An Incremental Clustering Algorithm with Pattern Drift Detection for IoT-Enabled Smart Grid System

The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load patt...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 19; p. 6466
Main Authors: Jiang, Zigui, Lin, Rongheng, Yang, Fangchun
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 28.09.2021
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results.
AbstractList The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results.
The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results.The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results.
Author Jiang, Zigui
Yang, Fangchun
Lin, Rongheng
AuthorAffiliation 2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; fcyang@bupt.edu.cn
1 School of Software Engineering, Sun Yat-Sen University, Zhuhai 519082, China; jiangzg3@mail.sysu.edu.cn
AuthorAffiliation_xml – name: 2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; fcyang@bupt.edu.cn
– name: 1 School of Software Engineering, Sun Yat-Sen University, Zhuhai 519082, China; jiangzg3@mail.sysu.edu.cn
Author_xml – sequence: 1
  givenname: Zigui
  orcidid: 0000-0002-3349-5383
  surname: Jiang
  fullname: Jiang, Zigui
– sequence: 2
  givenname: Rongheng
  orcidid: 0000-0001-9562-7356
  surname: Lin
  fullname: Lin, Rongheng
– sequence: 3
  givenname: Fangchun
  surname: Yang
  fullname: Yang, Fangchun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34640791$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AlrjQQ6i_4jgXpNX2g5UqgUQ5W44z3nrl2MVxQP33eLtl1VZc7JHn8evXM3NcHYQYoKreE_yZsQ6fTZSQTnAhXlVHhFNeS0rxwZP4sDqepg3GlDEm31SHjAuO244cVf0ioFUwCUYIWXu09POUIbmwRgu_jsnl2xH9KSv6rnNJBHSenM3oHDKY7GJANia0ijf1RdC9hwH9GHXK6Cq5Et4XrfFt9dpqP8G7x_2k-nl5cbP8Wl9_u1otF9e14aLL9dC0ljfEaC0GNthO2x6DFWQgEogQBjcgpMVSCD1obYcGKAHGwUrTgWgYO6lWO90h6o26S64YuVdRO_VwENNaFWfOeFCCUG4EIbrFhOOukcSCMA20jFjBelq0vuy07uZ-hMGU4iTtn4k-zwR3q9bxt5INoUSQIvDpUSDFXzNMWY1uMuC9DhDnSdHypsSUtlvfH1-gmzinUEr1QGFOZScK9eGpo72Vf60swOkOMClOUwK7RwhW2zFR-zEp7NkL1rist-0sn3H-Pzf-Amxpvfo
CitedBy_id crossref_primary_10_1109_JETCAS_2023_3290418
crossref_primary_10_1007_s10586_022_03549_8
crossref_primary_10_3390_electronics11223668
Cites_doi 10.1109/TII.2017.2769450
10.31209/2019.100000113
10.1016/j.sigpro.2015.10.014
10.1007/s10115-014-0808-1
10.1016/j.energy.2011.12.031
10.1109/TST.2015.7085625
10.1016/j.knosys.2016.02.001
10.1137/1.9781611972795.63
10.1016/j.eswa.2019.113069
10.1145/2806416.2806464
10.1186/s41044-016-0011-3
10.1109/ACCESS.2020.2977149
10.1109/TII.2016.2528819
10.1007/978-3-642-22351-8_24
10.3390/en13112762
10.1016/j.enbuild.2019.04.034
10.1145/3335484.3335517
10.3390/s21093293
10.2298/CSIS200330012S
10.1016/j.apenergy.2020.114915
10.3390/en11092235
10.1109/JIOT.2020.3030308
10.1007/s10462-020-09874-x
10.3390/s21093157
10.1016/j.neucom.2017.06.084
10.1109/TASLP.2016.2530409
10.1109/TSG.2015.2446935
10.1016/j.is.2016.06.007
10.1109/TII.2017.2785963
10.1109/TNNLS.2017.2716952
10.1109/TSMC.2018.2791511
10.3390/s21051564
10.1109/TSG.2016.2548565
10.1049/iet-gtd.2014.0658
10.1109/TII.2020.2998479
10.1016/j.apenergy.2017.07.114
10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00187
10.1007/s42044-019-00043-0
10.1109/IoT52625.2021.9469717
10.3390/en13215739
10.1109/TII.2017.2684807
10.1016/j.ins.2016.12.004
10.1007/s40745-015-0040-1
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21196466
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6124c611a701409581fe6c5e731f63b2
PMC8512161
34640791
10_3390_s21196466
Genre Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation Grand
  grantid: 2019TQ0373
– fundername: National Natural Science Foundation of China
  grantid: 62002393
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-d57f451caa6d3df9afb0ef61d18e166c05e68f0866adaafd5e21e34ef8c9e6533
IEDL.DBID 7X7
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725611000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:51 EDT 2025
Tue Nov 04 02:00:24 EST 2025
Thu Sep 04 18:17:36 EDT 2025
Tue Oct 07 07:23:41 EDT 2025
Thu Apr 03 06:53:15 EDT 2025
Sat Nov 29 07:13:03 EST 2025
Tue Nov 18 21:55:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords data stream clustering
incremental learning
load pattern
smart meter data
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d57f451caa6d3df9afb0ef61d18e166c05e68f0866adaafd5e21e34ef8c9e6533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3349-5383
0000-0001-9562-7356
OpenAccessLink https://www.proquest.com/docview/2581042896?pq-origsite=%requestingapplication%
PMID 34640791
PQID 2581042896
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6124c611a701409581fe6c5e731f63b2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8512161
proquest_miscellaneous_2581802273
proquest_journals_2581042896
pubmed_primary_34640791
crossref_primary_10_3390_s21196466
crossref_citationtrail_10_3390_s21196466
PublicationCentury 2000
PublicationDate 2021-09-28
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mets (ref_36) 2016; 7
Zhang (ref_34) 2019; 59
Jiang (ref_39) 2018; 14
Bera (ref_2) 2021; 8
Kim (ref_9) 2019; 194
ref_12
ref_11
Panapakidis (ref_26) 2015; 9
Zheng (ref_16) 2018; 14
Aderibole (ref_6) 2020; 8
ref_18
Hafeez (ref_10) 2020; 269
Singh (ref_14) 2021; 66
Losing (ref_41) 2018; 275
Zhuang (ref_7) 2020; 17
ref_24
Liu (ref_19) 2019; 25
ref_21
ref_29
Lusis (ref_51) 2017; 205
Atalay (ref_44) 2021; 54
Chen (ref_13) 2021; 21
Xu (ref_22) 2018; 49
Chen (ref_50) 2017; 12
Zhang (ref_31) 2016; 126
Ghesmoune (ref_47) 2016; 1
Wang (ref_15) 2015; 20
Jin (ref_25) 2016; 12
ref_32
Wang (ref_37) 2016; 7
ref_30
Nguyen (ref_23) 2015; 45
ref_38
Hyde (ref_33) 2017; 382–383
Khelifi (ref_17) 2020; 63
Zhang (ref_28) 2017; 13
Chaudhari (ref_43) 2019; 2
Chicco (ref_20) 2012; 42
Marxer (ref_27) 2016; 24
Du (ref_46) 2016; 99
Xu (ref_45) 2015; 2
Chen (ref_42) 2018; 29
ref_40
ref_1
Barddal (ref_48) 2016; 62
Singh (ref_3) 2021; 18
ref_49
ref_8
Wiwatcharakoses (ref_35) 2020; 143
ref_5
ref_4
References_xml – volume: 14
  start-page: 1856
  year: 2018
  ident: ref_39
  article-title: A Fused Load Curve Clustering Algorithm based on Wavelet Transform
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2769450
– volume: 25
  start-page: 585
  year: 2019
  ident: ref_19
  article-title: An Efficient Supervised Energy Disaggregation Scheme for Power Service in Smart Grid
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.31209/2019.100000113
– volume: 126
  start-page: 111
  year: 2016
  ident: ref_31
  article-title: Data Stream Clustering based on Fuzzy C-Mean Algorithm and Entropy Theory
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.10.014
– ident: ref_32
– volume: 45
  start-page: 535
  year: 2015
  ident: ref_23
  article-title: A Survey on Data Stream Clustering and Classification
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-014-0808-1
– volume: 12
  start-page: 1
  year: 2017
  ident: ref_50
  article-title: A New Accuracy Measure based on Bounded Relative Error for Time Series Forecasting
  publication-title: PLoS ONE
– volume: 42
  start-page: 68
  year: 2012
  ident: ref_20
  article-title: Overview and Performance Assessment of the Clustering Methods for Electrical Load Pattern Grouping
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.031
– volume: 20
  start-page: 117
  year: 2015
  ident: ref_15
  article-title: Load Profiling and Its Application to Demand Response: A Review
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2015.7085625
– volume: 99
  start-page: 135
  year: 2016
  ident: ref_46
  article-title: Study on Density Peaks Clustering based on K-nearest Neighbors and Principal Component Analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.02.001
– ident: ref_49
  doi: 10.1137/1.9781611972795.63
– volume: 143
  start-page: 113069
  year: 2020
  ident: ref_35
  article-title: SOINN+, A Self-organizing Incremental Neural Network for Unsupervised Learning from Noisy Data Streams
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113069
– ident: ref_40
  doi: 10.1145/2806416.2806464
– volume: 1
  start-page: 13
  year: 2016
  ident: ref_47
  article-title: State-of-the-art on Clustering Data Streams
  publication-title: Big Data Anal.
  doi: 10.1186/s41044-016-0011-3
– volume: 8
  start-page: 43177
  year: 2020
  ident: ref_6
  article-title: Blockchain Technology for Smart Grids: Decentralized NIST Conceptual Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977149
– volume: 12
  start-page: 645
  year: 2016
  ident: ref_25
  article-title: Feature Construction and Calibration for Clustering Daily Load Curves from Smart-meter Data
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2016.2528819
– ident: ref_30
  doi: 10.1007/978-3-642-22351-8_24
– ident: ref_4
  doi: 10.3390/en13112762
– volume: 194
  start-page: 328
  year: 2019
  ident: ref_9
  article-title: Recurrent Inception Convolution Neural Network for Multi Short-term Load Forecasting
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.04.034
– ident: ref_24
  doi: 10.1145/3335484.3335517
– ident: ref_5
  doi: 10.3390/s21093293
– volume: 18
  start-page: 597
  year: 2021
  ident: ref_3
  article-title: Machine Learning based Distributed Big Data Analysis Framework for Next Generation Web in IoT
  publication-title: Comput. Sci. Inf. Syst.
  doi: 10.2298/CSIS200330012S
– volume: 269
  start-page: 114915
  year: 2020
  ident: ref_10
  article-title: Electric Load Forecasting based on Deep Learning and Optimized by Heuristic Algorithm in Smart Grid
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114915
– volume: 66
  start-page: 2905
  year: 2021
  ident: ref_14
  article-title: OTS Scheme based Secure Architecture for Energy-Efficient IoT in Edge Infrastructure
  publication-title: CMC-Comput. Mater. Contin.
– ident: ref_18
  doi: 10.3390/en11092235
– volume: 8
  start-page: 5744
  year: 2021
  ident: ref_2
  article-title: Designing Blockchain-based Access Control Protocol in IoT-enabled Smart-grid System
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3030308
– volume: 54
  start-page: 1201
  year: 2021
  ident: ref_44
  article-title: Data Stream Clustering: A Review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09874-x
– ident: ref_38
  doi: 10.3390/s21093157
– volume: 275
  start-page: 1261
  year: 2018
  ident: ref_41
  article-title: Incremental On-line Learning: A Review and Comparison of State of the Art Algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.084
– volume: 24
  start-page: 863
  year: 2016
  ident: ref_27
  article-title: Unsupervised Incremental Nnline Learning and Prediction of Musical Audio Signals
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2016.2530409
– volume: 7
  start-page: 2250
  year: 2016
  ident: ref_36
  article-title: Two-stage Load Pattern Clustering Using Fast Wavelet Transformation
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2446935
– volume: 62
  start-page: 60
  year: 2016
  ident: ref_48
  article-title: SNCStream+: Extending a High Quality True Anytime Data Stream Clustering Algorithm
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2016.06.007
– volume: 14
  start-page: 1606
  year: 2018
  ident: ref_16
  article-title: Wide and Deep Convolutional Neural Networks for Electricity-theft Detection to Secure Smart Grids
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2785963
– volume: 29
  start-page: 10
  year: 2018
  ident: ref_42
  article-title: Broad Learning System: An Effective and Efficient Incremental Learning System without the Need for Deep Architecture
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2716952
– volume: 49
  start-page: 2230
  year: 2018
  ident: ref_22
  article-title: New Incremental Learning Algorithm with Support Vector Machines
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2018.2791511
– ident: ref_8
  doi: 10.3390/s21051564
– volume: 7
  start-page: 2437
  year: 2016
  ident: ref_37
  article-title: Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2548565
– ident: ref_21
– volume: 9
  start-page: 655
  year: 2015
  ident: ref_26
  article-title: Enhancing the Clustering Process in the Category Model Load Profiling
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2014.0658
– volume: 17
  start-page: 3
  year: 2020
  ident: ref_7
  article-title: Blockchain for Cybersecurity in Smart Grid: A Comprehensive Survey
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2020.2998479
– volume: 205
  start-page: 654
  year: 2017
  ident: ref_51
  article-title: Short-term Residential Load Forecasting: Impact of Calendar Effects and Forecast Granularity
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.07.114
– ident: ref_11
  doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00187
– volume: 63
  start-page: 97
  year: 2020
  ident: ref_17
  article-title: A Cryptographic-based Approach for Electricity Theft Detection in Smart Grid
  publication-title: Comput. Mater. Contin.
– volume: 2
  start-page: 197
  year: 2019
  ident: ref_43
  article-title: A Bibliometric Survey on Incremental Clustering Algorithm for Electricity Smart Meter Data Analysis
  publication-title: Iran J. Comput. Sci.
  doi: 10.1007/s42044-019-00043-0
– ident: ref_12
  doi: 10.1109/IoT52625.2021.9469717
– ident: ref_29
– volume: 21
  start-page: 2883
  year: 2021
  ident: ref_13
  article-title: A Smart Home Energy Management System Using Two-Stage Non-Intrusive Appliance Load Monitoring over Fog-Cloud Analytics Based on Tridium’s Niagara Framework for Residential Demand-Side Management
  publication-title: Sensors
– ident: ref_1
  doi: 10.3390/en13215739
– volume: 59
  start-page: 885
  year: 2019
  ident: ref_34
  article-title: An Algorithm for Mining Gradual Moving Object Clusters Pattern from Trajectory Streams
  publication-title: Comput. Mater. Contin.
– volume: 13
  start-page: 1193
  year: 2017
  ident: ref_28
  article-title: An Incremental CFS Algorithm for Clustering Large Data in Industrial Internet of Things
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2684807
– volume: 382–383
  start-page: 96
  year: 2017
  ident: ref_33
  article-title: Fully Online Clustering of Evolving Data Streams into Arbitrarily Shaped Clusters
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.12.004
– volume: 2
  start-page: 165
  year: 2015
  ident: ref_45
  article-title: A Comprehensive Survey of Clustering Algorithms
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-015-0040-1
SSID ssj0023338
Score 2.37254
Snippet The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6466
SubjectTerms Algorithms
Artificial intelligence
Behavior
Blockchain
Cluster Analysis
Clustering
Computer Systems
Consumers
Consumption
data stream clustering
Distance learning
Electricity
incremental learning
Internet of Things
load pattern
Machine learning
Probability
Smart grid technology
smart meter data
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEG8CBRnEgUvUOH4flz4ACVWVKFJvkeMHXWmbRbtZfj9jJxt2USUu3KJ4pDjjmfj74vFngPet1d7XQZQt567kxtJS08qWRkSjW62YMHmj8Fd1fq6vrszFzlFfqSZskAceHHeEMzB3klKrEhcwQtMYpBNBMRola_PXt1JmS6ZGqsWQeQ06QgxJ_dE66ZhJnqUQ_8w-WaT_NmT5d4Hkzoxz9hAejFCRzIYuPoI7oXsM93cEBJ9AO-sIZvjwjw9tjxebJHyAbWS2-LFE4n99Q9KvVnKRdTQ7crKax56chD6XYHUEMSv5srwsT_MeKk--3aBLyKfVHC-zyPNT-H52enn8uRxPTSgdUt2-9EJFLqizVnrmo7GxrUKU1FMdqJSuEkHqiExGWm9t9CLUNDAeonYmSER_z-CgW3bhBRDjvWw911yzwL1B77cG8WJFfVCIA2MBH7bebNwoKZ5Otlg0SC2S45vJ8QW8m0x_Djoatxl9TEMyGSTp63wDA6IZA6L5V0AUcLgd0GbMx3VTo1lihwaf8XZqxkxKyyO2C8vNYJM2HitWwPNh_KeeMJ4WPA0tQO1Fxl5X91u6-XVW60ZIWyOsfvk_3u0V3KtTTU1aFdOHcNCvNuE13HW_-vl69SanwG_PvQt4
  priority: 102
  providerName: Directory of Open Access Journals
Title An Incremental Clustering Algorithm with Pattern Drift Detection for IoT-Enabled Smart Grid System
URI https://www.ncbi.nlm.nih.gov/pubmed/34640791
https://www.proquest.com/docview/2581042896
https://www.proquest.com/docview/2581802273
https://pubmed.ncbi.nlm.nih.gov/PMC8512161
https://doaj.org/article/6124c611a701409581fe6c5e731f63b2
Volume 21
WOSCitedRecordID wos000725611000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdg4wAHvgeBURnEgUu0OnYc-4S6rYNJrKpgSOUUOf7YKnXJSFOO_O08O2m6ookLFyuKnyxL79n-vffs30PofaGEMYlN44IxHTOpSCzIUMUydVIUIqOpDA-Fv2STiZjN5LQLuC27a5XrPTFs1KbSPkZ-kKQwBmBlyT9e_4x91SifXe1KaNxFu75strfzbLZxuCj4Xy2bEAXX_mDp2cw4C4SImzMoUPXfhi__viZ549w5efS_M36MHnaIE49aE3mC7tjyKXpwg4fwGSpGJYaNog0VguzRYuX5E6APjxYXMGZzeYV9xBZPAx1niY_ruWvwsW3CTa4SA_TFp9V5PA5PsQz-dgUmiT_Vc_gMXNHP0feT8fnR57grvhBr8Jib2KSZYynRSnFDjZPKFUPrODFEWMK5HqaWCwcOEVdGKWdSmxBLmXVCS8sBRO6hnbIq7UuEpTG8MEwwQS0zEkBdIQF2DomxGcBJF6EPa3XkumMm9wUyFjl4KF5zea-5CL3rRa9bOo7bhA69TnsBz6AdflT1Rd4tyByQHdOcEJV5H1OCrpzlOrUZJY7TIonQ_lqrebesl_lGpRF623fDgvRZFlXaatXK-PfLGY3Qi9aA-plQ5vOmkkQo2zKtralu95Tzy0D6Dcg4AXT-6t_Teo3uJ_7SjU-biX2009Qr-wbd07-a-bIehNURWjFAu4fjyfTrIAQhoD37PYZ_09Oz6Y8_zt0hVA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aBhLwwP0SGGAQSLxEq2PHsR8QKuvGqpVqEkXqW3Bie6vUpaNNQfwpfiPHTi8rmnjbA29RfBTZ8efj7_jyHYA3hZbGJDaNC87LmCtNY0lbOlapU7KQGUtVuCjcy_p9ORyq4y34vbwL449VLn1icNRmUvo18t0kxW8gV1biw_n32GeN8ruryxQaDSyO7K-fGLLN3nc72L9vk-Rgf7B3GC-yCsQlhoJ1bNLM8ZSWWgvDjFPaFS3rBDVUWipE2UqtkA6ZvtBGa2dSm1DLuHWyVFakfgEUXf419OOZD_ay4TrAYxjvNepFjKnW7syrpwkeBBjXc15IDXAZn_37WOaFee7gzv_2h-7C7QWjJu1mCNyDLVvdh1sXdBYfQNGuCDrCZikUbffGc68PgWWkPT7BNtSnZ8SvSJPjIDdakc505GrSsXU4qVYRpPakOxnE--GqmSFfznDIkU_TET4GLeyH8PVKGvkItqtJZZ8AUcaIwnDJJbPcKCSthUJwtKixGdJlF8G7Zffn5UJ53ScAGecYgXmk5CukRPB6ZXreyI1cZvTRY2hl4BXCw4vJ9CRfOJwcmSsvBaU68zG0Qmw4K8rUZow6wYokgp0livKF25rlawhF8GpVjA7H7yLpyk7mjY2_n52xCB43gF3VhHG_L6xoBNkGlDequllSjU6DqDky_wSjj6f_rtZLuHE4-NzLe93-0TO4mfgDRn6LUO7Adj2d2-dwvfxRj2bTF2FkEvh21UD_A_pxezI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aNoTgge-PwACDQOIlah07jv2AUFlXqDaqSgxpewpObG-VunS0KYi_xq_jOkmzFU287YG3KL6KnOT4-lz7-lyA15mWxkQ2DjPO85ArTUNJuzpUsVMykwmLVXVQeD8ZjeThoRpvwO_VWRifVrnyiZWjNrPcr5F3ohifgVxZiY5r0iLG_cH7s--hryDld1pX5TRqiOzZXz8xfFu8G_bxX7-JosHuwc6nsKkwEOYYFpahiRPHY5prLQwzTmmXda0T1FBpqRB5N7ZCOmT9QhutnYltRC3j1slcWRH7xVB0_1tIyXm0CVvj4efxURvuMYz-ai0jxlS3s_BaaoJXcoznM2BVKOAydvt3kuaFWW9w-3_-XnfgVsO1Sa8eHHdhwxb34OYFBcb7kPUKgi6yXiRF253p0itHYBvpTY_xHcqTU-LXqsm4EiItSH8-cSXp27LKYSsIkn4ynB2Eu9UhNEO-nOJgJB_nE7ysVLIfwNcrecmHsFnMCvsYiDJGZIZLLpnlRiGdzRQS7i41NkEi7QJ4u4JCmjea7L40yDTF2MyjJm1RE8Cr1vSsFiK5zOiDx1Nr4LXDqxuz-XHauKIUOS3PBaU68dG1Qpw4K_LYJow6wbIogO0VotLGoS3SczgF8LJtRlfk95d0YWfL2saf3E5YAI9q8LY9YdzvGCsaQLIG67WurrcUk5NK7hxjggjjkif_7tYLuI74TveHo72ncCPymUd-71Buw2Y5X9pncC3_UU4W8-fNMCXw7aqR_gd6NYWB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Incremental+Clustering+Algorithm+with+Pattern+Drift+Detection+for+IoT-Enabled+Smart+Grid+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Zigui&rft.au=Lin%2C+Rongheng&rft.au=Yang%2C+Fangchun&rft.date=2021-09-28&rft.eissn=1424-8220&rft.volume=21&rft.issue=19&rft_id=info:doi/10.3390%2Fs21196466&rft_id=info%3Apmid%2F34640791&rft.externalDocID=34640791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon