Gj0aT2rE_MEXYzqKHIcy7CjJzO3VhYkuS4y6RtWsEwW8KdJ-M3RLQ1e_8b_9qluwvXatQ661b9wC7bc9DZc-0Vw8Q68L00zMx-7PbbXHb4Kxo3f7uZsFw26DZqyAK8GtAuG9UkJDIOVoNfbCz5MTqmTSq2bQH0Xji_kpe5BazqbugcQWMlTGRq8yXORJJy08LXGXhKZeMNVGzrNKBdnlXhIgUEX4aL4Oy7asEtgWNUm8e_ywmx-WtRcUugoS632LtdSCaRkJblL0Q0TRvHY57INLwlKBVHUcq6Mqk9a4EOT2FfRpUNB6Dlm2N3ORk2kFrNZ3ACsqKltUazR1YZnq2K6k7brTd3svKxDC-Z5LNpwvwLx6pVERFExzx7-u_GncGV_fHRYHA6GB4_gKqe0y7QYmO5Aazk_d4_hsvm6nCzmT-p_MIDPF43lnw2NcMU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4E0JFDASiNMq9nr9WCSEEpqUqsiKSkG9mX1WuSQlSUH8NX4dM34kBBC3Hrh617u29_M3M_v4BuB57EKTRTxjMtaCCW1D5EERMm-dTjKRptLrKtlEVhT56akcb8GP9iwMbatsObEiajszNEfeQzcjyRGQEe_5ZlvEeH_05vwLowxStNLaptOoIXLkvn_D8G3x-nAfx_oF56Phydt3rMkwwAyGhUvmEi-9UU6GiQ1zrb31ma4oWyOuJVfKCuFDLiOuIu29V0lsLYnWOSuNVTG2ewW2sxiDng5sD4bF-Hg9wxPzBN2N-lhyHMuwpyczt1YZJOkuMu8bFrFKHPCnefjN6a2M3-jm__zZbsGNxuUO-vU_chu23PQOXP9FiPEuHFcmm5lP_SE76BevgpPWn3dzNkBDb4O2LMCrAe2OYSNSCMMgJhgOD4IPkzPqpFbxJrDfg4-X8lL3oTOdTd0DCKzkqQwN3uS5SBJOGvlaYy-JTLzhqgu9dsTL81pUpMRgjDBS_h0jXRgQMFa1SRS8ujCbn5UNx5Q6ylKrvcu1VAKpWknuUnTPhFE89rnswkuCVUnUtZwro5oTGPjQJAJW9umwEHqUGXa3t1ETKcdsFrdgKxvKW5RrpHXh2aqY7qRtfFM3u6jq0EJ6Hosu7NaAXr2SiCha5tnDfzf-FK4hgMv3h8XRI9jhlI2Z1gjTPegs5xfuMVw1X5eTxfxJ8zsG8PmyofwTwwh5Xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trans-cVAE-GAN%3A+Transformer-Based+cVAE-GAN+for+High-Fidelity+EEG+Signal+Generation&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Yao%2C+Yiduo&rft.au=Wang%2C+Xiao&rft.au=Hao%2C+Xudong&rft.au=Sun%2C+Hongyu&rft.date=2025-09-26&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=12&rft.issue=10&rft.spage=1028&rft_id=info:doi/10.3390%2Fbioengineering12101028&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering12101028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |