An Incremental Clustering Algorithm with Pattern Drift Detection for IoT-Enabled Smart Grid System
The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load patt...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 21; no. 19; p. 6466 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
28.09.2021
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results. |
|---|---|
| AbstractList | The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results. The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results.The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results. |
| Author | Jiang, Zigui Yang, Fangchun Lin, Rongheng |
| AuthorAffiliation | 2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; fcyang@bupt.edu.cn 1 School of Software Engineering, Sun Yat-Sen University, Zhuhai 519082, China; jiangzg3@mail.sysu.edu.cn |
| AuthorAffiliation_xml | – name: 2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; fcyang@bupt.edu.cn – name: 1 School of Software Engineering, Sun Yat-Sen University, Zhuhai 519082, China; jiangzg3@mail.sysu.edu.cn |
| Author_xml | – sequence: 1 givenname: Zigui orcidid: 0000-0002-3349-5383 surname: Jiang fullname: Jiang, Zigui – sequence: 2 givenname: Rongheng orcidid: 0000-0001-9562-7356 surname: Lin fullname: Lin, Rongheng – sequence: 3 givenname: Fangchun surname: Yang fullname: Yang, Fangchun |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34640791$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhiNURD_gwB9AlrjQQ6i_4jgXpNX2g5UqgUQ5W44z3nrl2MVxQP33eLtl1VZc7JHn8evXM3NcHYQYoKreE_yZsQ6fTZSQTnAhXlVHhFNeS0rxwZP4sDqepg3GlDEm31SHjAuO244cVf0ioFUwCUYIWXu09POUIbmwRgu_jsnl2xH9KSv6rnNJBHSenM3oHDKY7GJANia0ijf1RdC9hwH9GHXK6Cq5Et4XrfFt9dpqP8G7x_2k-nl5cbP8Wl9_u1otF9e14aLL9dC0ljfEaC0GNthO2x6DFWQgEogQBjcgpMVSCD1obYcGKAHGwUrTgWgYO6lWO90h6o26S64YuVdRO_VwENNaFWfOeFCCUG4EIbrFhOOukcSCMA20jFjBelq0vuy07uZ-hMGU4iTtn4k-zwR3q9bxt5INoUSQIvDpUSDFXzNMWY1uMuC9DhDnSdHypsSUtlvfH1-gmzinUEr1QGFOZScK9eGpo72Vf60swOkOMClOUwK7RwhW2zFR-zEp7NkL1rist-0sn3H-Pzf-Amxpvfo |
| CitedBy_id | crossref_primary_10_1109_JETCAS_2023_3290418 crossref_primary_10_1007_s10586_022_03549_8 crossref_primary_10_3390_electronics11223668 |
| Cites_doi | 10.1109/TII.2017.2769450 10.31209/2019.100000113 10.1016/j.sigpro.2015.10.014 10.1007/s10115-014-0808-1 10.1016/j.energy.2011.12.031 10.1109/TST.2015.7085625 10.1016/j.knosys.2016.02.001 10.1137/1.9781611972795.63 10.1016/j.eswa.2019.113069 10.1145/2806416.2806464 10.1186/s41044-016-0011-3 10.1109/ACCESS.2020.2977149 10.1109/TII.2016.2528819 10.1007/978-3-642-22351-8_24 10.3390/en13112762 10.1016/j.enbuild.2019.04.034 10.1145/3335484.3335517 10.3390/s21093293 10.2298/CSIS200330012S 10.1016/j.apenergy.2020.114915 10.3390/en11092235 10.1109/JIOT.2020.3030308 10.1007/s10462-020-09874-x 10.3390/s21093157 10.1016/j.neucom.2017.06.084 10.1109/TASLP.2016.2530409 10.1109/TSG.2015.2446935 10.1016/j.is.2016.06.007 10.1109/TII.2017.2785963 10.1109/TNNLS.2017.2716952 10.1109/TSMC.2018.2791511 10.3390/s21051564 10.1109/TSG.2016.2548565 10.1049/iet-gtd.2014.0658 10.1109/TII.2020.2998479 10.1016/j.apenergy.2017.07.114 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00187 10.1007/s42044-019-00043-0 10.1109/IoT52625.2021.9469717 10.3390/en13215739 10.1109/TII.2017.2684807 10.1016/j.ins.2016.12.004 10.1007/s40745-015-0040-1 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s21196466 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_6124c611a701409581fe6c5e731f63b2 PMC8512161 34640791 10_3390_s21196466 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation Grand grantid: 2019TQ0373 – fundername: National Natural Science Foundation of China grantid: 62002393 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-d57f451caa6d3df9afb0ef61d18e166c05e68f0866adaafd5e21e34ef8c9e6533 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725611000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:51 EDT 2025 Tue Nov 04 02:00:24 EST 2025 Thu Sep 04 18:17:36 EDT 2025 Tue Oct 07 07:23:41 EDT 2025 Thu Apr 03 06:53:15 EDT 2025 Sat Nov 29 07:13:03 EST 2025 Tue Nov 18 21:55:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | data stream clustering incremental learning load pattern smart meter data |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-d57f451caa6d3df9afb0ef61d18e166c05e68f0866adaafd5e21e34ef8c9e6533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3349-5383 0000-0001-9562-7356 |
| OpenAccessLink | https://www.proquest.com/docview/2581042896?pq-origsite=%requestingapplication% |
| PMID | 34640791 |
| PQID | 2581042896 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6124c611a701409581fe6c5e731f63b2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512161 proquest_miscellaneous_2581802273 proquest_journals_2581042896 pubmed_primary_34640791 crossref_primary_10_3390_s21196466 crossref_citationtrail_10_3390_s21196466 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-28 |
| PublicationDateYYYYMMDD | 2021-09-28 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Mets (ref_36) 2016; 7 Zhang (ref_34) 2019; 59 Jiang (ref_39) 2018; 14 Bera (ref_2) 2021; 8 Kim (ref_9) 2019; 194 ref_12 ref_11 Panapakidis (ref_26) 2015; 9 Zheng (ref_16) 2018; 14 Aderibole (ref_6) 2020; 8 ref_18 Hafeez (ref_10) 2020; 269 Singh (ref_14) 2021; 66 Losing (ref_41) 2018; 275 Zhuang (ref_7) 2020; 17 ref_24 Liu (ref_19) 2019; 25 ref_21 ref_29 Lusis (ref_51) 2017; 205 Atalay (ref_44) 2021; 54 Chen (ref_13) 2021; 21 Xu (ref_22) 2018; 49 Chen (ref_50) 2017; 12 Zhang (ref_31) 2016; 126 Ghesmoune (ref_47) 2016; 1 Wang (ref_15) 2015; 20 Jin (ref_25) 2016; 12 ref_32 Wang (ref_37) 2016; 7 ref_30 Nguyen (ref_23) 2015; 45 ref_38 Hyde (ref_33) 2017; 382–383 Khelifi (ref_17) 2020; 63 Zhang (ref_28) 2017; 13 Chaudhari (ref_43) 2019; 2 Chicco (ref_20) 2012; 42 Marxer (ref_27) 2016; 24 Du (ref_46) 2016; 99 Xu (ref_45) 2015; 2 Chen (ref_42) 2018; 29 ref_40 ref_1 Barddal (ref_48) 2016; 62 Singh (ref_3) 2021; 18 ref_49 ref_8 Wiwatcharakoses (ref_35) 2020; 143 ref_5 ref_4 |
| References_xml | – volume: 14 start-page: 1856 year: 2018 ident: ref_39 article-title: A Fused Load Curve Clustering Algorithm based on Wavelet Transform publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2769450 – volume: 25 start-page: 585 year: 2019 ident: ref_19 article-title: An Efficient Supervised Energy Disaggregation Scheme for Power Service in Smart Grid publication-title: Intell. Autom. Soft Comput. doi: 10.31209/2019.100000113 – volume: 126 start-page: 111 year: 2016 ident: ref_31 article-title: Data Stream Clustering based on Fuzzy C-Mean Algorithm and Entropy Theory publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.10.014 – ident: ref_32 – volume: 45 start-page: 535 year: 2015 ident: ref_23 article-title: A Survey on Data Stream Clustering and Classification publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-014-0808-1 – volume: 12 start-page: 1 year: 2017 ident: ref_50 article-title: A New Accuracy Measure based on Bounded Relative Error for Time Series Forecasting publication-title: PLoS ONE – volume: 42 start-page: 68 year: 2012 ident: ref_20 article-title: Overview and Performance Assessment of the Clustering Methods for Electrical Load Pattern Grouping publication-title: Energy doi: 10.1016/j.energy.2011.12.031 – volume: 20 start-page: 117 year: 2015 ident: ref_15 article-title: Load Profiling and Its Application to Demand Response: A Review publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2015.7085625 – volume: 99 start-page: 135 year: 2016 ident: ref_46 article-title: Study on Density Peaks Clustering based on K-nearest Neighbors and Principal Component Analysis publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.02.001 – ident: ref_49 doi: 10.1137/1.9781611972795.63 – volume: 143 start-page: 113069 year: 2020 ident: ref_35 article-title: SOINN+, A Self-organizing Incremental Neural Network for Unsupervised Learning from Noisy Data Streams publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113069 – ident: ref_40 doi: 10.1145/2806416.2806464 – volume: 1 start-page: 13 year: 2016 ident: ref_47 article-title: State-of-the-art on Clustering Data Streams publication-title: Big Data Anal. doi: 10.1186/s41044-016-0011-3 – volume: 8 start-page: 43177 year: 2020 ident: ref_6 article-title: Blockchain Technology for Smart Grids: Decentralized NIST Conceptual Model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2977149 – volume: 12 start-page: 645 year: 2016 ident: ref_25 article-title: Feature Construction and Calibration for Clustering Daily Load Curves from Smart-meter Data publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2016.2528819 – ident: ref_30 doi: 10.1007/978-3-642-22351-8_24 – ident: ref_4 doi: 10.3390/en13112762 – volume: 194 start-page: 328 year: 2019 ident: ref_9 article-title: Recurrent Inception Convolution Neural Network for Multi Short-term Load Forecasting publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.04.034 – ident: ref_24 doi: 10.1145/3335484.3335517 – ident: ref_5 doi: 10.3390/s21093293 – volume: 18 start-page: 597 year: 2021 ident: ref_3 article-title: Machine Learning based Distributed Big Data Analysis Framework for Next Generation Web in IoT publication-title: Comput. Sci. Inf. Syst. doi: 10.2298/CSIS200330012S – volume: 269 start-page: 114915 year: 2020 ident: ref_10 article-title: Electric Load Forecasting based on Deep Learning and Optimized by Heuristic Algorithm in Smart Grid publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114915 – volume: 66 start-page: 2905 year: 2021 ident: ref_14 article-title: OTS Scheme based Secure Architecture for Energy-Efficient IoT in Edge Infrastructure publication-title: CMC-Comput. Mater. Contin. – ident: ref_18 doi: 10.3390/en11092235 – volume: 8 start-page: 5744 year: 2021 ident: ref_2 article-title: Designing Blockchain-based Access Control Protocol in IoT-enabled Smart-grid System publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3030308 – volume: 54 start-page: 1201 year: 2021 ident: ref_44 article-title: Data Stream Clustering: A Review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09874-x – ident: ref_38 doi: 10.3390/s21093157 – volume: 275 start-page: 1261 year: 2018 ident: ref_41 article-title: Incremental On-line Learning: A Review and Comparison of State of the Art Algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.084 – volume: 24 start-page: 863 year: 2016 ident: ref_27 article-title: Unsupervised Incremental Nnline Learning and Prediction of Musical Audio Signals publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2016.2530409 – volume: 7 start-page: 2250 year: 2016 ident: ref_36 article-title: Two-stage Load Pattern Clustering Using Fast Wavelet Transformation publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2015.2446935 – volume: 62 start-page: 60 year: 2016 ident: ref_48 article-title: SNCStream+: Extending a High Quality True Anytime Data Stream Clustering Algorithm publication-title: Inf. Syst. doi: 10.1016/j.is.2016.06.007 – volume: 14 start-page: 1606 year: 2018 ident: ref_16 article-title: Wide and Deep Convolutional Neural Networks for Electricity-theft Detection to Secure Smart Grids publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2785963 – volume: 29 start-page: 10 year: 2018 ident: ref_42 article-title: Broad Learning System: An Effective and Efficient Incremental Learning System without the Need for Deep Architecture publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2716952 – volume: 49 start-page: 2230 year: 2018 ident: ref_22 article-title: New Incremental Learning Algorithm with Support Vector Machines publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2018.2791511 – ident: ref_8 doi: 10.3390/s21051564 – volume: 7 start-page: 2437 year: 2016 ident: ref_37 article-title: Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2548565 – ident: ref_21 – volume: 9 start-page: 655 year: 2015 ident: ref_26 article-title: Enhancing the Clustering Process in the Category Model Load Profiling publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2014.0658 – volume: 17 start-page: 3 year: 2020 ident: ref_7 article-title: Blockchain for Cybersecurity in Smart Grid: A Comprehensive Survey publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2020.2998479 – volume: 205 start-page: 654 year: 2017 ident: ref_51 article-title: Short-term Residential Load Forecasting: Impact of Calendar Effects and Forecast Granularity publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.07.114 – ident: ref_11 doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00187 – volume: 63 start-page: 97 year: 2020 ident: ref_17 article-title: A Cryptographic-based Approach for Electricity Theft Detection in Smart Grid publication-title: Comput. Mater. Contin. – volume: 2 start-page: 197 year: 2019 ident: ref_43 article-title: A Bibliometric Survey on Incremental Clustering Algorithm for Electricity Smart Meter Data Analysis publication-title: Iran J. Comput. Sci. doi: 10.1007/s42044-019-00043-0 – ident: ref_12 doi: 10.1109/IoT52625.2021.9469717 – ident: ref_29 – volume: 21 start-page: 2883 year: 2021 ident: ref_13 article-title: A Smart Home Energy Management System Using Two-Stage Non-Intrusive Appliance Load Monitoring over Fog-Cloud Analytics Based on Tridium’s Niagara Framework for Residential Demand-Side Management publication-title: Sensors – ident: ref_1 doi: 10.3390/en13215739 – volume: 59 start-page: 885 year: 2019 ident: ref_34 article-title: An Algorithm for Mining Gradual Moving Object Clusters Pattern from Trajectory Streams publication-title: Comput. Mater. Contin. – volume: 13 start-page: 1193 year: 2017 ident: ref_28 article-title: An Incremental CFS Algorithm for Clustering Large Data in Industrial Internet of Things publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2684807 – volume: 382–383 start-page: 96 year: 2017 ident: ref_33 article-title: Fully Online Clustering of Evolving Data Streams into Arbitrarily Shaped Clusters publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.12.004 – volume: 2 start-page: 165 year: 2015 ident: ref_45 article-title: A Comprehensive Survey of Clustering Algorithms publication-title: Ann. Data Sci. doi: 10.1007/s40745-015-0040-1 |
| SSID | ssj0023338 |
| Score | 2.37254 |
| Snippet | The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6466 |
| SubjectTerms | Algorithms Artificial intelligence Behavior Blockchain Cluster Analysis Clustering Computer Systems Consumers Consumption data stream clustering Distance learning Electricity incremental learning Internet of Things load pattern Machine learning Probability Smart grid technology smart meter data Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEG8CBRnEgUvUOH4flz4ACVWVKFJvkeMHXWmbRbtZfj9jJxt2USUu3KJ4pDjjmfj74vFngPet1d7XQZQt567kxtJS08qWRkSjW62YMHmj8Fd1fq6vrszFzlFfqSZskAceHHeEMzB3klKrEhcwQtMYpBNBMRola_PXt1JmS6ZGqsWQeQ06QgxJ_dE66ZhJnqUQ_8w-WaT_NmT5d4Hkzoxz9hAejFCRzIYuPoI7oXsM93cEBJ9AO-sIZvjwjw9tjxebJHyAbWS2-LFE4n99Q9KvVnKRdTQ7crKax56chD6XYHUEMSv5srwsT_MeKk--3aBLyKfVHC-zyPNT-H52enn8uRxPTSgdUt2-9EJFLqizVnrmo7GxrUKU1FMdqJSuEkHqiExGWm9t9CLUNDAeonYmSER_z-CgW3bhBRDjvWw911yzwL1B77cG8WJFfVCIA2MBH7bebNwoKZ5Otlg0SC2S45vJ8QW8m0x_Djoatxl9TEMyGSTp63wDA6IZA6L5V0AUcLgd0GbMx3VTo1lihwaf8XZqxkxKyyO2C8vNYJM2HitWwPNh_KeeMJ4WPA0tQO1Fxl5X91u6-XVW60ZIWyOsfvk_3u0V3KtTTU1aFdOHcNCvNuE13HW_-vl69SanwG_PvQt4 priority: 102 providerName: Directory of Open Access Journals |
| Title | An Incremental Clustering Algorithm with Pattern Drift Detection for IoT-Enabled Smart Grid System |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34640791 https://www.proquest.com/docview/2581042896 https://www.proquest.com/docview/2581802273 https://pubmed.ncbi.nlm.nih.gov/PMC8512161 https://doaj.org/article/6124c611a701409581fe6c5e731f63b2 |
| Volume | 21 |
| WOSCitedRecordID | wos000725611000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvgeBURnEgUu0OnYc-4S6rYNJrKpgSOUUOf7YKnXJSFOO_O08O2m6ookLFyuKnyxL79n-vffs30PofaGEMYlN44IxHTOpSCzIUMUydVIUIqOpDA-Fv2STiZjN5LQLuC27a5XrPTFs1KbSPkZ-kKQwBmBlyT9e_4x91SifXe1KaNxFu75strfzbLZxuCj4Xy2bEAXX_mDp2cw4C4SImzMoUPXfhi__viZ549w5efS_M36MHnaIE49aE3mC7tjyKXpwg4fwGSpGJYaNog0VguzRYuX5E6APjxYXMGZzeYV9xBZPAx1niY_ruWvwsW3CTa4SA_TFp9V5PA5PsQz-dgUmiT_Vc_gMXNHP0feT8fnR57grvhBr8Jib2KSZYynRSnFDjZPKFUPrODFEWMK5HqaWCwcOEVdGKWdSmxBLmXVCS8sBRO6hnbIq7UuEpTG8MEwwQS0zEkBdIQF2DomxGcBJF6EPa3XkumMm9wUyFjl4KF5zea-5CL3rRa9bOo7bhA69TnsBz6AdflT1Rd4tyByQHdOcEJV5H1OCrpzlOrUZJY7TIonQ_lqrebesl_lGpRF623fDgvRZFlXaatXK-PfLGY3Qi9aA-plQ5vOmkkQo2zKtralu95Tzy0D6Dcg4AXT-6t_Teo3uJ_7SjU-biX2009Qr-wbd07-a-bIehNURWjFAu4fjyfTrIAQhoD37PYZ_09Oz6Y8_zt0hVA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aBhLwwP0SGGAQSLxEq2PHsR8QKuvGqpVqEkXqW3Bie6vUpaNNQfwpfiPHTi8rmnjbA29RfBTZ8efj7_jyHYA3hZbGJDaNC87LmCtNY0lbOlapU7KQGUtVuCjcy_p9ORyq4y34vbwL449VLn1icNRmUvo18t0kxW8gV1biw_n32GeN8ruryxQaDSyO7K-fGLLN3nc72L9vk-Rgf7B3GC-yCsQlhoJ1bNLM8ZSWWgvDjFPaFS3rBDVUWipE2UqtkA6ZvtBGa2dSm1DLuHWyVFakfgEUXf419OOZD_ay4TrAYxjvNepFjKnW7syrpwkeBBjXc15IDXAZn_37WOaFee7gzv_2h-7C7QWjJu1mCNyDLVvdh1sXdBYfQNGuCDrCZikUbffGc68PgWWkPT7BNtSnZ8SvSJPjIDdakc505GrSsXU4qVYRpPakOxnE--GqmSFfznDIkU_TET4GLeyH8PVKGvkItqtJZZ8AUcaIwnDJJbPcKCSthUJwtKixGdJlF8G7Zffn5UJ53ScAGecYgXmk5CukRPB6ZXreyI1cZvTRY2hl4BXCw4vJ9CRfOJwcmSsvBaU68zG0Qmw4K8rUZow6wYokgp0livKF25rlawhF8GpVjA7H7yLpyk7mjY2_n52xCB43gF3VhHG_L6xoBNkGlDequllSjU6DqDky_wSjj6f_rtZLuHE4-NzLe93-0TO4mfgDRn6LUO7Adj2d2-dwvfxRj2bTF2FkEvh21UD_A_pxezI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aNoTgge-PwACDQOIlah07jv2AUFlXqDaqSgxpewpObG-VunS0KYi_xq_jOkmzFU287YG3KL6KnOT4-lz7-lyA15mWxkQ2DjPO85ArTUNJuzpUsVMykwmLVXVQeD8ZjeThoRpvwO_VWRifVrnyiZWjNrPcr5F3ohifgVxZiY5r0iLG_cH7s--hryDld1pX5TRqiOzZXz8xfFu8G_bxX7-JosHuwc6nsKkwEOYYFpahiRPHY5prLQwzTmmXda0T1FBpqRB5N7ZCOmT9QhutnYltRC3j1slcWRH7xVB0_1tIyXm0CVvj4efxURvuMYz-ai0jxlS3s_BaaoJXcoznM2BVKOAydvt3kuaFWW9w-3_-XnfgVsO1Sa8eHHdhwxb34OYFBcb7kPUKgi6yXiRF253p0itHYBvpTY_xHcqTU-LXqsm4EiItSH8-cSXp27LKYSsIkn4ynB2Eu9UhNEO-nOJgJB_nE7ysVLIfwNcrecmHsFnMCvsYiDJGZIZLLpnlRiGdzRQS7i41NkEi7QJ4u4JCmjea7L40yDTF2MyjJm1RE8Cr1vSsFiK5zOiDx1Nr4LXDqxuz-XHauKIUOS3PBaU68dG1Qpw4K_LYJow6wbIogO0VotLGoS3SczgF8LJtRlfk95d0YWfL2saf3E5YAI9q8LY9YdzvGCsaQLIG67WurrcUk5NK7hxjggjjkif_7tYLuI74TveHo72ncCPymUd-71Buw2Y5X9pncC3_UU4W8-fNMCXw7aqR_gd6NYWB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Incremental+Clustering+Algorithm+with+Pattern+Drift+Detection+for+IoT-Enabled+Smart+Grid+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Zigui&rft.au=Lin%2C+Rongheng&rft.au=Yang%2C+Fangchun&rft.date=2021-09-28&rft.eissn=1424-8220&rft.volume=21&rft.issue=19&rft_id=info:doi/10.3390%2Fs21196466&rft_id=info%3Apmid%2F34640791&rft.externalDocID=34640791 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |