Trans-cVAE-GAN: Transformer-Based cVAE-GAN for High-Fidelity EEG Signal Generation

Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioengineering (Basel) Ročník 12; číslo 10; s. 1028
Hlavní autori: Yao, Yiduo, Wang, Xiao, Hao, Xudong, Sun, Hongyu, Dong, Ruixin, Li, Yansheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 26.09.2025
Predmet:
ISSN:2306-5354, 2306-5354
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder–generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets—SEED, SEED-FRA, and SEED-GER—demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain–computer interface applications.
AbstractList Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder–generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets—SEED, SEED-FRA, and SEED-GER—demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain–computer interface applications.
Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder-generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets-SEED, SEED-FRA, and SEED-GER-demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain-computer interface applications.Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling. Conventional generative models, including VAEs and GAN variants such as DCGAN, WGAN, and WGAN-GP, often yield blurred waveforms, unstable spectral distributions, or lack semantic controllability, limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder-generative adversarial network (Trans-cVAE-GAN) that combines Transformer-driven temporal modeling, label-conditioned latent inference, and adversarial learning. A multi-dimensional structural loss further constrains generation by preserving temporal correlation, frequency-domain consistency, and statistical distribution. Experiments on three SEED-family datasets-SEED, SEED-FRA, and SEED-GER-demonstrate high similarity to real EEG, with representative mean ± SD correlations of Pearson ≈ 0.84 ± 0.08/0.74 ± 0.12/0.84 ± 0.07 and Spearman ≈ 0.82 ± 0.07/0.72 ± 0.12/0.83 ± 0.08, together with low spectral divergence (KL ≈ 0.39 ± 0.15/0.41 ± 0.20/0.37 ± 0.18). Comparative analyses show consistent gains over classical GAN baselines, while ablations verify the indispensable roles of the Transformer encoder, label conditioning, and cVAE module. In downstream emotion recognition, augmentation with generated EEG raises accuracy from 86.9% to 91.8% on SEED (with analogous gains on SEED-FRA and SEED-GER), underscoring enhanced generalization and robustness. These results confirm that the proposed approach simultaneously ensures fidelity, stability, and controllability across cohorts, offering a scalable solution for affective computing and brain-computer interface applications.
Audience Academic
Author Sun, Hongyu
Li, Yansheng
Dong, Ruixin
Hao, Xudong
Yao, Yiduo
Wang, Xiao
Author_xml – sequence: 1
  givenname: Yiduo
  surname: Yao
  fullname: Yao, Yiduo
– sequence: 2
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
– sequence: 3
  givenname: Xudong
  surname: Hao
  fullname: Hao, Xudong
– sequence: 4
  givenname: Hongyu
  surname: Sun
  fullname: Sun, Hongyu
– sequence: 5
  givenname: Ruixin
  surname: Dong
  fullname: Dong, Ruixin
– sequence: 6
  givenname: Yansheng
  orcidid: 0000-0001-6365-0447
  surname: Li
  fullname: Li, Yansheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41155027$$D View this record in MEDLINE/PubMed
BookMark eNptkk1P3DAQhqOKqlDKX0CReukl1J-J3dsWLQsSaqWW9hqN43HqVdamdvbAv8fsAv0Q8mHs14_f0XjmbXUQYsCqOqXkjHNNPhofMYw-ICYfRsoooYSpV9UR46RtJJfi4K_9YXWS85oQQjmTrBVvqkNBqZSEdUfVt5sEITfDz8WyWS2-fKp3ZxfTBlPzGTLa-umuLmp96cdfzYW3OPn5rl4uV_V3PwaY6hUGTDD7GN5Vrx1MGU8e43H142J5c37ZXH9dXZ0vrptBtHpuUDrtBkBNpCXKGGddZwhlShiliGYAVghHmKYMqHHOgeTWCikIWj1Y4MfV1d7XRlj3t8lvIN31EXy_E2Iae0izHybsDe1aaxwqo0FQxUEzbCWjYgDGndLF68Pe6zbF31vMc7_xecBpgoBxm3vO2lZIprgo6Pv_0HXcpvIFO0oqTjrK_lAjlPw-uDgnGB5M-4VqmegE71Shzl6gyrK48UNpuvNF_-fB6WPyrdmgfa76qaEFaPfAkGLOCd0zQkn_MDz9y8PD7wGTArZc
Cites_doi 10.1088/1741-2552/ac5c8d
10.3390/ijms25126678
10.1080/10447318.2023.2250605
10.1088/1741-2552/abb580
10.1109/SMC53654.2022.9945517
10.1609/aaai.v37i7.26031
10.1109/TNSRE.2022.3145515
10.1109/CBS55922.2023.10115388
10.1109/TNSRE.2020.3006180
10.1109/TNSRE.2023.3266810
10.1007/s40747-021-00336-7
10.1016/j.ins.2024.121198
10.1109/ACCESS.2021.3065969
10.1007/s11571-024-10134-9
10.1109/TNNLS.2020.3016666
10.1109/NER.2013.6695876
10.1109/IJCNN.2018.8489727
10.3390/a16020118
10.3389/fninf.2024.1459970
10.1109/TAFFC.2024.3371540
10.1016/j.aei.2024.102522
10.1109/SMC.2019.8914492
10.3390/s25103178
10.1080/02699930903274322
10.1109/TAMD.2015.2431497
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.3390/bioengineering12101028
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_b176dbfe8b9a4183a92e65214ca23f89
A862474378
41155027
10_3390_bioengineering12101028
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c469t-e5f9fcae905d08bbfdf7b01284b88092aad44f02912a1bfffa53dd4540ed9cda3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001601788600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2306-5354
IngestDate Mon Nov 03 22:05:58 EST 2025
Wed Oct 29 18:26:52 EDT 2025
Tue Oct 28 21:33:53 EDT 2025
Wed Nov 12 17:02:23 EST 2025
Tue Nov 11 03:52:00 EST 2025
Mon Nov 03 01:53:44 EST 2025
Sat Nov 29 07:23:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords generative adversarial network
conditional variational autoencoder
transformer
generative modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-e5f9fcae905d08bbfdf7b01284b88092aad44f02912a1bfffa53dd4540ed9cda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6365-0447
OpenAccessLink https://doaj.org/article/b176dbfe8b9a4183a92e65214ca23f89
PMID 41155027
PQID 3265830712
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_b176dbfe8b9a4183a92e65214ca23f89
proquest_miscellaneous_3266452834
proquest_journals_3265830712
gale_infotracmisc_A862474378
gale_infotracacademiconefile_A862474378
pubmed_primary_41155027
crossref_primary_10_3390_bioengineering12101028
PublicationCentury 2000
PublicationDate 2025-09-26
PublicationDateYYYYMMDD 2025-09-26
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xu (ref_16) 2022; 30
Schaefer (ref_31) 2010; 24
Yin (ref_9) 2021; 9
ref_14
ref_13
ref_12
ref_10
ref_32
Cai (ref_1) 2024; 680
ref_19
ref_18
ref_17
Liu (ref_30) 2022; 19
Zheng (ref_29) 2015; 7
Luo (ref_11) 2020; 17
Chen (ref_2) 2024; 15
ref_25
Fahimi (ref_24) 2020; 32
ref_23
ref_22
Panwar (ref_26) 2020; 28
ref_20
Fan (ref_3) 2024; 61
Tian (ref_21) 2023; 31
ref_28
ref_27
Xue (ref_5) 2024; 40
Zhang (ref_15) 2022; 8
ref_8
Pan (ref_7) 2024; 18
ref_4
ref_6
References_xml – volume: 19
  start-page: 026012
  year: 2022
  ident: ref_30
  article-title: Identifying similarities and differences in emotion recognition with EEG and eye movements among Chinese, German, and French People
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac5c8d
– ident: ref_4
  doi: 10.3390/ijms25126678
– ident: ref_32
– volume: 40
  start-page: 6268
  year: 2024
  ident: ref_5
  article-title: VRNPT: A neuropsychological test tool for diagnosing mild cognitive impairment using virtual reality and EEG signals
  publication-title: Int. J. Hum.-Comput. Interact.
  doi: 10.1080/10447318.2023.2250605
– volume: 17
  start-page: 056021
  year: 2020
  ident: ref_11
  article-title: Data augmentation for enhancing EEG-based emotion recognition with deep generative models
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abb580
– ident: ref_19
  doi: 10.1109/SMC53654.2022.9945517
– ident: ref_20
  doi: 10.1609/aaai.v37i7.26031
– volume: 30
  start-page: 251
  year: 2022
  ident: ref_16
  article-title: BWGAN-GP: An EEG data generation method for class imbalance problem in RSVP tasks
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3145515
– ident: ref_12
  doi: 10.1109/CBS55922.2023.10115388
– volume: 28
  start-page: 1720
  year: 2020
  ident: ref_26
  article-title: Modeling EEG data distribution with a Wasserstein generative adversarial network to predict RSVP events
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3006180
– volume: 31
  start-page: 2018
  year: 2023
  ident: ref_21
  article-title: Dual-encoder VAE-GAN with spatiotemporal features for emotional EEG data augmentation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3266810
– volume: 8
  start-page: 3059
  year: 2022
  ident: ref_15
  article-title: EEG data augmentation for emotion recognition with a multiple generator conditional Wasserstein GAN
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00336-7
– volume: 680
  start-page: 121198
  year: 2024
  ident: ref_1
  article-title: EEG emotion recognition using EEG-SWTNS neural network through EEG spectral image
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.121198
– volume: 9
  start-page: 57351
  year: 2021
  ident: ref_9
  article-title: Multi-attention generative adversarial network for multivariate time series prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3065969
– volume: 18
  start-page: 2925
  year: 2024
  ident: ref_7
  article-title: Short-length SSVEP data extension by a novel generative adversarial networks based framework
  publication-title: Cogn. Neurodynamics
  doi: 10.1007/s11571-024-10134-9
– volume: 32
  start-page: 4039
  year: 2020
  ident: ref_24
  article-title: Generative adversarial networks-based data augmentation for brain–computer interface
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3016666
– ident: ref_28
  doi: 10.1109/NER.2013.6695876
– ident: ref_23
  doi: 10.1109/IJCNN.2018.8489727
– ident: ref_25
– ident: ref_27
– ident: ref_10
– ident: ref_14
  doi: 10.3390/a16020118
– ident: ref_13
– ident: ref_18
  doi: 10.3389/fninf.2024.1459970
– volume: 15
  start-page: 1739
  year: 2024
  ident: ref_2
  article-title: GDDN: Graph domain disentanglement network for generalizable EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2024.3371540
– ident: ref_17
– volume: 61
  start-page: 102522
  year: 2024
  ident: ref_3
  article-title: Light-weight residual convolution-based capsule network for EEG emotion recognition
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102522
– ident: ref_22
– ident: ref_8
  doi: 10.1109/SMC.2019.8914492
– ident: ref_6
  doi: 10.3390/s25103178
– volume: 24
  start-page: 1153
  year: 2010
  ident: ref_31
  article-title: Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers
  publication-title: Cogn. Emot.
  doi: 10.1080/02699930903274322
– volume: 7
  start-page: 162
  year: 2015
  ident: ref_29
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
SSID ssj0001325264
Score 2.304449
Snippet Electroencephalography signal generation remains a challenging task due to its non-stationarity, multi-scale oscillations, and strong spatiotemporal coupling....
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1028
SubjectTerms Ablation
Affective computing
Biochips
Brain
Comparative analysis
Computer applications
conditional variational autoencoder
Conditioning
Control stability
Controllability
Design
EEG
Electric transformers
Electroencephalography
Emotion recognition
Emotions
Fourier transforms
generative adversarial network
Generative adversarial networks
generative modeling
Human-computer interface
Implants
Labels
Liquors
Machine learning
Measurement techniques
Neural networks
Neurophysiology
Oscillations
Realism
Semantics
Signal generation
Time series
transformer
Waveforms
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Lb9MwGLdg4wAHxpuwDQUJiZPVxLGTmAtqp3ScqmkMtJvl59RLM9KOv5_vS5yWAuLC1Y_Yzvf24_cR8r7wma1yVlFZGE65cRnoQZ7R4LwRFS9LGUyfbKJaLOrra3kRN9zW8VrlqBN7Re1ai3vkE3AzRA0MmbNPt98pZo3C09WYQuM-OUSkMuDzw1mzuLjc7bIUTIDJH54GFxDfT8yy9TukP4TPQhO7Z5V68P4_VfRvjmdvgOZH_zv1J-RxdD3T6cArT8k9v3pGHv0CSPicXPami9pv04aeTxcf06vRr_UdnYHBc-lYl0JpirdE6ByRssCZT5vmPP2yvMFBBjRrJPoL8nXeXJ19pjHrArUQKm-oF0EGq73MhMtqY4ILlenNmAFZl0xrx3nImMyZzk0IQYvCOQTy805ap4uX5GDVrvxrkjrJIPi20CkwLgRDrHhjYBQhRbBMJ2Qy_nV1O4BrKAhKkE7q73RKyAyJs22N4Nh9QdvdqChryuRV6UzwtZGag8rSkvkS3BRuNStCLRPyAUmrUIQ3nbY6vkSASSMYlprioxnwrCoY7mSvJYie3a8eCa6i6K_VjtoJebetxp54nW3l27u-DR4o1wVPyKuBqbZL4jlGjax68--PH5OHDFMR4wFZeUIONt2dPyUP7I_Nct29jXLwExy9EBY
  priority: 102
  providerName: ProQuest
Title Trans-cVAE-GAN: Transformer-Based cVAE-GAN for High-Fidelity EEG Signal Generation
URI https://www.ncbi.nlm.nih.gov/pubmed/41155027
https://www.proquest.com/docview/3265830712
https://www.proquest.com/docview/3266452834
https://doaj.org/article/b176dbfe8b9a4183a92e65214ca23f89
Volume 12
WOSCitedRecordID wos001601788600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7P
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M7S
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxJvAUgUJiZPVxLHjmFuL0oUDVbS7oHKy_ES9tKjb5chvZ8ZJSwtIXLj44LHleMb2zMTjbwh5XYXCyZJJqirLKbe-gHOQFzT6YIXkda2iTckm5HzeLBaqO0j1hTFhPTxwz7ixLWXtbQyNVYbD-jOKhRp0DneGVbFJT_cKqQ6cqfR3pWICVH3_JLgCv35sl-vwC-EPYbNQtR5powTa_-fR_JvBmRTP7D65N1iM-aT_0gfkRlg9JHcPcAQfkfOkcaj7PGnp2WT-Nr_cmaNhQ6egp3y-o-VQm2NwB50hwBXY4HnbnuUXy684SA9CjbJ6TD7N2st37-mQLIE68HC3NIioojNBFcIXjbXRR2mT9rGwRRUzxnMeC6ZKZkobYzSi8h7x94JXzpvqCTlZrVfhGcm9YuAzO-gUGReCIcS7tTCKUCI6ZjIy3jFNf-sxMTT4Eshm_Xc2Z2SKvN23RkzrVAGS1oOk9b8knZE3KBmNO2-7Mc4MDwjgoxHDSk_wrQsYRBKGOz1qCTvGHZN3stXDjr3SYMaKBg68kmXk1Z6MPTEKbRXW16kN3gM3Fc_I035N7KfES3T2mHz-P6b6gtxhmGcYb7_qU3Ky3VyHl-S2-75dXm1G5KZcNCNya9rOu_NRWvgjjFntUnmB5Y8W6N2Hj92XnyKiCDw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4EChgJxGkVe71-LBJCKSRt1DaKIEXlZPZZ5ZKUJAXxp_iNzPiREEDceuDqXe_a3s_fzOzjG4DnsQtNFvGMyVgLJrQNkQdFyLx1OslEmkqvy2QT2XCYn5zI0Rb8aM7C0LbKhhNLorYzQ3PkHXQzkhwBGfE3Z18YZY2i1dUmhUYFiwP3_RuGbIvXg3c4vi847_fGb_dZnVWAGQwFl8wlXnqjnAwTG-Zae-szXdK0RixLrpQVwodcRlxF2nuvkthaEqpzVhqrYmz3EmwLBHvYgu3R4Gj0aT2rE_MEXYzqKHIcy7CjJzO3VhYkuS4y6RtWsEwW8KdJ-M3RLQ1e_8b_9qluwvXatQ661b9wC7bc9DZc-0Vw8Q68L00zMx-7PbbXHb4Kxo3f7uZsFw26DZqyAK8GtAuG9UkJDIOVoNfbCz5MTqmTSq2bQH0Xji_kpe5BazqbugcQWMlTGRq8yXORJJy08LXGXhKZeMNVGzrNKBdnlXhIgUEX4aL4Oy7asEtgWNUm8e_ywmx-WtRcUugoS632LtdSCaRkJblL0Q0TRvHY57INLwlKBVHUcq6Mqk9a4EOT2FfRpUNB6Dlm2N3ORk2kFrNZ3ACsqKltUazR1YZnq2K6k7brTd3svKxDC-Z5LNpwvwLx6pVERFExzx7-u_GncGV_fHRYHA6GB4_gKqe0y7QYmO5Aazk_d4_hsvm6nCzmT-p_MIDPF43lnw2NcMU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4E0JFDASiNMq9nr9WCSEEpqUqsiKSkG9mX1WuSQlSUH8NX4dM34kBBC3Hrh617u29_M3M_v4BuB57EKTRTxjMtaCCW1D5EERMm-dTjKRptLrKtlEVhT56akcb8GP9iwMbatsObEiajszNEfeQzcjyRGQEe_5ZlvEeH_05vwLowxStNLaptOoIXLkvn_D8G3x-nAfx_oF56Phydt3rMkwwAyGhUvmEi-9UU6GiQ1zrb31ma4oWyOuJVfKCuFDLiOuIu29V0lsLYnWOSuNVTG2ewW2sxiDng5sD4bF-Hg9wxPzBN2N-lhyHMuwpyczt1YZJOkuMu8bFrFKHPCnefjN6a2M3-jm__zZbsGNxuUO-vU_chu23PQOXP9FiPEuHFcmm5lP_SE76BevgpPWn3dzNkBDb4O2LMCrAe2OYSNSCMMgJhgOD4IPkzPqpFbxJrDfg4-X8lL3oTOdTd0DCKzkqQwN3uS5SBJOGvlaYy-JTLzhqgu9dsTL81pUpMRgjDBS_h0jXRgQMFa1SRS8ujCbn5UNx5Q6ylKrvcu1VAKpWknuUnTPhFE89rnswkuCVUnUtZwro5oTGPjQJAJW9umwEHqUGXa3t1ETKcdsFrdgKxvKW5RrpHXh2aqY7qRtfFM3u6jq0EJ6Hosu7NaAXr2SiCha5tnDfzf-FK4hgMv3h8XRI9jhlI2Z1gjTPegs5xfuMVw1X5eTxfxJ8zsG8PmyofwTwwh5Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trans-cVAE-GAN%3A+Transformer-Based+cVAE-GAN+for+High-Fidelity+EEG+Signal+Generation&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Yao%2C+Yiduo&rft.au=Wang%2C+Xiao&rft.au=Hao%2C+Xudong&rft.au=Sun%2C+Hongyu&rft.date=2025-09-26&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=12&rft.issue=10&rft.spage=1028&rft_id=info:doi/10.3390%2Fbioengineering12101028&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_bioengineering12101028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon