A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture

Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 18; číslo 5; s. 1489
Hlavní autori: Zhong, Yuanhong, Gao, Junyuan, Lei, Qilun, Zhou, Yao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 09.05.2018
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.
AbstractList Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.
Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.
Author Zhou, Yao
Gao, Junyuan
Lei, Qilun
Zhong, Yuanhong
AuthorAffiliation College of Communication of Engineering, Chongqing University, Chongqing 400044, China; 20144134@cqu.edu.cn (J.G.); iLot9s0@163.com (Q.L.); zhouyao@cqu.edu.cn (Y.Z.)
AuthorAffiliation_xml – name: College of Communication of Engineering, Chongqing University, Chongqing 400044, China; 20144134@cqu.edu.cn (J.G.); iLot9s0@163.com (Q.L.); zhouyao@cqu.edu.cn (Y.Z.)
Author_xml – sequence: 1
  givenname: Yuanhong
  surname: Zhong
  fullname: Zhong, Yuanhong
– sequence: 2
  givenname: Junyuan
  surname: Gao
  fullname: Gao, Junyuan
– sequence: 3
  givenname: Qilun
  surname: Lei
  fullname: Lei, Qilun
– sequence: 4
  givenname: Yao
  surname: Zhou
  fullname: Zhou, Yao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29747429$$D View this record in MEDLINE/PubMed
BookMark eNptkltrFDEUx4O02Is--AVkwBd9mDaTZHJ5EdbF6kKhYMUnIWRyGbPMJjXJCPvtzbp1aUufcsj5nT__czkDRyEGC8CbDl5gLOBl7jjsO8LFC3DaEURajhA8ehCfgLOc1xAijDF_CU6QYIQRJE7Bz0Xzw2cfQ_tJZWuaZZxD8WFsVDDNN6vjGHyp6eZ2m4vdNC6m5mra7ohVyFaX3PhQw2KnyY82lGYxJq_nqczJvgLHTk3Zvr5_z8Ht1efvy6_t9c2X1XJx3WpCRWmN0chyLZwzg2NaO9Y5jBQ1kBnF2GAHjQdMIR7MoBjVg8DMCT1QSpEQ-Bys9qomqrW8S36j0lZG5eW_j5hGqVLxerIS9txBZV1PHCSCK0UFQbinvcYIdhBWrY97rbt52Fija0NJTY9EH2eC_yXH-Ef2gqOO4Crw_l4gxd-zzUVufNZ1OCrYOGeJIOaI9hiSir57gq7jnEIdlEQd5AxBSneO3j50dLDyf4UV-LAHdIo5J-sOSAfl7jzk4Twqe_mE1b6o3X5rM356puIvmyq8Lw
CitedBy_id crossref_primary_10_3390_s24196348
crossref_primary_10_1109_JSTQE_2021_3062088
crossref_primary_10_15446_dyna_v90n230_111827
crossref_primary_10_4018_IJISSCM_344038
crossref_primary_10_3390_agriculture12111897
crossref_primary_10_1117_1_JEI_31_6_061815
crossref_primary_10_1155_2022_9669903
crossref_primary_10_1155_2019_4570808
crossref_primary_10_3389_fpls_2023_1150748
crossref_primary_10_1371_journal_pone_0283801
crossref_primary_10_3390_ai4010017
crossref_primary_10_1007_s10462_025_11253_3
crossref_primary_10_3389_fpls_2023_1268167
crossref_primary_10_3390_asi7040062
crossref_primary_10_1007_s11356_023_30835_8
crossref_primary_10_3390_agriculture12050730
crossref_primary_10_3390_agriculture12101721
crossref_primary_10_1371_journal_pone_0210829
crossref_primary_10_1109_ACCESS_2021_3074083
crossref_primary_10_1016_j_aspen_2019_11_006
crossref_primary_10_1016_j_cosrev_2024_100636
crossref_primary_10_1111_jen_12834
crossref_primary_10_1016_j_compag_2025_110378
crossref_primary_10_3390_app12104945
crossref_primary_10_3390_agriculture12060766
crossref_primary_10_1016_j_atech_2023_100294
crossref_primary_10_3390_insects11080486
crossref_primary_10_3390_electronics10040372
crossref_primary_10_1016_j_compag_2022_106933
crossref_primary_10_3390_app112411889
crossref_primary_10_1016_j_patrec_2023_04_018
crossref_primary_10_1109_ACCESS_2021_3059314
crossref_primary_10_3390_agriculture11020131
crossref_primary_10_3390_insects11040244
crossref_primary_10_3389_fpls_2024_1484587
crossref_primary_10_3390_ani14060843
crossref_primary_10_3390_info14050267
crossref_primary_10_1093_biomethods_bpac005
crossref_primary_10_1016_j_jia_2024_06_017
crossref_primary_10_1109_TIM_2023_3265119
crossref_primary_10_3390_agriculture13030713
crossref_primary_10_1002_widm_1551
crossref_primary_10_1002_ppj2_20079
crossref_primary_10_3390_app121910167
crossref_primary_10_1073_pnas_2002545117
crossref_primary_10_3390_math10030295
crossref_primary_10_1016_j_compag_2020_105585
crossref_primary_10_1016_j_compag_2021_106053
crossref_primary_10_3390_ai1020021
crossref_primary_10_3390_insects12040342
crossref_primary_10_3390_plants11192663
crossref_primary_10_1016_j_biosystemseng_2021_05_006
crossref_primary_10_1155_2023_6560747
crossref_primary_10_3389_fpls_2022_839572
crossref_primary_10_3390_agriengineering6040216
crossref_primary_10_1093_jee_toad004
crossref_primary_10_1007_s11119_023_10034_8
crossref_primary_10_1111_2041_210X_13901
crossref_primary_10_1007_s13592_021_00887_1
crossref_primary_10_1016_j_cropro_2023_106351
crossref_primary_10_3390_agronomy12020319
crossref_primary_10_4039_tce_2024_36
crossref_primary_10_3390_drones7010033
crossref_primary_10_3390_electronics7090161
crossref_primary_10_3390_agriengineering7020029
crossref_primary_10_1016_j_ecoinf_2021_101516
crossref_primary_10_3389_fpls_2022_814681
crossref_primary_10_3390_insects14040381
crossref_primary_10_3390_electronics10151754
crossref_primary_10_3390_agronomy13020477
crossref_primary_10_3390_drones5010004
crossref_primary_10_1016_S2095_3119_20_63168_9
crossref_primary_10_3390_agriculture15010081
crossref_primary_10_1007_s40011_024_01581_9
crossref_primary_10_1016_j_compag_2020_105535
crossref_primary_10_1038_s41598_024_78509_w
crossref_primary_10_3390_s21020343
crossref_primary_10_3390_s19122785
crossref_primary_10_3390_s22103667
crossref_primary_10_1016_j_baae_2022_01_003
crossref_primary_10_3390_s19112553
crossref_primary_10_1038_s43017_025_00673_y
crossref_primary_10_1016_j_dib_2022_108366
crossref_primary_10_1016_j_ecoinf_2021_101241
crossref_primary_10_1002_ps_5845
crossref_primary_10_3390_pr13010115
crossref_primary_10_3390_agronomy15030693
crossref_primary_10_1111_syen_12543
crossref_primary_10_2478_acss_2022_0012
crossref_primary_10_3390_s21103329
crossref_primary_10_3390_s20051520
crossref_primary_10_1038_s41598_021_84219_4
crossref_primary_10_1016_j_aspen_2019_06_003
crossref_primary_10_3390_s23084127
crossref_primary_10_57065_shilap_302
crossref_primary_10_3390_horticulturae8060520
crossref_primary_10_1038_s41598_021_89930_w
crossref_primary_10_1109_ACCESS_2021_3088075
crossref_primary_10_3390_agronomy12123052
crossref_primary_10_1109_ACCESS_2020_2992520
crossref_primary_10_1016_j_ecoinf_2023_102384
crossref_primary_10_3389_fevo_2021_600931
crossref_primary_10_3390_agriculture13010067
crossref_primary_10_1016_j_ecoinf_2022_101690
crossref_primary_10_1038_s41598_024_78260_2
crossref_primary_10_3390_agriculture13050961
crossref_primary_10_1016_j_compag_2020_105784
crossref_primary_10_1109_ACCESS_2025_3552195
crossref_primary_10_1371_journal_pone_0253027
crossref_primary_10_1016_j_atech_2023_100229
crossref_primary_10_1007_s11042_023_16578_1
crossref_primary_10_3390_agriculture13030741
crossref_primary_10_1016_j_ecoinf_2023_102037
crossref_primary_10_1016_j_compag_2019_105108
crossref_primary_10_1038_s41598_025_97825_3
crossref_primary_10_1186_s44147_023_00284_8
crossref_primary_10_3390_electronics10121422
Cites_doi 10.1016/j.compag.2016.11.019
10.1109/MSP.2017.2740460
10.1117/1.OE.51.2.027001
10.1016/j.biosystemseng.2011.10.003
10.1117/12.205308
10.1109/ICPR.2010.643
10.1007/BF00994018
10.1007/BF00130487
10.1007/s00371-013-0782-8
10.1080/03235408.2013.763620
10.3844/ajabssp.2011.69.79
10.1016/j.cropro.2005.06.007
10.1109/TIT.1962.1057692
10.1016/j.compag.2016.02.003
10.1016/S2095-3119(12)60089-6
10.1016/j.knosys.2012.03.014
10.1111/j.1467-8276.2007.01078.x
10.1016/j.ecolmodel.2009.01.027
10.1016/j.aspen.2012.03.006
10.1016/j.aspen.2013.12.004
10.1016/j.ecoinf.2014.09.006
10.3390/s17112489
10.1016/j.biosystemseng.2015.11.005
10.1016/j.compag.2012.08.008
10.1109/34.531803
10.1146/annurev.ento.53.103106.093359
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s18051489
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_058f0aef54f0498aa69423565c320100
PMC5982143
29747429
10_3390_s18051489
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-ddc2e8c9ffdbf7ccf71f32a6d07da77bebc3b3603bdba76cb937f9cb6662993
IEDL.DBID DOA
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435580300188&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:08:30 EDT 2025
Tue Nov 04 01:55:26 EST 2025
Fri Sep 05 13:31:18 EDT 2025
Tue Oct 07 07:05:56 EDT 2025
Wed Feb 19 02:43:16 EST 2025
Tue Nov 18 21:53:10 EST 2025
Sat Nov 29 07:15:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords YOLO
Raspberry PI
SVM
counting and recognition system
flying insect
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-ddc2e8c9ffdbf7ccf71f32a6d07da77bebc3b3603bdba76cb937f9cb6662993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/058f0aef54f0498aa69423565c320100
PMID 29747429
PQID 2108720660
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_058f0aef54f0498aa69423565c320100
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982143
proquest_miscellaneous_2038265304
proquest_journals_2108720660
pubmed_primary_29747429
crossref_primary_10_3390_s18051489
crossref_citationtrail_10_3390_s18051489
PublicationCentury 2000
PublicationDate 2018-05-09
PublicationDateYYYYMMDD 2018-05-09
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Maharlooei (ref_22) 2017; 132
Hu (ref_25) 1962; 8
Vakilian (ref_17) 2013; 46
Manjunath (ref_27) 1996; 18
ref_14
Cho (ref_5) 2007; 1
Haralick (ref_28) 1990; 3
Venkateswara (ref_35) 2017; 34
ref_32
ref_31
Liu (ref_15) 2016; 141
Kaya (ref_20) 2014; 30
Wen (ref_21) 2012; 89
ref_19
ref_18
Hazarika (ref_3) 2009; 54
Kang (ref_10) 2014; 17
Xia (ref_29) 2014; 29
Kang (ref_11) 2012; 15
Swain (ref_30) 1991; 7
Alsaqer (ref_16) 2011; 6
Sun (ref_13) 2017; 153
Unnevehr (ref_1) 2010; 89
Dalal (ref_33) 2005; 1
Wang (ref_8) 2012; 111
ref_24
Cortes (ref_34) 1995; 20
Muralidharan (ref_2) 2006; 25
Yao (ref_12) 2012; 11
Wang (ref_9) 2012; 33
Zhang (ref_6) 2012; 220
Ding (ref_7) 2016; 123
ref_26
Xia (ref_23) 2012; 51
ref_4
19067632 - Annu Rev Entomol. 2009;54:267-84
29084158 - Sensors (Basel). 2017 Oct 30;17 (11)
References_xml – volume: 132
  start-page: 63
  year: 2017
  ident: ref_22
  article-title: Detection of soybean aphids in a greenhouse using an image processing technique
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.11.019
– volume: 34
  start-page: 117
  year: 2017
  ident: ref_35
  article-title: Deep-learning systems for domain adaptation in computer vision: Learning transferable feature representations
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2740460
– ident: ref_32
– ident: ref_24
– ident: ref_26
– volume: 3
  start-page: 610
  year: 1990
  ident: ref_28
  article-title: Texture features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 51
  start-page: 027001
  year: 2012
  ident: ref_23
  article-title: In situ detection of small-size insect pests sampled on traps using multifractal analysis
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.51.2.027001
– volume: 111
  start-page: 24
  year: 2012
  ident: ref_8
  article-title: The identification of butterfly families using content-based image retrieval
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2011.10.003
– volume: 153
  start-page: 82
  year: 2017
  ident: ref_13
  article-title: A smart-vision algorithm for counting whiteflies and thrips on sticky traps using two-dimensional Fourier transform spectrum
  publication-title: Comput. Digit. Eng.
– ident: ref_31
  doi: 10.1117/12.205308
– ident: ref_18
– ident: ref_19
  doi: 10.1109/ICPR.2010.643
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_34
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 7
  start-page: 11
  year: 1991
  ident: ref_30
  article-title: Color indexing
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00130487
– volume: 30
  start-page: 71
  year: 2014
  ident: ref_20
  article-title: Application of artificial neural network for automatic detection of butterfly species using color and texture features
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-013-0782-8
– volume: 46
  start-page: 1262
  year: 2013
  ident: ref_17
  article-title: Performance evaluation of a machine vision system for insect pests identification of field crops using artificial neural networks
  publication-title: Arch. Phytopathol. Plant Prot.
  doi: 10.1080/03235408.2013.763620
– volume: 1
  start-page: 886
  year: 2005
  ident: ref_33
  article-title: Histograms of oriented gradients for human detection
  publication-title: Comput. Vis. Pattern Recognit.
– volume: 6
  start-page: 69
  year: 2011
  ident: ref_16
  article-title: Identification of pecan weevils through image processing
  publication-title: Am. J. Agric. Biol. Sci.
  doi: 10.3844/ajabssp.2011.69.79
– volume: 25
  start-page: 409
  year: 2006
  ident: ref_2
  article-title: Assessments of crop losses in rice ecosystems due to stem borer damage (Lepidoptera: Pyralidae)
  publication-title: Crop Prot.
  doi: 10.1016/j.cropro.2005.06.007
– volume: 8
  start-page: 179
  year: 1962
  ident: ref_25
  article-title: Visual pattern recognition by moment invariants
  publication-title: IRE Trans. Inform. Theory
  doi: 10.1109/TIT.1962.1057692
– ident: ref_4
– volume: 123
  start-page: 17
  year: 2016
  ident: ref_7
  article-title: Automatic moth detection from trap images for pest management
  publication-title: Comput. Electr. Agric.
  doi: 10.1016/j.compag.2016.02.003
– volume: 11
  start-page: 978
  year: 2012
  ident: ref_12
  article-title: An insect imaging system to automate rice light-trap pest identification
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(12)60089-6
– volume: 33
  start-page: 102
  year: 2012
  ident: ref_9
  article-title: A new automatic identification system of insect images at the order level
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.03.014
– volume: 89
  start-page: 1168
  year: 2010
  ident: ref_1
  article-title: Causes of and constraints to agricultural and economic development: Discussion
  publication-title: Am. J. Agric. Econ.
  doi: 10.1111/j.1467-8276.2007.01078.x
– volume: 220
  start-page: 1315
  year: 2012
  ident: ref_6
  article-title: Incorporating natural enemies in an economic threshold for dynamically optimal pest management
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.01.027
– volume: 15
  start-page: 431
  year: 2012
  ident: ref_11
  article-title: Identification of butterfly species with a single neural network system
  publication-title: J. Asia Pac. Entomol.
  doi: 10.1016/j.aspen.2012.03.006
– volume: 17
  start-page: 143
  year: 2014
  ident: ref_10
  article-title: Identification of butterfly based on their shapes when viewed from different angles using an artificial neural network
  publication-title: J. Asia Pac. Entomol.
  doi: 10.1016/j.aspen.2013.12.004
– volume: 29
  start-page: 139
  year: 2014
  ident: ref_29
  article-title: Automatic identification and counting of small size pests in greenhouse conditions with low computational cost
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2014.09.006
– volume: 1
  start-page: 46
  year: 2007
  ident: ref_5
  article-title: Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis
  publication-title: Int. J. Math. Comput. Simulat.
– ident: ref_14
  doi: 10.3390/s17112489
– volume: 141
  start-page: 82
  year: 2016
  ident: ref_15
  article-title: Detection of aphids in wheat fields using a computer vision technique
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2015.11.005
– volume: 89
  start-page: 110
  year: 2012
  ident: ref_21
  article-title: Image-based orchard insect automated identification and classification method
  publication-title: Comput. Electr. Agric.
  doi: 10.1016/j.compag.2012.08.008
– volume: 18
  start-page: 837
  year: 1996
  ident: ref_27
  article-title: Texture features for browsing and retrieval of image data
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/34.531803
– volume: 54
  start-page: 267
  year: 2009
  ident: ref_3
  article-title: Insect pests of tea and their management
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev.ento.53.103106.093359
– reference: 19067632 - Annu Rev Entomol. 2009;54:267-84
– reference: 29084158 - Sensors (Basel). 2017 Oct 30;17 (11):
SSID ssj0023338
Score 2.6087556
Snippet Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1489
SubjectTerms Animal behavior
Bats
counting and recognition system
flying insect
Insects
Raspberry PI
SVM
YOLO
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BlgMc-IYGCjKIA5eoTpzEyQntVl3Ry6oqCPWAFPmzXalKymbb389M4g27qOLCNZ7DSOPxzLMn7wF8Ms6SfIOPXZUWcZanPlaCRqCKymmbCZtb24tNyMWiPD-vTsOFWxfGKjdnYn9Q29bQHfkhQpNSEvc4_3L9KybVKHpdDRIa92GPmMqyCezNjhenZyPkEojABj4hgeD-sEtK4vsmTfetKtST9d_VYf49KLlVeeZP_tfnp_A49JxsOmySZ3DPNc_h0RYT4Qv4OWU_-r_M4xmWNcuOgoQEU41lZ5sho7ZhA8M5w1aXza_oFyl20nQ0EcKWDTsZ-T3XbHqxCrQe7iV8mx9_P_oaB-GF2CBaXsfWmtSVpvLeai-N8TLxIlWF5dIqKbXTRmhRcKGtVrIwGnscXxmNUAirm3gFk6Zt3D4wWfDKZYlXRVlk1mdayqq0ieUJ6ZvlLoLPmzDUJnCSkzTGVY3YhCJWjxGL4ONoej0QcdxlNKNYjgbEnd1_aFcXdUjFmuel58r5PPMIj0qligp7SmxsjaDRAB7BwSaadUjorv4Tygg-jMuYivS-ohrX3qANFwjWcsGzCF4PG2f0JCXchrU_ArmzpXZc3V1plpc93TdRLGJX--bfbr2Fh-h92c9iVgcwWa9u3Dt4YG7Xy271PuTFb4KfGkI
  priority: 102
  providerName: ProQuest
Title A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture
URI https://www.ncbi.nlm.nih.gov/pubmed/29747429
https://www.proquest.com/docview/2108720660
https://www.proquest.com/docview/2038265304
https://pubmed.ncbi.nlm.nih.gov/PMC5982143
https://doaj.org/article/058f0aef54f0498aa69423565c320100
Volume 18
WOSCitedRecordID wos000435580300188&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFH5s3Q7boez33LVBGzvsYmpbtiUdk5LQHBpCN0YGA6OfXaAoI0l33N--J9kxySjssosM0jvI0hPv-9DT9wA-amtC-QaXWlHUaVkVLpU0pEDVwipTUlMZE4tNsNmMLxZivlfqK-SEtfLA7cKdZxV3mbSuKh2CWS5lLRABIAzRNFzkRraOqGdHpjqqRZF5tTpCFEn9-SbnQec71HLfiz5RpP8-ZPl3guRexJk8g-MOKpJhO8Xn8MD6F_B0T0DwJXwfkq_xcXg6wmhkyEVX-YFIb8j1Ljdo5UkrTE4QoZLJbXjZRKZ-ExI5yNKTaS_LuSXDm3WnxmFfwefJ-MvFZdrVS0g1ktxtaowuLNfCOaMc09qx3NFC1iZjRjKmrNJU0TqjyijJaq0QmjihFTIYDEr0NRz5lbdvgbA6E7bMnax5XRpXKsYEN7nJ8lCWrLIJfNqtYqM7KfFQ0eK2QUoRFrzpFzyBD73pz1Y_4z6jUdiK3iBIXscOdISmc4TmX46QwOluI5vuHG4aJLScBcV6HH7fD-MJCtci0tvVHdpkFDlWRbMygTftvvczKQLdwpCdADvwiIOpHo745Y-o0h2UERGMnvyPf3sHT_DLY6KlOIWj7frOnsFj_Wu73KwH8JAtWGz5AB6NxrP59SAeB2yvfo-xbz69mn_7A1FTD8Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9RAFL3UrWB98NsarTqKgi-hk0ySyTyIbKtLl7bLokUqiGEyH3WhJHWzVfxP_kjv5MtdKb71wddkCDPJmTv3ZO6cA_BCGe3sG6xvRJj4URxaXzJXApUIk-uI6Vjr2myCTybp8bGYrsGv7iyMK6vsYmIdqHWp3D_ybaQmKXfa4_TN2TffuUa53dXOQqOBxb75-QMpW_V6_Ba_78swHL072t3zW1cBXyEVXPhaq9CkSlirc8uVsjywLJSJplxLznOTK5azhLJc55InKscF3AqVY56PoZvhU6_AeoRQTwewPh0fTj_1BI8h32vUixgTdLsKUqcu7hzkl9a82hrgonz277LMpXVudPP_ekO34EabT5NhMwFuw5op7sD1JZXFu_B5SD7WJ-j9HVyyNdlt7TGILDR53xVQlQVp1NsJpvFkdOqOf5FxUblqFzIryLjXLl2Q4cm8lSwx9-DDJQzuPgyKsjAPgPCEChMFViZpEmkb5ZyLVAeaBs67LTYevOo-eqZavXVn-3GaIe9y-Mh6fHjwvG961oiMXNRoxyGnb-B0wesL5fwka8NMRuPUUmlsHFmkfqmUicB8GZN2xVzZA_Vgq8NO1garKvsDHA-e9bcxzLi9I1mY8hzbUIZENGY08mCzgWnfk9BxUsxrPOArAF7p6uqdYva1ljJ38pGYsT_8d7eewrW9o8OD7GA82X8EGziStK45FVswWMzPzWO4qr4vZtX8STsjCXy5XID_Bnjoeps
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAGP2orYg-eL9Eq46i4EvYSSbJZB5Etq2LobosKtKCGDK3ulCSutkq_jN_nt_k5q4U3_rg62ZYJpsz35yz-eYcgGfKaBffYH0jwsSP4tD6BXMtUIkwUkdMx1o3YRN8Ok0PDsRsA371Z2FcW2VfE5tCrSvl_iMfoTRJufMepyPbtUXM9iavTr75LkHKvWnt4zRaiOybnz9QvtUvsz181s_DcPL64-4bv0sY8BXKwqWvtQpNqoS1WlqulOWBZWGRaMp1wbk0UjHJEsqklgVPlMTN3AolkfNjGWf4rRdgCwl5hCtsa5a9mx0OYo-h9mudjBgTdFQHqXMad2nyK_tfExNwFrf9u0VzZc-bXPt_f63rcLXj2WTcLowbsGHKm3BlxX3xFnwek0_NyXp_B7dyTXa72AxSlJq87xurqpK0ru4E6T2ZHLtjYSQra9cFQ-YlyQZP0yUZHy06KxNzGz6cw83dgc2yKs09IDyhwkSBLZI0ibSNJOci1YGmgct0i40HL3oA5KrzYXdxIMc56jGHlXzAigdPh6EnrfnIWYN2HIqGAc4vvPmgWhzlXfnJaZxaWhgbRxYlYVoUiUAejWReMdcOQT3Y7nGUd0Wszv-AyIMnw2UsP-6dUlGa6hTHUIYCNWY08uBuC9lhJqHTqsh3POBrYF6b6vqVcv61sTh3tpLI5O__e1qP4RKiOn-bTfcfwGW8kbRpRRXbsLlcnJqHcFF9X87rxaNucRL4cr74_g3ZUYNb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Vision-Based+Counting+and+Recognition+System+for+Flying+Insects+in+Intelligent+Agriculture&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhong%2C+Yuanhong&rft.au=Gao%2C+Junyuan&rft.au=Lei%2C+Qilun&rft.au=Zhou%2C+Yao&rft.date=2018-05-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=5&rft.spage=1489&rft_id=info:doi/10.3390%2Fs18051489&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s18051489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon