Accident tolerant fuel cladding development: Promise, status, and challenges
The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding te...
Saved in:
| Published in: | Journal of nuclear materials Vol. 501; no. C; pp. 13 - 30 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.04.2018
Elsevier BV Elsevier |
| Subjects: | |
| ISSN: | 0022-3115, 1873-4820 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber–reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Nuclear Energy (NE) AC05-00OR22725 |
| ISSN: | 0022-3115 1873-4820 |
| DOI: | 10.1016/j.jnucmat.2017.12.043 |