A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture
Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 18; číslo 5; s. 1489 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
09.05.2018
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications. |
|---|---|
| AbstractList | Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications. Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications. |
| Author | Zhou, Yao Gao, Junyuan Lei, Qilun Zhong, Yuanhong |
| AuthorAffiliation | College of Communication of Engineering, Chongqing University, Chongqing 400044, China; 20144134@cqu.edu.cn (J.G.); iLot9s0@163.com (Q.L.); zhouyao@cqu.edu.cn (Y.Z.) |
| AuthorAffiliation_xml | – name: College of Communication of Engineering, Chongqing University, Chongqing 400044, China; 20144134@cqu.edu.cn (J.G.); iLot9s0@163.com (Q.L.); zhouyao@cqu.edu.cn (Y.Z.) |
| Author_xml | – sequence: 1 givenname: Yuanhong surname: Zhong fullname: Zhong, Yuanhong – sequence: 2 givenname: Junyuan surname: Gao fullname: Gao, Junyuan – sequence: 3 givenname: Qilun surname: Lei fullname: Lei, Qilun – sequence: 4 givenname: Yao surname: Zhou fullname: Zhou, Yao |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29747429$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkltrFDEUx4O02Is--AVkwBd9mDaTZHJ5EdbF6kKhYMUnIWRyGbPMJjXJCPvtzbp1aUufcsj5nT__czkDRyEGC8CbDl5gLOBl7jjsO8LFC3DaEURajhA8ehCfgLOc1xAijDF_CU6QYIQRJE7Bz0Xzw2cfQ_tJZWuaZZxD8WFsVDDNN6vjGHyp6eZ2m4vdNC6m5mra7ohVyFaX3PhQw2KnyY82lGYxJq_nqczJvgLHTk3Zvr5_z8Ht1efvy6_t9c2X1XJx3WpCRWmN0chyLZwzg2NaO9Y5jBQ1kBnF2GAHjQdMIR7MoBjVg8DMCT1QSpEQ-Bys9qomqrW8S36j0lZG5eW_j5hGqVLxerIS9txBZV1PHCSCK0UFQbinvcYIdhBWrY97rbt52Fija0NJTY9EH2eC_yXH-Ef2gqOO4Crw_l4gxd-zzUVufNZ1OCrYOGeJIOaI9hiSir57gq7jnEIdlEQd5AxBSneO3j50dLDyf4UV-LAHdIo5J-sOSAfl7jzk4Twqe_mE1b6o3X5rM356puIvmyq8Lw |
| CitedBy_id | crossref_primary_10_3390_s24196348 crossref_primary_10_1109_JSTQE_2021_3062088 crossref_primary_10_15446_dyna_v90n230_111827 crossref_primary_10_4018_IJISSCM_344038 crossref_primary_10_3390_agriculture12111897 crossref_primary_10_1117_1_JEI_31_6_061815 crossref_primary_10_1155_2022_9669903 crossref_primary_10_1155_2019_4570808 crossref_primary_10_3389_fpls_2023_1150748 crossref_primary_10_1371_journal_pone_0283801 crossref_primary_10_3390_ai4010017 crossref_primary_10_1007_s10462_025_11253_3 crossref_primary_10_3389_fpls_2023_1268167 crossref_primary_10_3390_asi7040062 crossref_primary_10_1007_s11356_023_30835_8 crossref_primary_10_3390_agriculture12050730 crossref_primary_10_3390_agriculture12101721 crossref_primary_10_1371_journal_pone_0210829 crossref_primary_10_1109_ACCESS_2021_3074083 crossref_primary_10_1016_j_aspen_2019_11_006 crossref_primary_10_1016_j_cosrev_2024_100636 crossref_primary_10_1111_jen_12834 crossref_primary_10_1016_j_compag_2025_110378 crossref_primary_10_3390_app12104945 crossref_primary_10_3390_agriculture12060766 crossref_primary_10_1016_j_atech_2023_100294 crossref_primary_10_3390_insects11080486 crossref_primary_10_3390_electronics10040372 crossref_primary_10_1016_j_compag_2022_106933 crossref_primary_10_3390_app112411889 crossref_primary_10_1016_j_patrec_2023_04_018 crossref_primary_10_1109_ACCESS_2021_3059314 crossref_primary_10_3390_agriculture11020131 crossref_primary_10_3390_insects11040244 crossref_primary_10_3389_fpls_2024_1484587 crossref_primary_10_3390_ani14060843 crossref_primary_10_3390_info14050267 crossref_primary_10_1093_biomethods_bpac005 crossref_primary_10_1016_j_jia_2024_06_017 crossref_primary_10_1109_TIM_2023_3265119 crossref_primary_10_3390_agriculture13030713 crossref_primary_10_1002_widm_1551 crossref_primary_10_1002_ppj2_20079 crossref_primary_10_3390_app121910167 crossref_primary_10_1073_pnas_2002545117 crossref_primary_10_3390_math10030295 crossref_primary_10_1016_j_compag_2020_105585 crossref_primary_10_1016_j_compag_2021_106053 crossref_primary_10_3390_ai1020021 crossref_primary_10_3390_insects12040342 crossref_primary_10_3390_plants11192663 crossref_primary_10_1016_j_biosystemseng_2021_05_006 crossref_primary_10_1155_2023_6560747 crossref_primary_10_3389_fpls_2022_839572 crossref_primary_10_3390_agriengineering6040216 crossref_primary_10_1093_jee_toad004 crossref_primary_10_1007_s11119_023_10034_8 crossref_primary_10_1111_2041_210X_13901 crossref_primary_10_1007_s13592_021_00887_1 crossref_primary_10_1016_j_cropro_2023_106351 crossref_primary_10_3390_agronomy12020319 crossref_primary_10_4039_tce_2024_36 crossref_primary_10_3390_drones7010033 crossref_primary_10_3390_electronics7090161 crossref_primary_10_3390_agriengineering7020029 crossref_primary_10_1016_j_ecoinf_2021_101516 crossref_primary_10_3389_fpls_2022_814681 crossref_primary_10_3390_insects14040381 crossref_primary_10_3390_electronics10151754 crossref_primary_10_3390_agronomy13020477 crossref_primary_10_3390_drones5010004 crossref_primary_10_1016_S2095_3119_20_63168_9 crossref_primary_10_3390_agriculture15010081 crossref_primary_10_1007_s40011_024_01581_9 crossref_primary_10_1016_j_compag_2020_105535 crossref_primary_10_1038_s41598_024_78509_w crossref_primary_10_3390_s21020343 crossref_primary_10_3390_s19122785 crossref_primary_10_3390_s22103667 crossref_primary_10_1016_j_baae_2022_01_003 crossref_primary_10_3390_s19112553 crossref_primary_10_1038_s43017_025_00673_y crossref_primary_10_1016_j_dib_2022_108366 crossref_primary_10_1016_j_ecoinf_2021_101241 crossref_primary_10_1002_ps_5845 crossref_primary_10_3390_pr13010115 crossref_primary_10_3390_agronomy15030693 crossref_primary_10_1111_syen_12543 crossref_primary_10_2478_acss_2022_0012 crossref_primary_10_3390_s21103329 crossref_primary_10_3390_s20051520 crossref_primary_10_1038_s41598_021_84219_4 crossref_primary_10_1016_j_aspen_2019_06_003 crossref_primary_10_3390_s23084127 crossref_primary_10_57065_shilap_302 crossref_primary_10_3390_horticulturae8060520 crossref_primary_10_1038_s41598_021_89930_w crossref_primary_10_1109_ACCESS_2021_3088075 crossref_primary_10_3390_agronomy12123052 crossref_primary_10_1109_ACCESS_2020_2992520 crossref_primary_10_1016_j_ecoinf_2023_102384 crossref_primary_10_3389_fevo_2021_600931 crossref_primary_10_3390_agriculture13010067 crossref_primary_10_1016_j_ecoinf_2022_101690 crossref_primary_10_1038_s41598_024_78260_2 crossref_primary_10_3390_agriculture13050961 crossref_primary_10_1016_j_compag_2020_105784 crossref_primary_10_1109_ACCESS_2025_3552195 crossref_primary_10_1371_journal_pone_0253027 crossref_primary_10_1016_j_atech_2023_100229 crossref_primary_10_1007_s11042_023_16578_1 crossref_primary_10_3390_agriculture13030741 crossref_primary_10_1016_j_ecoinf_2023_102037 crossref_primary_10_1016_j_compag_2019_105108 crossref_primary_10_1038_s41598_025_97825_3 crossref_primary_10_1186_s44147_023_00284_8 crossref_primary_10_3390_electronics10121422 |
| Cites_doi | 10.1016/j.compag.2016.11.019 10.1109/MSP.2017.2740460 10.1117/1.OE.51.2.027001 10.1016/j.biosystemseng.2011.10.003 10.1117/12.205308 10.1109/ICPR.2010.643 10.1007/BF00994018 10.1007/BF00130487 10.1007/s00371-013-0782-8 10.1080/03235408.2013.763620 10.3844/ajabssp.2011.69.79 10.1016/j.cropro.2005.06.007 10.1109/TIT.1962.1057692 10.1016/j.compag.2016.02.003 10.1016/S2095-3119(12)60089-6 10.1016/j.knosys.2012.03.014 10.1111/j.1467-8276.2007.01078.x 10.1016/j.ecolmodel.2009.01.027 10.1016/j.aspen.2012.03.006 10.1016/j.aspen.2013.12.004 10.1016/j.ecoinf.2014.09.006 10.3390/s17112489 10.1016/j.biosystemseng.2015.11.005 10.1016/j.compag.2012.08.008 10.1109/34.531803 10.1146/annurev.ento.53.103106.093359 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
| Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s18051489 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_058f0aef54f0498aa69423565c320100 PMC5982143 29747429 10_3390_s18051489 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-ddc2e8c9ffdbf7ccf71f32a6d07da77bebc3b3603bdba76cb937f9cb6662993 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 149 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435580300188&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:08:30 EDT 2025 Tue Nov 04 01:55:26 EST 2025 Fri Sep 05 13:31:18 EDT 2025 Tue Oct 07 07:05:56 EDT 2025 Wed Feb 19 02:43:16 EST 2025 Tue Nov 18 21:53:10 EST 2025 Sat Nov 29 07:15:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | YOLO Raspberry PI SVM counting and recognition system flying insect |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-ddc2e8c9ffdbf7ccf71f32a6d07da77bebc3b3603bdba76cb937f9cb6662993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/058f0aef54f0498aa69423565c320100 |
| PMID | 29747429 |
| PQID | 2108720660 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_058f0aef54f0498aa69423565c320100 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982143 proquest_miscellaneous_2038265304 proquest_journals_2108720660 pubmed_primary_29747429 crossref_primary_10_3390_s18051489 crossref_citationtrail_10_3390_s18051489 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-09 |
| PublicationDateYYYYMMDD | 2018-05-09 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Maharlooei (ref_22) 2017; 132 Hu (ref_25) 1962; 8 Vakilian (ref_17) 2013; 46 Manjunath (ref_27) 1996; 18 ref_14 Cho (ref_5) 2007; 1 Haralick (ref_28) 1990; 3 Venkateswara (ref_35) 2017; 34 ref_32 ref_31 Liu (ref_15) 2016; 141 Kaya (ref_20) 2014; 30 Wen (ref_21) 2012; 89 ref_19 ref_18 Hazarika (ref_3) 2009; 54 Kang (ref_10) 2014; 17 Xia (ref_29) 2014; 29 Kang (ref_11) 2012; 15 Swain (ref_30) 1991; 7 Alsaqer (ref_16) 2011; 6 Sun (ref_13) 2017; 153 Unnevehr (ref_1) 2010; 89 Dalal (ref_33) 2005; 1 Wang (ref_8) 2012; 111 ref_24 Cortes (ref_34) 1995; 20 Muralidharan (ref_2) 2006; 25 Yao (ref_12) 2012; 11 Wang (ref_9) 2012; 33 Zhang (ref_6) 2012; 220 Ding (ref_7) 2016; 123 ref_26 Xia (ref_23) 2012; 51 ref_4 19067632 - Annu Rev Entomol. 2009;54:267-84 29084158 - Sensors (Basel). 2017 Oct 30;17 (11) |
| References_xml | – volume: 132 start-page: 63 year: 2017 ident: ref_22 article-title: Detection of soybean aphids in a greenhouse using an image processing technique publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.11.019 – volume: 34 start-page: 117 year: 2017 ident: ref_35 article-title: Deep-learning systems for domain adaptation in computer vision: Learning transferable feature representations publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2740460 – ident: ref_32 – ident: ref_24 – ident: ref_26 – volume: 3 start-page: 610 year: 1990 ident: ref_28 article-title: Texture features for image classification publication-title: IEEE Trans. Syst. Man Cybern. – volume: 51 start-page: 027001 year: 2012 ident: ref_23 article-title: In situ detection of small-size insect pests sampled on traps using multifractal analysis publication-title: Opt. Eng. doi: 10.1117/1.OE.51.2.027001 – volume: 111 start-page: 24 year: 2012 ident: ref_8 article-title: The identification of butterfly families using content-based image retrieval publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2011.10.003 – volume: 153 start-page: 82 year: 2017 ident: ref_13 article-title: A smart-vision algorithm for counting whiteflies and thrips on sticky traps using two-dimensional Fourier transform spectrum publication-title: Comput. Digit. Eng. – ident: ref_31 doi: 10.1117/12.205308 – ident: ref_18 – ident: ref_19 doi: 10.1109/ICPR.2010.643 – volume: 20 start-page: 273 year: 1995 ident: ref_34 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 7 start-page: 11 year: 1991 ident: ref_30 article-title: Color indexing publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00130487 – volume: 30 start-page: 71 year: 2014 ident: ref_20 article-title: Application of artificial neural network for automatic detection of butterfly species using color and texture features publication-title: Vis. Comput. doi: 10.1007/s00371-013-0782-8 – volume: 46 start-page: 1262 year: 2013 ident: ref_17 article-title: Performance evaluation of a machine vision system for insect pests identification of field crops using artificial neural networks publication-title: Arch. Phytopathol. Plant Prot. doi: 10.1080/03235408.2013.763620 – volume: 1 start-page: 886 year: 2005 ident: ref_33 article-title: Histograms of oriented gradients for human detection publication-title: Comput. Vis. Pattern Recognit. – volume: 6 start-page: 69 year: 2011 ident: ref_16 article-title: Identification of pecan weevils through image processing publication-title: Am. J. Agric. Biol. Sci. doi: 10.3844/ajabssp.2011.69.79 – volume: 25 start-page: 409 year: 2006 ident: ref_2 article-title: Assessments of crop losses in rice ecosystems due to stem borer damage (Lepidoptera: Pyralidae) publication-title: Crop Prot. doi: 10.1016/j.cropro.2005.06.007 – volume: 8 start-page: 179 year: 1962 ident: ref_25 article-title: Visual pattern recognition by moment invariants publication-title: IRE Trans. Inform. Theory doi: 10.1109/TIT.1962.1057692 – ident: ref_4 – volume: 123 start-page: 17 year: 2016 ident: ref_7 article-title: Automatic moth detection from trap images for pest management publication-title: Comput. Electr. Agric. doi: 10.1016/j.compag.2016.02.003 – volume: 11 start-page: 978 year: 2012 ident: ref_12 article-title: An insect imaging system to automate rice light-trap pest identification publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(12)60089-6 – volume: 33 start-page: 102 year: 2012 ident: ref_9 article-title: A new automatic identification system of insect images at the order level publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2012.03.014 – volume: 89 start-page: 1168 year: 2010 ident: ref_1 article-title: Causes of and constraints to agricultural and economic development: Discussion publication-title: Am. J. Agric. Econ. doi: 10.1111/j.1467-8276.2007.01078.x – volume: 220 start-page: 1315 year: 2012 ident: ref_6 article-title: Incorporating natural enemies in an economic threshold for dynamically optimal pest management publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.01.027 – volume: 15 start-page: 431 year: 2012 ident: ref_11 article-title: Identification of butterfly species with a single neural network system publication-title: J. Asia Pac. Entomol. doi: 10.1016/j.aspen.2012.03.006 – volume: 17 start-page: 143 year: 2014 ident: ref_10 article-title: Identification of butterfly based on their shapes when viewed from different angles using an artificial neural network publication-title: J. Asia Pac. Entomol. doi: 10.1016/j.aspen.2013.12.004 – volume: 29 start-page: 139 year: 2014 ident: ref_29 article-title: Automatic identification and counting of small size pests in greenhouse conditions with low computational cost publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2014.09.006 – volume: 1 start-page: 46 year: 2007 ident: ref_5 article-title: Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis publication-title: Int. J. Math. Comput. Simulat. – ident: ref_14 doi: 10.3390/s17112489 – volume: 141 start-page: 82 year: 2016 ident: ref_15 article-title: Detection of aphids in wheat fields using a computer vision technique publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2015.11.005 – volume: 89 start-page: 110 year: 2012 ident: ref_21 article-title: Image-based orchard insect automated identification and classification method publication-title: Comput. Electr. Agric. doi: 10.1016/j.compag.2012.08.008 – volume: 18 start-page: 837 year: 1996 ident: ref_27 article-title: Texture features for browsing and retrieval of image data publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/34.531803 – volume: 54 start-page: 267 year: 2009 ident: ref_3 article-title: Insect pests of tea and their management publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.ento.53.103106.093359 – reference: 19067632 - Annu Rev Entomol. 2009;54:267-84 – reference: 29084158 - Sensors (Basel). 2017 Oct 30;17 (11): |
| SSID | ssj0023338 |
| Score | 2.6087556 |
| Snippet | Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1489 |
| SubjectTerms | Animal behavior Bats counting and recognition system flying insect Insects Raspberry PI SVM YOLO |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BlgMc-IYGCjKIA5eoTpzEyQntVl3Ry6oqCPWAFPmzXalKymbb389M4g27qOLCNZ7DSOPxzLMn7wF8Ms6SfIOPXZUWcZanPlaCRqCKymmbCZtb24tNyMWiPD-vTsOFWxfGKjdnYn9Q29bQHfkhQpNSEvc4_3L9KybVKHpdDRIa92GPmMqyCezNjhenZyPkEojABj4hgeD-sEtK4vsmTfetKtST9d_VYf49KLlVeeZP_tfnp_A49JxsOmySZ3DPNc_h0RYT4Qv4OWU_-r_M4xmWNcuOgoQEU41lZ5sho7ZhA8M5w1aXza_oFyl20nQ0EcKWDTsZ-T3XbHqxCrQe7iV8mx9_P_oaB-GF2CBaXsfWmtSVpvLeai-N8TLxIlWF5dIqKbXTRmhRcKGtVrIwGnscXxmNUAirm3gFk6Zt3D4wWfDKZYlXRVlk1mdayqq0ieUJ6ZvlLoLPmzDUJnCSkzTGVY3YhCJWjxGL4ONoej0QcdxlNKNYjgbEnd1_aFcXdUjFmuel58r5PPMIj0qligp7SmxsjaDRAB7BwSaadUjorv4Tygg-jMuYivS-ohrX3qANFwjWcsGzCF4PG2f0JCXchrU_ArmzpXZc3V1plpc93TdRLGJX--bfbr2Fh-h92c9iVgcwWa9u3Dt4YG7Xy271PuTFb4KfGkI priority: 102 providerName: ProQuest |
| Title | A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29747429 https://www.proquest.com/docview/2108720660 https://www.proquest.com/docview/2038265304 https://pubmed.ncbi.nlm.nih.gov/PMC5982143 https://doaj.org/article/058f0aef54f0498aa69423565c320100 |
| Volume | 18 |
| WOSCitedRecordID | wos000435580300188&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFH5s3Q7boez33LVBGzvsYmpbtiUdk5LQHBpCN0YGA6OfXaAoI0l33N--J9kxySjssosM0jvI0hPv-9DT9wA-amtC-QaXWlHUaVkVLpU0pEDVwipTUlMZE4tNsNmMLxZivlfqK-SEtfLA7cKdZxV3mbSuKh2CWS5lLRABIAzRNFzkRraOqGdHpjqqRZF5tTpCFEn9-SbnQec71HLfiz5RpP8-ZPl3guRexJk8g-MOKpJhO8Xn8MD6F_B0T0DwJXwfkq_xcXg6wmhkyEVX-YFIb8j1Ljdo5UkrTE4QoZLJbXjZRKZ-ExI5yNKTaS_LuSXDm3WnxmFfwefJ-MvFZdrVS0g1ktxtaowuLNfCOaMc09qx3NFC1iZjRjKmrNJU0TqjyijJaq0QmjihFTIYDEr0NRz5lbdvgbA6E7bMnax5XRpXKsYEN7nJ8lCWrLIJfNqtYqM7KfFQ0eK2QUoRFrzpFzyBD73pz1Y_4z6jUdiK3iBIXscOdISmc4TmX46QwOluI5vuHG4aJLScBcV6HH7fD-MJCtci0tvVHdpkFDlWRbMygTftvvczKQLdwpCdADvwiIOpHo745Y-o0h2UERGMnvyPf3sHT_DLY6KlOIWj7frOnsFj_Wu73KwH8JAtWGz5AB6NxrP59SAeB2yvfo-xbz69mn_7A1FTD8Q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9RAFL3UrWB98NsarTqKgi-hk0ySyTyIbKtLl7bLokUqiGEyH3WhJHWzVfxP_kjv5MtdKb71wddkCDPJmTv3ZO6cA_BCGe3sG6xvRJj4URxaXzJXApUIk-uI6Vjr2myCTybp8bGYrsGv7iyMK6vsYmIdqHWp3D_ybaQmKXfa4_TN2TffuUa53dXOQqOBxb75-QMpW_V6_Ba_78swHL072t3zW1cBXyEVXPhaq9CkSlirc8uVsjywLJSJplxLznOTK5azhLJc55InKscF3AqVY56PoZvhU6_AeoRQTwewPh0fTj_1BI8h32vUixgTdLsKUqcu7hzkl9a82hrgonz277LMpXVudPP_ekO34EabT5NhMwFuw5op7sD1JZXFu_B5SD7WJ-j9HVyyNdlt7TGILDR53xVQlQVp1NsJpvFkdOqOf5FxUblqFzIryLjXLl2Q4cm8lSwx9-DDJQzuPgyKsjAPgPCEChMFViZpEmkb5ZyLVAeaBs67LTYevOo-eqZavXVn-3GaIe9y-Mh6fHjwvG961oiMXNRoxyGnb-B0wesL5fwka8NMRuPUUmlsHFmkfqmUicB8GZN2xVzZA_Vgq8NO1garKvsDHA-e9bcxzLi9I1mY8hzbUIZENGY08mCzgWnfk9BxUsxrPOArAF7p6uqdYva1ljJ38pGYsT_8d7eewrW9o8OD7GA82X8EGziStK45FVswWMzPzWO4qr4vZtX8STsjCXy5XID_Bnjoeps |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAGP2orYg-eL9Eq46i4EvYSSbJZB5Etq2LobosKtKCGDK3ulCSutkq_jN_nt_k5q4U3_rg62ZYJpsz35yz-eYcgGfKaBffYH0jwsSP4tD6BXMtUIkwUkdMx1o3YRN8Ok0PDsRsA371Z2FcW2VfE5tCrSvl_iMfoTRJufMepyPbtUXM9iavTr75LkHKvWnt4zRaiOybnz9QvtUvsz181s_DcPL64-4bv0sY8BXKwqWvtQpNqoS1WlqulOWBZWGRaMp1wbk0UjHJEsqklgVPlMTN3AolkfNjGWf4rRdgCwl5hCtsa5a9mx0OYo-h9mudjBgTdFQHqXMad2nyK_tfExNwFrf9u0VzZc-bXPt_f63rcLXj2WTcLowbsGHKm3BlxX3xFnwek0_NyXp_B7dyTXa72AxSlJq87xurqpK0ru4E6T2ZHLtjYSQra9cFQ-YlyQZP0yUZHy06KxNzGz6cw83dgc2yKs09IDyhwkSBLZI0ibSNJOci1YGmgct0i40HL3oA5KrzYXdxIMc56jGHlXzAigdPh6EnrfnIWYN2HIqGAc4vvPmgWhzlXfnJaZxaWhgbRxYlYVoUiUAejWReMdcOQT3Y7nGUd0Wszv-AyIMnw2UsP-6dUlGa6hTHUIYCNWY08uBuC9lhJqHTqsh3POBrYF6b6vqVcv61sTh3tpLI5O__e1qP4RKiOn-bTfcfwGW8kbRpRRXbsLlcnJqHcFF9X87rxaNucRL4cr74_g3ZUYNb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Vision-Based+Counting+and+Recognition+System+for+Flying+Insects+in+Intelligent+Agriculture&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhong%2C+Yuanhong&rft.au=Gao%2C+Junyuan&rft.au=Lei%2C+Qilun&rft.au=Zhou%2C+Yao&rft.date=2018-05-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=5&rft.spage=1489&rft_id=info:doi/10.3390%2Fs18051489&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s18051489 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |